Properties

Label 960.4.a.bp.1.1
Level $960$
Weight $4$
Character 960.1
Self dual yes
Analytic conductor $56.642$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,4,Mod(1,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.6418336055\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{201}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 50 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(7.58872\) of defining polynomial
Character \(\chi\) \(=\) 960.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +5.00000 q^{5} -30.3549 q^{7} +9.00000 q^{9} +20.0000 q^{11} -16.3549 q^{13} +15.0000 q^{15} -69.0647 q^{17} +86.3549 q^{19} -91.0647 q^{21} +34.3549 q^{23} +25.0000 q^{25} +27.0000 q^{27} +39.4196 q^{29} +217.194 q^{31} +60.0000 q^{33} -151.774 q^{35} -281.774 q^{37} -49.0647 q^{39} +342.710 q^{41} +373.420 q^{43} +45.0000 q^{45} -198.614 q^{47} +578.420 q^{49} -207.194 q^{51} -91.8706 q^{53} +100.000 q^{55} +259.065 q^{57} -49.1608 q^{59} +309.808 q^{61} -273.194 q^{63} -81.7745 q^{65} +651.098 q^{67} +103.065 q^{69} +850.839 q^{71} +964.388 q^{73} +75.0000 q^{75} -607.098 q^{77} +724.484 q^{79} +81.0000 q^{81} -433.678 q^{83} -345.323 q^{85} +118.259 q^{87} +1264.65 q^{89} +496.451 q^{91} +651.582 q^{93} +431.774 q^{95} -1745.87 q^{97} +180.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 10 q^{5} - 4 q^{7} + 18 q^{9} + 40 q^{11} + 24 q^{13} + 30 q^{15} + 32 q^{17} + 116 q^{19} - 12 q^{21} + 12 q^{23} + 50 q^{25} + 54 q^{27} - 148 q^{29} - 76 q^{31} + 120 q^{33} - 20 q^{35}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −30.3549 −1.63901 −0.819505 0.573072i \(-0.805752\pi\)
−0.819505 + 0.573072i \(0.805752\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 20.0000 0.548202 0.274101 0.961701i \(-0.411620\pi\)
0.274101 + 0.961701i \(0.411620\pi\)
\(12\) 0 0
\(13\) −16.3549 −0.348925 −0.174463 0.984664i \(-0.555819\pi\)
−0.174463 + 0.984664i \(0.555819\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) −69.0647 −0.985332 −0.492666 0.870218i \(-0.663978\pi\)
−0.492666 + 0.870218i \(0.663978\pi\)
\(18\) 0 0
\(19\) 86.3549 1.04269 0.521347 0.853345i \(-0.325430\pi\)
0.521347 + 0.853345i \(0.325430\pi\)
\(20\) 0 0
\(21\) −91.0647 −0.946283
\(22\) 0 0
\(23\) 34.3549 0.311456 0.155728 0.987800i \(-0.450228\pi\)
0.155728 + 0.987800i \(0.450228\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 39.4196 0.252415 0.126207 0.992004i \(-0.459720\pi\)
0.126207 + 0.992004i \(0.459720\pi\)
\(30\) 0 0
\(31\) 217.194 1.25836 0.629181 0.777259i \(-0.283391\pi\)
0.629181 + 0.777259i \(0.283391\pi\)
\(32\) 0 0
\(33\) 60.0000 0.316505
\(34\) 0 0
\(35\) −151.774 −0.732988
\(36\) 0 0
\(37\) −281.774 −1.25198 −0.625992 0.779829i \(-0.715306\pi\)
−0.625992 + 0.779829i \(0.715306\pi\)
\(38\) 0 0
\(39\) −49.0647 −0.201452
\(40\) 0 0
\(41\) 342.710 1.30542 0.652711 0.757607i \(-0.273632\pi\)
0.652711 + 0.757607i \(0.273632\pi\)
\(42\) 0 0
\(43\) 373.420 1.32432 0.662162 0.749361i \(-0.269639\pi\)
0.662162 + 0.749361i \(0.269639\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) −198.614 −0.616399 −0.308200 0.951322i \(-0.599727\pi\)
−0.308200 + 0.951322i \(0.599727\pi\)
\(48\) 0 0
\(49\) 578.420 1.68635
\(50\) 0 0
\(51\) −207.194 −0.568882
\(52\) 0 0
\(53\) −91.8706 −0.238102 −0.119051 0.992888i \(-0.537985\pi\)
−0.119051 + 0.992888i \(0.537985\pi\)
\(54\) 0 0
\(55\) 100.000 0.245164
\(56\) 0 0
\(57\) 259.065 0.601999
\(58\) 0 0
\(59\) −49.1608 −0.108478 −0.0542390 0.998528i \(-0.517273\pi\)
−0.0542390 + 0.998528i \(0.517273\pi\)
\(60\) 0 0
\(61\) 309.808 0.650276 0.325138 0.945667i \(-0.394589\pi\)
0.325138 + 0.945667i \(0.394589\pi\)
\(62\) 0 0
\(63\) −273.194 −0.546337
\(64\) 0 0
\(65\) −81.7745 −0.156044
\(66\) 0 0
\(67\) 651.098 1.18723 0.593614 0.804750i \(-0.297701\pi\)
0.593614 + 0.804750i \(0.297701\pi\)
\(68\) 0 0
\(69\) 103.065 0.179819
\(70\) 0 0
\(71\) 850.839 1.42220 0.711099 0.703092i \(-0.248198\pi\)
0.711099 + 0.703092i \(0.248198\pi\)
\(72\) 0 0
\(73\) 964.388 1.54621 0.773103 0.634280i \(-0.218703\pi\)
0.773103 + 0.634280i \(0.218703\pi\)
\(74\) 0 0
\(75\) 75.0000 0.115470
\(76\) 0 0
\(77\) −607.098 −0.898509
