# Properties

 Label 960.4.a.l Level $960$ Weight $4$ Character orbit 960.a Self dual yes Analytic conductor $56.642$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [960,4,Mod(1,960)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(960, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("960.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$960 = 2^{6} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 960.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$56.6418336055$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 15) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 3 q^{3} + 5 q^{5} - 20 q^{7} + 9 q^{9}+O(q^{10})$$ q - 3 * q^3 + 5 * q^5 - 20 * q^7 + 9 * q^9 $$q - 3 q^{3} + 5 q^{5} - 20 q^{7} + 9 q^{9} - 24 q^{11} - 74 q^{13} - 15 q^{15} + 54 q^{17} - 124 q^{19} + 60 q^{21} + 120 q^{23} + 25 q^{25} - 27 q^{27} + 78 q^{29} - 200 q^{31} + 72 q^{33} - 100 q^{35} + 70 q^{37} + 222 q^{39} + 330 q^{41} + 92 q^{43} + 45 q^{45} + 24 q^{47} + 57 q^{49} - 162 q^{51} - 450 q^{53} - 120 q^{55} + 372 q^{57} + 24 q^{59} + 322 q^{61} - 180 q^{63} - 370 q^{65} - 196 q^{67} - 360 q^{69} + 288 q^{71} - 430 q^{73} - 75 q^{75} + 480 q^{77} + 520 q^{79} + 81 q^{81} + 156 q^{83} + 270 q^{85} - 234 q^{87} + 1026 q^{89} + 1480 q^{91} + 600 q^{93} - 620 q^{95} - 286 q^{97} - 216 q^{99}+O(q^{100})$$ q - 3 * q^3 + 5 * q^5 - 20 * q^7 + 9 * q^9 - 24 * q^11 - 74 * q^13 - 15 * q^15 + 54 * q^17 - 124 * q^19 + 60 * q^21 + 120 * q^23 + 25 * q^25 - 27 * q^27 + 78 * q^29 - 200 * q^31 + 72 * q^33 - 100 * q^35 + 70 * q^37 + 222 * q^39 + 330 * q^41 + 92 * q^43 + 45 * q^45 + 24 * q^47 + 57 * q^49 - 162 * q^51 - 450 * q^53 - 120 * q^55 + 372 * q^57 + 24 * q^59 + 322 * q^61 - 180 * q^63 - 370 * q^65 - 196 * q^67 - 360 * q^69 + 288 * q^71 - 430 * q^73 - 75 * q^75 + 480 * q^77 + 520 * q^79 + 81 * q^81 + 156 * q^83 + 270 * q^85 - 234 * q^87 + 1026 * q^89 + 1480 * q^91 + 600 * q^93 - 620 * q^95 - 286 * q^97 - 216 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −3.00000 0 5.00000 0 −20.0000 0 9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$+1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.4.a.l 1
4.b odd 2 1 960.4.a.bi 1
8.b even 2 1 240.4.a.f 1
8.d odd 2 1 15.4.a.b 1
24.f even 2 1 45.4.a.b 1
24.h odd 2 1 720.4.a.r 1
40.e odd 2 1 75.4.a.a 1
40.f even 2 1 1200.4.a.o 1
40.i odd 4 2 1200.4.f.m 2
40.k even 4 2 75.4.b.a 2
56.e even 2 1 735.4.a.i 1
72.l even 6 2 405.4.e.k 2
72.p odd 6 2 405.4.e.d 2
88.g even 2 1 1815.4.a.a 1
120.m even 2 1 225.4.a.g 1
120.q odd 4 2 225.4.b.d 2
168.e odd 2 1 2205.4.a.c 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.4.a.b 1 8.d odd 2 1
45.4.a.b 1 24.f even 2 1
75.4.a.a 1 40.e odd 2 1
75.4.b.a 2 40.k even 4 2
225.4.a.g 1 120.m even 2 1
225.4.b.d 2 120.q odd 4 2
240.4.a.f 1 8.b even 2 1
405.4.e.d 2 72.p odd 6 2
405.4.e.k 2 72.l even 6 2
720.4.a.r 1 24.h odd 2 1
735.4.a.i 1 56.e even 2 1
960.4.a.l 1 1.a even 1 1 trivial
960.4.a.bi 1 4.b odd 2 1
1200.4.a.o 1 40.f even 2 1
1200.4.f.m 2 40.i odd 4 2
1815.4.a.a 1 88.g even 2 1
2205.4.a.c 1 168.e odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(960))$$:

 $$T_{7} + 20$$ T7 + 20 $$T_{11} + 24$$ T11 + 24

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 3$$
$5$ $$T - 5$$
$7$ $$T + 20$$
$11$ $$T + 24$$
$13$ $$T + 74$$
$17$ $$T - 54$$
$19$ $$T + 124$$
$23$ $$T - 120$$
$29$ $$T - 78$$
$31$ $$T + 200$$
$37$ $$T - 70$$
$41$ $$T - 330$$
$43$ $$T - 92$$
$47$ $$T - 24$$
$53$ $$T + 450$$
$59$ $$T - 24$$
$61$ $$T - 322$$
$67$ $$T + 196$$
$71$ $$T - 288$$
$73$ $$T + 430$$
$79$ $$T - 520$$
$83$ $$T - 156$$
$89$ $$T - 1026$$
$97$ $$T + 286$$