\(78\) 0 0
\(79\) 724.484 1.03178 0.515891 0.856654i \(-0.327461\pi\)
0.515891 + 0.856654i \(0.327461\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −433.678 −0.573523 −0.286761 0.958002i \(-0.592579\pi\)
−0.286761 + 0.958002i \(0.592579\pi\)
\(84\) 0 0
\(85\) −345.323 −0.440654
\(86\) 0 0
\(87\) 118.259 0.145732
\(88\) 0 0
\(89\) 1264.65 1.50621 0.753103 0.657903i \(-0.228556\pi\)
0.753103 + 0.657903i \(0.228556\pi\)
\(90\) 0 0
\(91\) 496.451 0.571892
\(92\) 0 0
\(93\) 651.582 0.726515
\(94\) 0 0
\(95\) 431.774 0.466307
\(96\) 0 0
\(97\) −1745.87 −1.82749 −0.913746 0.406287i \(-0.866823\pi\)
−0.913746 + 0.406287i \(0.866823\pi\)
\(98\) 0 0
\(99\) 180.000 0.182734
\(100\) 0 0
\(101\) −1739.94 −1.71416 −0.857080 0.515183i \(-0.827724\pi\)
−0.857080 + 0.515183i \(0.827724\pi\)
\(102\) 0 0
\(103\) 236.484 0.226228 0.113114 0.993582i \(-0.463917\pi\)
0.113114 + 0.993582i \(0.463917\pi\)
\(104\) 0 0
\(105\) −455.323 −0.423191
\(106\) 0 0
\(107\) −514.647 −0.464979 −0.232490 0.972599i \(-0.574687\pi\)
−0.232490 + 0.972599i \(0.574687\pi\)
\(108\) 0 0
\(109\) −342.902 −0.301322 −0.150661 0.988586i \(-0.548140\pi\)
−0.150661 + 0.988586i \(0.548140\pi\)
\(110\) 0 0
\(111\) −845.323 −0.722834
\(112\) 0 0
\(113\) 534.677 0.445116 0.222558 0.974919i \(-0.428559\pi\)
0.222558 + 0.974919i \(0.428559\pi\)
\(114\) 0 0
\(115\) 171.774 0.139287
\(116\) 0 0
\(117\) −147.194 −0.116308
\(118\) 0 0
\(119\) 2096.45 1.61497
\(120\) 0 0
\(121\) −931.000 −0.699474
\(122\) 0 0
\(123\) 1028.13 0.753685
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 627.582 0.438495 0.219248 0.975669i \(-0.429640\pi\)
0.219248 + 0.975669i \(0.429640\pi\)
\(128\) 0 0
\(129\) 1120.26 0.764599
\(130\) 0 0
\(131\) 2188.58 1.45968 0.729838 0.683621i \(-0.239596\pi\)
0.729838 + 0.683621i \(0.239596\pi\)
\(132\) 0 0
\(133\) −2621.29 −1.70898
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) −1896.35 −1.18260 −0.591301 0.806451i \(-0.701386\pi\)
−0.591301 + 0.806451i \(0.701386\pi\)
\(138\) 0 0
\(139\) 441.128 0.269180 0.134590 0.990901i \(-0.457028\pi\)
0.134590 + 0.990901i \(0.457028\pi\)
\(140\) 0 0
\(141\) −595.841 −0.355878
\(142\) 0 0
\(143\) −327.098 −0.191282
\(144\) 0 0
\(145\) 197.098 0.112883
\(146\) 0 0
\(147\) 1735.26 0.973617
\(148\) 0 0
\(149\) 571.294 0.314109 0.157054 0.987590i \(-0.449800\pi\)
0.157054 + 0.987590i \(0.449800\pi\)
\(150\) 0 0
\(151\) −2883.71 −1.55413 −0.777064 0.629421i \(-0.783292\pi\)
−0.777064 + 0.629421i \(0.783292\pi\)
\(152\) 0 0
\(153\) −621.582 −0.328444
\(154\) 0 0
\(155\) 1085.97 0.562756
\(156\) 0 0
\(157\) 167.579 0.0851862 0.0425931 0.999093i \(-0.486438\pi\)
0.0425931 + 0.999093i \(0.486438\pi\)
\(158\) 0 0
\(159\) −275.612 −0.137468
\(160\) 0 0
\(161\) −1042.84 −0.510480
\(162\) 0 0
\(163\) 2257.16 1.08463 0.542314 0.840176i \(-0.317548\pi\)
0.542314 + 0.840176i \(0.317548\pi\)
\(164\) 0 0
\(165\) 300.000 0.141545
\(166\) 0 0
\(167\) 3820.29 1.77020 0.885099 0.465403i \(-0.154091\pi\)
0.885099 + 0.465403i \(0.154091\pi\)
\(168\) 0 0
\(169\) −1929.52 −0.878251
\(170\) 0 0
\(171\) 777.194 0.347564
\(172\) 0 0
\(173\) 4185.87 1.83957 0.919786 0.392419i \(-0.128362\pi\)
0.919786 + 0.392419i \(0.128362\pi\)
\(174\) 0 0
\(175\) −758.872 −0.327802
\(176\) 0 0
\(177\) −147.483 −0.0626298
\(178\) 0 0
\(179\) −1930.26 −0.806003 −0.403002 0.915199i \(-0.632033\pi\)
−0.403002 + 0.915199i \(0.632033\pi\)
\(180\) 0 0
\(181\) 2310.01 0.948627 0.474313 0.880356i \(-0.342696\pi\)
0.474313 + 0.880356i \(0.342696\pi\)
\(182\) 0 0
\(183\) 929.423 0.375437
\(184\) 0 0
\(185\) −1408.87 −0.559905
\(186\) 0 0
\(187\) −1381.29 −0.540161
\(188\) 0 0
\(189\) −819.582 −0.315428
\(190\) 0 0
\(191\) 4642.97 1.75892 0.879460 0.475973i \(-0.157904\pi\)
0.879460 + 0.475973i \(0.157904\pi\)
\(192\) 0 0
\(193\) 4003.23 1.49305 0.746526 0.665356i \(-0.231720\pi\)
0.746526 + 0.665356i \(0.231720\pi\)
\(194\) 0 0
\(195\) −245.323 −0.0900922
\(196\) 0 0
\(197\) 4118.97 1.48967 0.744833 0.667250i \(-0.232529\pi\)
0.744833 + 0.667250i \(0.232529\pi\)
\(198\) 0 0
\(199\) 2384.68 0.849474 0.424737 0.905317i \(-0.360367\pi\)
0.424737 + 0.905317i \(0.360367\pi\)
\(200\) 0 0
\(201\) 1953.29 0.685446
\(202\) 0 0
\(203\) −1196.58 −0.413711
\(204\) 0 0
\(205\) 1713.55 0.583802
\(206\) 0 0
\(207\) 309.194 0.103819
\(208\) 0 0
\(209\) 1727.10 0.571607
\(210\) 0 0
\(211\) 1310.29 0.427507 0.213754 0.976888i \(-0.431431\pi\)
0.213754 + 0.976888i \(0.431431\pi\)
\(212\) 0 0
\(213\) 2552.52 0.821106
\(214\) 0 0
\(215\) 1867.10 0.592256
\(216\) 0 0
\(217\) −6592.90 −2.06247
\(218\) 0 0
\(219\) 2893.16 0.892703
\(220\) 0 0
\(221\) 1129.55 0.343807
\(222\) 0 0
\(223\) −883.967 −0.265448 −0.132724 0.991153i \(-0.542372\pi\)
−0.132724 + 0.991153i \(0.542372\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −2407.36 −0.703885 −0.351942 0.936022i \(-0.614479\pi\)
−0.351942 + 0.936022i \(0.614479\pi\)
\(228\) 0 0
\(229\) −5505.94 −1.58883 −0.794417 0.607373i \(-0.792223\pi\)
−0.794417 + 0.607373i \(0.792223\pi\)
\(230\) 0 0
\(231\) −1821.29 −0.518755
\(232\) 0 0
\(233\) −673.523 −0.189373 −0.0946865 0.995507i \(-0.530185\pi\)
−0.0946865 + 0.995507i \(0.530185\pi\)
\(234\) 0 0
\(235\) −993.068 −0.275662
\(236\) 0 0
\(237\) 2173.45 0.595700
\(238\) 0 0
\(239\) 914.773 0.247580 0.123790 0.992308i \(-0.460495\pi\)
0.123790 + 0.992308i \(0.460495\pi\)
\(240\) 0 0
\(241\) −5516.33 −1.47443 −0.737216 0.675657i \(-0.763860\pi\)
−0.737216 + 0.675657i \(0.763860\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 2892.10 0.754161
\(246\) 0 0
\(247\) −1412.33 −0.363822
\(248\) 0 0
\(249\) −1301.03 −0.331123
\(250\) 0 0
\(251\) −4923.93 −1.23823 −0.619115 0.785300i \(-0.712509\pi\)
−0.619115 + 0.785300i \(0.712509\pi\)
\(252\) 0 0
\(253\) 687.098 0.170741
\(254\) 0 0
\(255\) −1035.97 −0.254412
\(256\) 0 0
\(257\) −767.771 −0.186351 −0.0931756 0.995650i \(-0.529702\pi\)
−0.0931756 + 0.995650i \(0.529702\pi\)
\(258\) 0 0
\(259\) 8553.23 2.05202
\(260\) 0 0
\(261\) 354.776 0.0841383
\(262\) 0 0
\(263\) 2623.97 0.615212 0.307606 0.951514i \(-0.400472\pi\)
0.307606 + 0.951514i \(0.400472\pi\)
\(264\) 0 0
\(265\) −459.353 −0.106482
\(266\) 0 0
\(267\) 3793.94 0.869608
\(268\) 0 0
\(269\) −4539.69 −1.02896 −0.514479 0.857503i \(-0.672015\pi\)
−0.514479 + 0.857503i \(0.672015\pi\)
\(270\) 0 0
\(271\) −3841.51 −0.861090 −0.430545 0.902569i \(-0.641679\pi\)
−0.430545 + 0.902569i \(0.641679\pi\)
\(272\) 0 0
\(273\) 1489.35 0.330182
\(274\) 0 0
\(275\) 500.000 0.109640
\(276\) 0 0
\(277\) 8471.07 1.83746 0.918732 0.394881i \(-0.129214\pi\)
0.918732 + 0.394881i \(0.129214\pi\)
\(278\) 0 0
\(279\) 1954.75 0.419454
\(280\) 0 0
\(281\) 3931.10 0.834555 0.417277 0.908779i \(-0.362984\pi\)
0.417277 + 0.908779i \(0.362984\pi\)
\(282\) 0 0
\(283\) −5678.84 −1.19283 −0.596417 0.802675i \(-0.703409\pi\)
−0.596417 + 0.802675i \(0.703409\pi\)
\(284\) 0 0
\(285\) 1295.32 0.269222
\(286\) 0 0
\(287\) −10402.9 −2.13960
\(288\) 0 0
\(289\) −143.070 −0.0291207
\(290\) 0 0
\(291\) −5237.62 −1.05510
\(292\) 0 0
\(293\) −6180.79 −1.23237 −0.616187 0.787600i \(-0.711323\pi\)
−0.616187 + 0.787600i \(0.711323\pi\)
\(294\) 0 0
\(295\) −245.804 −0.0485128
\(296\) 0 0
\(297\) 540.000 0.105502
\(298\) 0 0
\(299\) −561.871 −0.108675
\(300\) 0 0
\(301\) −11335.1 −2.17058
\(302\) 0 0
\(303\) −5219.81 −0.989671
\(304\) 0 0
\(305\) 1549.04 0.290812
\(306\) 0 0
\(307\) 5058.91 0.940480 0.470240 0.882539i \(-0.344167\pi\)
0.470240 + 0.882539i \(0.344167\pi\)
\(308\) 0 0
\(309\) 709.453 0.130613
\(310\) 0 0
\(311\) 7795.82 1.42142 0.710708 0.703487i \(-0.248375\pi\)
0.710708 + 0.703487i \(0.248375\pi\)
\(312\) 0 0
\(313\) −8138.34 −1.46967 −0.734834 0.678247i \(-0.762740\pi\)
−0.734834 + 0.678247i \(0.762740\pi\)
\(314\) 0 0
\(315\) −1365.97 −0.244329
\(316\) 0 0
\(317\) 6911.10 1.22450 0.612249 0.790665i \(-0.290265\pi\)
0.612249 + 0.790665i \(0.290265\pi\)
\(318\) 0 0
\(319\) 788.392 0.138374
\(320\) 0 0
\(321\) −1543.94 −0.268456
\(322\) 0 0
\(323\) −5964.07 −1.02740
\(324\) 0 0
\(325\) −408.872 −0.0697851
\(326\) 0 0
\(327\) −1028.71 −0.173968
\(328\) 0 0
\(329\) 6028.90 1.01028
\(330\) 0 0
\(331\) −6510.62 −1.08114 −0.540568 0.841300i \(-0.681791\pi\)
−0.540568 + 0.841300i \(0.681791\pi\)
\(332\) 0 0
\(333\) −2535.97 −0.417328
\(334\) 0 0
\(335\) 3255.49 0.530944
\(336\) 0 0
\(337\) −247.990 −0.0400856 −0.0200428 0.999799i \(-0.506380\pi\)
−0.0200428 + 0.999799i \(0.506380\pi\)
\(338\) 0 0
\(339\) 1604.03 0.256988
\(340\) 0 0
\(341\) 4343.88 0.689837
\(342\) 0 0
\(343\) −7146.14 −1.12494
\(344\) 0 0
\(345\) 515.323 0.0804176
\(346\) 0 0
\(347\) −6105.88 −0.944613 −0.472306 0.881434i \(-0.656578\pi\)
−0.472306 + 0.881434i \(0.656578\pi\)
\(348\) 0 0
\(349\) −7452.90 −1.14311 −0.571554 0.820565i \(-0.693659\pi\)
−0.571554 + 0.820565i \(0.693659\pi\)
\(350\) 0 0
\(351\) −441.582 −0.0671507
\(352\) 0 0
\(353\) 12974.6 1.95629 0.978144 0.207929i \(-0.0666724\pi\)
0.978144 + 0.207929i \(0.0666724\pi\)
\(354\) 0 0
\(355\) 4254.20 0.636026
\(356\) 0 0
\(357\) 6289.35 0.932403
\(358\) 0 0
\(359\) −5776.40 −0.849211 −0.424605 0.905379i \(-0.639587\pi\)
−0.424605 + 0.905379i \(0.639587\pi\)
\(360\) 0 0
\(361\) 598.168 0.0872092
\(362\) 0 0
\(363\) −2793.00 −0.403842
\(364\) 0 0
\(365\) 4821.94 0.691485
\(366\) 0 0
\(367\) 7191.40 1.02286 0.511428 0.859326i \(-0.329117\pi\)
0.511428 + 0.859326i \(0.329117\pi\)
\(368\) 0 0
\(369\) 3084.39 0.435140
\(370\) 0 0
\(371\) 2788.72 0.390252
\(372\) 0 0
\(373\) −6487.77 −0.900601 −0.450300 0.892877i \(-0.648683\pi\)
−0.450300 + 0.892877i \(0.648683\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −644.703 −0.0880740
\(378\) 0 0
\(379\) 1464.68 0.198510 0.0992551 0.995062i \(-0.468354\pi\)
0.0992551 + 0.995062i \(0.468354\pi\)
\(380\) 0 0
\(381\) 1882.75 0.253165
\(382\) 0 0
\(383\) −3568.29 −0.476060 −0.238030 0.971258i \(-0.576502\pi\)
−0.238030 + 0.971258i \(0.576502\pi\)
\(384\) 0 0
\(385\) −3035.49 −0.401826
\(386\) 0 0
\(387\) 3360.78 0.441441
\(388\) 0 0
\(389\) −5562.52 −0.725015 −0.362507 0.931981i \(-0.618079\pi\)
−0.362507 + 0.931981i \(0.618079\pi\)
\(390\) 0 0
\(391\) −2372.71 −0.306888
\(392\) 0 0
\(393\) 6565.75 0.842744
\(394\) 0 0
\(395\) 3622.42 0.461427
\(396\) 0 0
\(397\) −1601.77 −0.202496 −0.101248 0.994861i \(-0.532283\pi\)
−0.101248 + 0.994861i \(0.532283\pi\)
\(398\) 0 0
\(399\) −7863.88 −0.986683
\(400\) 0 0
\(401\) −5435.04 −0.676840 −0.338420 0.940995i \(-0.609893\pi\)
−0.338420 + 0.940995i \(0.609893\pi\)
\(402\) 0 0
\(403\) −3552.19 −0.439074
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −5635.49 −0.686341
\(408\) 0 0
\(409\) 11535.2 1.39457 0.697283 0.716796i \(-0.254392\pi\)
0.697283 + 0.716796i \(0.254392\pi\)
\(410\) 0 0
\(411\) −5689.06 −0.682776
\(412\) 0 0
\(413\) 1492.27 0.177796
\(414\) 0 0
\(415\) −2168.39 −0.256487
\(416\) 0 0
\(417\) 1323.38 0.155411
\(418\) 0 0
\(419\) 8858.90 1.03290 0.516451 0.856317i \(-0.327253\pi\)
0.516451 + 0.856317i \(0.327253\pi\)
\(420\) 0 0
\(421\) −13361.9 −1.54684 −0.773422 0.633892i \(-0.781456\pi\)
−0.773422 + 0.633892i \(0.781456\pi\)
\(422\) 0 0
\(423\) −1787.52 −0.205466
\(424\) 0 0
\(425\) −1726.62 −0.197066
\(426\) 0 0
\(427\) −9404.18 −1.06581
\(428\) 0 0
\(429\) −981.294 −0.110437
\(430\) 0 0
\(431\) −12223.1 −1.36605 −0.683024 0.730396i \(-0.739336\pi\)
−0.683024 + 0.730396i \(0.739336\pi\)
\(432\) 0 0
\(433\) 110.192 0.0122298 0.00611490 0.999981i \(-0.498054\pi\)
0.00611490 + 0.999981i \(0.498054\pi\)
\(434\) 0 0
\(435\) 591.294 0.0651732
\(436\) 0 0
\(437\) 2966.71 0.324753
\(438\) 0 0
\(439\) 10838.5 1.17834 0.589172 0.808008i \(-0.299454\pi\)
0.589172 + 0.808008i \(0.299454\pi\)
\(440\) 0 0
\(441\) 5205.78 0.562118
\(442\) 0 0
\(443\) −14291.2 −1.53272 −0.766362 0.642409i \(-0.777935\pi\)
−0.766362 + 0.642409i \(0.777935\pi\)
\(444\) 0 0
\(445\) 6323.23 0.673596
\(446\) 0 0
\(447\) 1713.88 0.181351
\(448\) 0 0
\(449\) 2451.92 0.257714 0.128857 0.991663i \(-0.458869\pi\)
0.128857 + 0.991663i \(0.458869\pi\)
\(450\) 0 0
\(451\) 6854.20 0.715635
\(452\) 0 0
\(453\) −8651.14 −0.897276
\(454\) 0 0
\(455\) 2482.26 0.255758
\(456\) 0 0
\(457\) −1352.31 −0.138421 −0.0692104 0.997602i \(-0.522048\pi\)
−0.0692104 + 0.997602i \(0.522048\pi\)
\(458\) 0 0
\(459\) −1864.75 −0.189627
\(460\) 0 0
\(461\) −5331.29 −0.538618 −0.269309 0.963054i \(-0.586795\pi\)
−0.269309 + 0.963054i \(0.586795\pi\)
\(462\) 0 0
\(463\) −1.69784 −0.000170422 0 −8.52110e−5 1.00000i \(-0.500027\pi\)
−8.52110e−5 1.00000i \(0.500027\pi\)
\(464\) 0 0
\(465\) 3257.91 0.324908
\(466\) 0 0
\(467\) −9081.89 −0.899914 −0.449957 0.893050i \(-0.648561\pi\)
−0.449957 + 0.893050i \(0.648561\pi\)
\(468\) 0 0
\(469\) −19764.0 −1.94588
\(470\) 0 0
\(471\) 502.736 0.0491823
\(472\) 0 0
\(473\) 7468.39 0.725998
\(474\) 0 0
\(475\) 2158.87 0.208539
\(476\) 0 0
\(477\) −826.836 −0.0793673
\(478\) 0 0
\(479\) 6270.21 0.598107 0.299053 0.954236i \(-0.403329\pi\)
0.299053 + 0.954236i \(0.403329\pi\)
\(480\) 0 0
\(481\) 4608.39 0.436849
\(482\) 0 0
\(483\) −3128.52 −0.294726
\(484\) 0 0
\(485\) −8729.37 −0.817279
\(486\) 0 0
\(487\) 13938.7 1.29697 0.648486 0.761227i \(-0.275403\pi\)
0.648486 + 0.761227i \(0.275403\pi\)
\(488\) 0 0
\(489\) 6771.48 0.626211
\(490\) 0 0
\(491\) −5301.54 −0.487281 −0.243641 0.969866i \(-0.578342\pi\)
−0.243641 + 0.969866i \(0.578342\pi\)
\(492\) 0 0
\(493\) −2722.50 −0.248712
\(494\) 0 0
\(495\) 900.000 0.0817212
\(496\) 0 0
\(497\) −25827.1 −2.33100
\(498\) 0 0
\(499\) −12167.0 −1.09152 −0.545762 0.837940i \(-0.683760\pi\)
−0.545762 + 0.837940i \(0.683760\pi\)
\(500\) 0 0
\(501\) 11460.9 1.02202
\(502\) 0 0
\(503\) −12761.8 −1.13126 −0.565628 0.824660i \(-0.691366\pi\)
−0.565628 + 0.824660i \(0.691366\pi\)
\(504\) 0 0
\(505\) −8699.69 −0.766596
\(506\) 0 0
\(507\) −5788.55 −0.507058
\(508\) 0 0
\(509\) 1875.68 0.163336 0.0816680 0.996660i \(-0.473975\pi\)
0.0816680 + 0.996660i \(0.473975\pi\)
\(510\) 0 0
\(511\) −29273.9 −2.53425
\(512\) 0 0
\(513\) 2331.58 0.200666
\(514\) 0 0
\(515\) 1182.42 0.101172
\(516\) 0 0
\(517\) −3972.27 −0.337912
\(518\) 0 0
\(519\) 12557.6 1.06208
\(520\) 0 0
\(521\) 12565.0 1.05659 0.528293 0.849062i \(-0.322832\pi\)
0.528293 + 0.849062i \(0.322832\pi\)
\(522\) 0 0
\(523\) −20006.3 −1.67268 −0.836341 0.548209i \(-0.815310\pi\)
−0.836341 + 0.548209i \(0.815310\pi\)
\(524\) 0 0
\(525\) −2276.62 −0.189257
\(526\) 0 0
\(527\) −15000.4 −1.23990
\(528\) 0 0
\(529\) −10986.7 −0.902995
\(530\) 0 0
\(531\) −442.448 −0.0361593
\(532\) 0 0
\(533\) −5604.98 −0.455495
\(534\) 0 0
\(535\) −2573.23 −0.207945
\(536\) 0 0
\(537\) −5790.79 −0.465346
\(538\) 0 0
\(539\) 11568.4 0.924464
\(540\) 0 0
\(541\) −3930.27 −0.312339 −0.156170 0.987730i \(-0.549915\pi\)
−0.156170 + 0.987730i \(0.549915\pi\)
\(542\) 0 0
\(543\) 6930.02 0.547690
\(544\) 0 0
\(545\) −1714.51 −0.134755
\(546\) 0 0
\(547\) −19908.5 −1.55618 −0.778088 0.628156i \(-0.783810\pi\)
−0.778088 + 0.628156i \(0.783810\pi\)
\(548\) 0 0
\(549\) 2788.27 0.216759
\(550\) 0 0
\(551\) 3404.07 0.263191
\(552\) 0 0
\(553\) −21991.6 −1.69110
\(554\) 0 0
\(555\) −4226.62 −0.323261
\(556\) 0 0
\(557\) −11820.0 −0.899153 −0.449576 0.893242i \(-0.648425\pi\)
−0.449576 + 0.893242i \(0.648425\pi\)
\(558\) 0 0
\(559\) −6107.24 −0.462091
\(560\) 0 0
\(561\) −4143.88 −0.311862
\(562\) 0 0
\(563\) 21578.2 1.61530 0.807648 0.589665i \(-0.200740\pi\)
0.807648 + 0.589665i \(0.200740\pi\)
\(564\) 0 0
\(565\) 2673.38 0.199062
\(566\) 0 0
\(567\) −2458.75 −0.182112
\(568\) 0 0
\(569\) 22874.5 1.68533 0.842663 0.538441i \(-0.180986\pi\)
0.842663 + 0.538441i \(0.180986\pi\)
\(570\) 0 0
\(571\) 2857.53 0.209429 0.104714 0.994502i \(-0.466607\pi\)
0.104714 + 0.994502i \(0.466607\pi\)
\(572\) 0 0
\(573\) 13928.9 1.01551
\(574\) 0 0
\(575\) 858.872 0.0622912
\(576\) 0 0
\(577\) −10000.7 −0.721553 −0.360776 0.932652i \(-0.617488\pi\)
−0.360776 + 0.932652i \(0.617488\pi\)
\(578\) 0 0
\(579\) 12009.7 0.862014
\(580\) 0 0
\(581\) 13164.3 0.940009
\(582\) 0 0
\(583\) −1837.41 −0.130528
\(584\) 0 0
\(585\) −735.970 −0.0520147
\(586\) 0 0
\(587\) 10215.0 0.718262 0.359131 0.933287i \(-0.383073\pi\)
0.359131 + 0.933287i \(0.383073\pi\)
\(588\) 0 0
\(589\) 18755.8 1.31208
\(590\) 0 0
\(591\) 12356.9 0.860060
\(592\) 0 0
\(593\) −3995.50 −0.276687 −0.138344 0.990384i \(-0.544178\pi\)
−0.138344 + 0.990384i \(0.544178\pi\)
\(594\) 0 0
\(595\) 10482.3 0.722236
\(596\) 0 0
\(597\) 7154.03 0.490444
\(598\) 0 0
\(599\) 7844.51 0.535089 0.267544 0.963546i \(-0.413788\pi\)
0.267544 + 0.963546i \(0.413788\pi\)
\(600\) 0 0
\(601\) 5265.24 0.357361 0.178680 0.983907i \(-0.442817\pi\)
0.178680 + 0.983907i \(0.442817\pi\)
\(602\) 0 0
\(603\) 5859.88 0.395743
\(604\) 0 0
\(605\) −4655.00 −0.312814
\(606\) 0 0
\(607\) −16213.6 −1.08416 −0.542082 0.840325i \(-0.682364\pi\)
−0.542082 + 0.840325i \(0.682364\pi\)
\(608\) 0 0
\(609\) −3589.73 −0.238856
\(610\) 0 0
\(611\) 3248.30 0.215077
\(612\) 0 0
\(613\) 4538.37 0.299026 0.149513 0.988760i \(-0.452229\pi\)
0.149513 + 0.988760i \(0.452229\pi\)
\(614\) 0 0
\(615\) 5140.65 0.337058
\(616\) 0 0
\(617\) 1715.15 0.111911 0.0559556 0.998433i \(-0.482179\pi\)
0.0559556 + 0.998433i \(0.482179\pi\)
\(618\) 0 0
\(619\) −695.376 −0.0451527 −0.0225764 0.999745i \(-0.507187\pi\)
−0.0225764 + 0.999745i \(0.507187\pi\)
\(620\) 0 0
\(621\) 927.582 0.0599398
\(622\) 0 0
\(623\) −38388.2 −2.46869
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 5181.29 0.330017
\(628\) 0 0
\(629\) 19460.7 1.23362
\(630\) 0 0
\(631\) −9877.82 −0.623185 −0.311593 0.950216i \(-0.600862\pi\)
−0.311593 + 0.950216i \(0.600862\pi\)
\(632\) 0 0
\(633\) 3930.87 0.246821
\(634\) 0 0
\(635\) 3137.91 0.196101
\(636\) 0 0
\(637\) −9459.99 −0.588412
\(638\) 0 0
\(639\) 7657.55 0.474066
\(640\) 0 0
\(641\) 2441.03 0.150413 0.0752067 0.997168i \(-0.476038\pi\)
0.0752067 + 0.997168i \(0.476038\pi\)
\(642\) 0 0
\(643\) −8080.27 −0.495575 −0.247788 0.968814i \(-0.579704\pi\)
−0.247788 + 0.968814i \(0.579704\pi\)
\(644\) 0 0
\(645\) 5601.29 0.341939
\(646\) 0 0
\(647\) 1852.94 0.112591 0.0562957 0.998414i \(-0.482071\pi\)
0.0562957 + 0.998414i \(0.482071\pi\)
\(648\) 0 0
\(649\) −983.217 −0.0594679
\(650\) 0 0
\(651\) −19778.7 −1.19077
\(652\) 0 0
\(653\) 8211.29 0.492087 0.246043 0.969259i \(-0.420869\pi\)
0.246043 + 0.969259i \(0.420869\pi\)
\(654\) 0 0
\(655\) 10942.9 0.652787
\(656\) 0 0
\(657\) 8679.49 0.515402
\(658\) 0 0
\(659\) 22558.3 1.33346 0.666728 0.745301i \(-0.267694\pi\)
0.666728 + 0.745301i \(0.267694\pi\)
\(660\) 0 0
\(661\) 20058.9 1.18033 0.590166 0.807282i \(-0.299062\pi\)
0.590166 + 0.807282i \(0.299062\pi\)
\(662\) 0 0
\(663\) 3388.64 0.198497
\(664\) 0 0
\(665\) −13106.5 −0.764281
\(666\) 0 0
\(667\) 1354.26 0.0786162
\(668\) 0 0
\(669\) −2651.90 −0.153256
\(670\) 0 0
\(671\) 6196.15 0.356483
\(672\) 0 0
\(673\) 12172.8 0.697218 0.348609 0.937268i \(-0.386654\pi\)
0.348609 + 0.937268i \(0.386654\pi\)
\(674\) 0 0
\(675\) 675.000 0.0384900
\(676\) 0 0
\(677\) 29440.0 1.67130 0.835650 0.549263i \(-0.185091\pi\)
0.835650 + 0.549263i \(0.185091\pi\)
\(678\) 0 0
\(679\) 52995.8 2.99528
\(680\) 0 0
\(681\) −7222.07 −0.406388
\(682\) 0 0
\(683\) −21223.7 −1.18902 −0.594512 0.804087i \(-0.702655\pi\)
−0.594512 + 0.804087i \(0.702655\pi\)
\(684\) 0 0
\(685\) −9481.77 −0.528876
\(686\) 0 0
\(687\) −16517.8 −0.917313
\(688\) 0 0
\(689\) 1502.53 0.0830798
\(690\) 0 0
\(691\) −2278.77 −0.125454 −0.0627268 0.998031i \(-0.519980\pi\)
−0.0627268 + 0.998031i \(0.519980\pi\)
\(692\) 0 0
\(693\) −5463.88 −0.299503
\(694\) 0 0
\(695\) 2205.64 0.120381
\(696\) 0 0
\(697\) −23669.1 −1.28627
\(698\) 0 0
\(699\) −2020.57 −0.109335
\(700\) 0 0
\(701\) 8985.49 0.484133 0.242067 0.970260i \(-0.422175\pi\)
0.242067 + 0.970260i \(0.422175\pi\)
\(702\) 0 0
\(703\) −24332.6 −1.30544
\(704\) 0 0
\(705\) −2979.20 −0.159154
\(706\) 0 0
\(707\) 52815.6 2.80953
\(708\) 0 0
\(709\) 530.836 0.0281184 0.0140592 0.999901i \(-0.495525\pi\)
0.0140592 + 0.999901i \(0.495525\pi\)
\(710\) 0 0
\(711\) 6520.36 0.343928
\(712\) 0 0
\(713\) 7461.68 0.391924
\(714\) 0 0
\(715\) −1635.49 −0.0855438
\(716\) 0 0
\(717\) 2744.32 0.142941
\(718\) 0 0
\(719\) 12797.7 0.663804 0.331902 0.943314i \(-0.392310\pi\)
0.331902 + 0.943314i \(0.392310\pi\)
\(720\) 0 0
\(721\) −7178.45 −0.370790
\(722\) 0 0
\(723\) −16549.0 −0.851263
\(724\) 0 0
\(725\) 985.489 0.0504830
\(726\) 0 0
\(727\) 30477.7 1.55482 0.777411 0.628993i \(-0.216533\pi\)
0.777411 + 0.628993i \(0.216533\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −25790.1 −1.30490
\(732\) 0 0
\(733\) 4322.79 0.217825 0.108913 0.994051i \(-0.465263\pi\)
0.108913 + 0.994051i \(0.465263\pi\)
\(734\) 0 0
\(735\) 8676.29 0.435415
\(736\) 0 0
\(737\) 13022.0 0.650841
\(738\) 0 0
\(739\) 24280.6 1.20863 0.604315 0.796745i \(-0.293447\pi\)
0.604315 + 0.796745i \(0.293447\pi\)
\(740\) 0 0
\(741\) −4236.98 −0.210053
\(742\) 0 0
\(743\) 11638.4 0.574658 0.287329 0.957832i \(-0.407233\pi\)
0.287329 + 0.957832i \(0.407233\pi\)
\(744\) 0 0
\(745\) 2856.47 0.140474
\(746\) 0 0
\(747\) −3903.10 −0.191174
\(748\) 0 0
\(749\) 15622.0 0.762106
\(750\) 0 0
\(751\) 11817.8 0.574216 0.287108 0.957898i \(-0.407306\pi\)
0.287108 + 0.957898i \(0.407306\pi\)
\(752\) 0 0
\(753\) −14771.8 −0.714893
\(754\) 0 0
\(755\) −14418.6 −0.695027
\(756\) 0 0
\(757\) 311.180 0.0149406 0.00747031 0.999972i \(-0.497622\pi\)
0.00747031 + 0.999972i \(0.497622\pi\)
\(758\) 0 0
\(759\) 2061.29 0.0985774
\(760\) 0 0
\(761\) −7381.11 −0.351597 −0.175798 0.984426i \(-0.556251\pi\)
−0.175798 + 0.984426i \(0.556251\pi\)
\(762\) 0 0
\(763\) 10408.8 0.493869
\(764\) 0 0
\(765\) −3107.91 −0.146885
\(766\) 0 0
\(767\) 804.020 0.0378507
\(768\) 0 0
\(769\) −6695.05 −0.313953 −0.156976 0.987602i \(-0.550175\pi\)
−0.156976 + 0.987602i \(0.550175\pi\)
\(770\) 0 0
\(771\) −2303.31 −0.107590
\(772\) 0 0
\(773\) 25149.8 1.17022 0.585108 0.810955i \(-0.301052\pi\)
0.585108 + 0.810955i \(0.301052\pi\)
\(774\) 0 0
\(775\) 5429.85 0.251672
\(776\) 0 0
\(777\) 25659.7 1.18473
\(778\) 0 0
\(779\) 29594.7 1.36115
\(780\) 0 0
\(781\) 17016.8 0.779652
\(782\) 0 0
\(783\) 1064.33 0.0485773
\(784\) 0 0
\(785\) 837.894 0.0380964
\(786\) 0 0
\(787\) −25047.8 −1.13451 −0.567254 0.823543i \(-0.691994\pi\)
−0.567254 + 0.823543i \(0.691994\pi\)
\(788\) 0 0
\(789\) 7871.90 0.355193
\(790\) 0 0
\(791\) −16230.1 −0.729550
\(792\) 0 0
\(793\) −5066.87 −0.226898
\(794\) 0 0
\(795\) −1378.06 −0.0614777
\(796\) 0 0
\(797\) −34617.1 −1.53852 −0.769260 0.638936i \(-0.779375\pi\)
−0.769260 + 0.638936i \(0.779375\pi\)
\(798\) 0 0
\(799\) 13717.2 0.607358
\(800\) 0 0
\(801\) 11381.8 0.502069
\(802\) 0 0
\(803\) 19287.8 0.847634
\(804\) 0 0
\(805\) −5214.20 −0.228293
\(806\) 0 0
\(807\) −13619.1 −0.594069
\(808\) 0 0
\(809\) −39309.0 −1.70832 −0.854160 0.520011i \(-0.825928\pi\)
−0.854160 + 0.520011i \(0.825928\pi\)
\(810\) 0 0
\(811\) 36235.7 1.56894 0.784469 0.620168i \(-0.212935\pi\)
0.784469 + 0.620168i \(0.212935\pi\)
\(812\) 0 0
\(813\) −11524.5 −0.497150
\(814\) 0 0
\(815\) 11285.8 0.485061
\(816\) 0 0
\(817\) 32246.6 1.38086
\(818\) 0 0
\(819\) 4468.06 0.190631
\(820\) 0 0
\(821\) −4570.56 −0.194292 −0.0971459 0.995270i \(-0.530971\pi\)
−0.0971459 + 0.995270i \(0.530971\pi\)
\(822\) 0 0
\(823\) 18993.8 0.804473 0.402237 0.915536i \(-0.368233\pi\)
0.402237 + 0.915536i \(0.368233\pi\)
\(824\) 0 0
\(825\) 1500.00 0.0633010
\(826\) 0 0
\(827\) 32809.1 1.37954 0.689772 0.724027i \(-0.257711\pi\)
0.689772 + 0.724027i \(0.257711\pi\)
\(828\) 0 0
\(829\) −5188.36 −0.217369 −0.108685 0.994076i \(-0.534664\pi\)
−0.108685 + 0.994076i \(0.534664\pi\)
\(830\) 0 0
\(831\) 25413.2 1.06086
\(832\) 0 0
\(833\) −39948.4 −1.66162
\(834\) 0 0
\(835\) 19101.5 0.791657
\(836\) 0 0
\(837\) 5864.24 0.242172
\(838\) 0 0
\(839\) −4074.61 −0.167665 −0.0838327 0.996480i \(-0.526716\pi\)
−0.0838327 + 0.996480i \(0.526716\pi\)
\(840\) 0 0
\(841\) −22835.1 −0.936287
\(842\) 0 0
\(843\) 11793.3 0.481830
\(844\) 0 0
\(845\) −9647.59 −0.392766
\(846\) 0 0
\(847\) 28260.4 1.14645
\(848\) 0 0
\(849\) −17036.5 −0.688683
\(850\) 0 0
\(851\) −9680.33 −0.389938
\(852\) 0 0
\(853\) −45902.6 −1.84253 −0.921263 0.388941i \(-0.872841\pi\)
−0.921263 + 0.388941i \(0.872841\pi\)
\(854\) 0 0
\(855\) 3885.97 0.155436
\(856\) 0 0
\(857\) −17316.3 −0.690216 −0.345108 0.938563i \(-0.612158\pi\)
−0.345108 + 0.938563i \(0.612158\pi\)
\(858\) 0 0
\(859\) −14329.6 −0.569171 −0.284586 0.958651i \(-0.591856\pi\)
−0.284586 + 0.958651i \(0.591856\pi\)
\(860\) 0 0
\(861\) −31208.8 −1.23530
\(862\) 0 0
\(863\) −28679.6 −1.13125 −0.565623 0.824664i \(-0.691364\pi\)
−0.565623 + 0.824664i \(0.691364\pi\)
\(864\) 0 0
\(865\) 20929.4 0.822682
\(866\) 0 0
\(867\) −429.209 −0.0168128
\(868\) 0 0
\(869\) 14489.7 0.565626
\(870\) 0 0
\(871\) −10648.6 −0.414254
\(872\) 0 0
\(873\) −15712.9 −0.609164
\(874\) 0 0
\(875\) −3794.36 −0.146598
\(876\) 0 0
\(877\) 30048.4 1.15697 0.578485 0.815693i \(-0.303644\pi\)
0.578485 + 0.815693i \(0.303644\pi\)
\(878\) 0 0
\(879\) −18542.4 −0.711511
\(880\) 0 0
\(881\) 12576.6 0.480948 0.240474 0.970656i \(-0.422697\pi\)
0.240474 + 0.970656i \(0.422697\pi\)
\(882\) 0 0
\(883\) −18031.5 −0.687213 −0.343607 0.939114i \(-0.611649\pi\)
−0.343607 + 0.939114i \(0.611649\pi\)
\(884\) 0 0
\(885\) −737.413 −0.0280089
\(886\) 0 0
\(887\) 7089.07 0.268351 0.134176 0.990958i \(-0.457161\pi\)
0.134176 + 0.990958i \(0.457161\pi\)
\(888\) 0 0
\(889\) −19050.2 −0.718698
\(890\) 0 0
\(891\) 1620.00 0.0609114
\(892\) 0 0
\(893\) −17151.3 −0.642716
\(894\) 0 0
\(895\) −9651.31 −0.360456
\(896\) 0 0
\(897\) −1685.61 −0.0627435
\(898\) 0 0
\(899\) 8561.70 0.317629
\(900\) 0 0
\(901\) 6345.02 0.234609
\(902\) 0 0
\(903\) −34005.3 −1.25319
\(904\) 0 0
\(905\) 11550.0 0.424239
\(906\) 0 0
\(907\) −18949.2 −0.693714 −0.346857 0.937918i \(-0.612751\pi\)
−0.346857 + 0.937918i \(0.612751\pi\)
\(908\) 0 0
\(909\) −15659.4 −0.571387
\(910\) 0 0
\(911\) −13418.4 −0.488005 −0.244003 0.969775i \(-0.578461\pi\)
−0.244003 + 0.969775i \(0.578461\pi\)
\(912\) 0 0
\(913\) −8673.57 −0.314407
\(914\) 0 0
\(915\) 4647.11 0.167900
\(916\) 0 0
\(917\) −66434.2 −2.39242
\(918\) 0 0
\(919\) 17684.3 0.634768 0.317384 0.948297i \(-0.397196\pi\)
0.317384 + 0.948297i \(0.397196\pi\)
\(920\) 0 0
\(921\) 15176.7 0.542986
\(922\) 0 0
\(923\) −13915.4 −0.496241
\(924\) 0 0
\(925\) −7044.36 −0.250397
\(926\) 0 0
\(927\) 2128.36 0.0754093
\(928\) 0 0
\(929\) 34376.8 1.21406 0.607032 0.794677i \(-0.292360\pi\)
0.607032 + 0.794677i \(0.292360\pi\)
\(930\) 0 0
\(931\) 49949.4 1.75835
\(932\) 0 0
\(933\) 23387.5 0.820655
\(934\) 0 0
\(935\) −6906.47 −0.241568
\(936\) 0 0
\(937\) 41657.0 1.45237 0.726187 0.687497i \(-0.241291\pi\)
0.726187 + 0.687497i \(0.241291\pi\)
\(938\) 0 0
\(939\) −24415.0 −0.848513
\(940\) 0 0
\(941\) −13683.4 −0.474035 −0.237017 0.971505i \(-0.576170\pi\)
−0.237017 + 0.971505i \(0.576170\pi\)
\(942\) 0 0
\(943\) 11773.8 0.406581
\(944\) 0 0
\(945\) −4097.91 −0.141064
\(946\) 0 0
\(947\) −13500.9 −0.463273 −0.231637 0.972802i \(-0.574408\pi\)
−0.231637 + 0.972802i \(0.574408\pi\)
\(948\) 0 0
\(949\) −15772.5 −0.539511
\(950\) 0 0
\(951\) 20733.3 0.706965
\(952\) 0 0
\(953\) 5242.25 0.178188 0.0890939 0.996023i \(-0.471603\pi\)
0.0890939 + 0.996023i \(0.471603\pi\)
\(954\) 0 0
\(955\) 23214.9 0.786613
\(956\) 0 0
\(957\) 2365.17 0.0798905
\(958\) 0 0
\(959\) 57563.7 1.93830
\(960\) 0 0
\(961\) 17382.3 0.583473
\(962\) 0 0
\(963\) −4631.82 −0.154993
\(964\) 0 0
\(965\) 20016.2 0.667713
\(966\) 0 0
\(967\) 45761.1 1.52180 0.760898 0.648871i \(-0.224759\pi\)
0.760898 + 0.648871i \(0.224759\pi\)
\(968\) 0 0
\(969\) −17892.2 −0.593169
\(970\) 0 0
\(971\) −47771.8 −1.57886 −0.789428 0.613843i \(-0.789623\pi\)
−0.789428 + 0.613843i \(0.789623\pi\)
\(972\) 0 0
\(973\) −13390.4 −0.441188
\(974\) 0 0
\(975\) −1226.62 −0.0402904
\(976\) 0 0
\(977\) 49812.5 1.63116 0.815581 0.578644i \(-0.196418\pi\)
0.815581 + 0.578644i \(0.196418\pi\)
\(978\) 0 0
\(979\) 25292.9 0.825706
\(980\) 0 0
\(981\) −3086.12 −0.100441
\(982\) 0 0
\(983\) 49131.6 1.59416 0.797078 0.603877i \(-0.206378\pi\)
0.797078 + 0.603877i \(0.206378\pi\)
\(984\) 0 0
\(985\) 20594.8 0.666199
\(986\) 0 0
\(987\) 18086.7 0.583288
\(988\) 0 0
\(989\) 12828.8 0.412469
\(990\) 0 0
\(991\) −46553.2 −1.49224 −0.746121 0.665811i \(-0.768086\pi\)
−0.746121 + 0.665811i \(0.768086\pi\)
\(992\) 0 0
\(993\) −19531.9 −0.624194
\(994\) 0 0
\(995\) 11923.4 0.379896
\(996\) 0 0
\(997\) −17111.5 −0.543557 −0.271778 0.962360i \(-0.587612\pi\)
−0.271778 + 0.962360i \(0.587612\pi\)
\(998\) 0 0
\(999\) −7607.91 −0.240945
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.4.a.bp.1.1 2
4.3 odd 2 960.4.a.bl.1.2 2
8.3 odd 2 480.4.a.p.1.2 yes 2
8.5 even 2 480.4.a.n.1.1 2
24.5 odd 2 1440.4.a.ba.1.1 2
24.11 even 2 1440.4.a.bf.1.2 2
40.19 odd 2 2400.4.a.z.1.1 2
40.29 even 2 2400.4.a.ba.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.n.1.1 2 8.5 even 2
480.4.a.p.1.2 yes 2 8.3 odd 2
960.4.a.bl.1.2 2 4.3 odd 2
960.4.a.bp.1.1 2 1.1 even 1 trivial
1440.4.a.ba.1.1 2 24.5 odd 2
1440.4.a.bf.1.2 2 24.11 even 2
2400.4.a.z.1.1 2 40.19 odd 2
2400.4.a.ba.1.2 2 40.29 even 2