Newspace parameters
Level: | \( N \) | \(=\) | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 960.l (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(26.1581053786\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-5}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 5 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 60) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-5}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).
\(n\) | \(511\) | \(577\) | \(641\) | \(901\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
641.1 |
|
0 | 2.00000 | − | 2.23607i | 0 | 2.23607i | 0 | −2.00000 | 0 | −1.00000 | − | 8.94427i | 0 | ||||||||||||||||||||
641.2 | 0 | 2.00000 | + | 2.23607i | 0 | − | 2.23607i | 0 | −2.00000 | 0 | −1.00000 | + | 8.94427i | 0 | ||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 960.3.l.d | 2 | |
3.b | odd | 2 | 1 | inner | 960.3.l.d | 2 | |
4.b | odd | 2 | 1 | 960.3.l.a | 2 | ||
8.b | even | 2 | 1 | 240.3.l.a | 2 | ||
8.d | odd | 2 | 1 | 60.3.g.a | ✓ | 2 | |
12.b | even | 2 | 1 | 960.3.l.a | 2 | ||
24.f | even | 2 | 1 | 60.3.g.a | ✓ | 2 | |
24.h | odd | 2 | 1 | 240.3.l.a | 2 | ||
40.e | odd | 2 | 1 | 300.3.g.d | 2 | ||
40.f | even | 2 | 1 | 1200.3.l.r | 2 | ||
40.i | odd | 4 | 2 | 1200.3.c.e | 4 | ||
40.k | even | 4 | 2 | 300.3.b.c | 4 | ||
72.l | even | 6 | 2 | 1620.3.o.b | 4 | ||
72.p | odd | 6 | 2 | 1620.3.o.b | 4 | ||
120.i | odd | 2 | 1 | 1200.3.l.r | 2 | ||
120.m | even | 2 | 1 | 300.3.g.d | 2 | ||
120.q | odd | 4 | 2 | 300.3.b.c | 4 | ||
120.w | even | 4 | 2 | 1200.3.c.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
60.3.g.a | ✓ | 2 | 8.d | odd | 2 | 1 | |
60.3.g.a | ✓ | 2 | 24.f | even | 2 | 1 | |
240.3.l.a | 2 | 8.b | even | 2 | 1 | ||
240.3.l.a | 2 | 24.h | odd | 2 | 1 | ||
300.3.b.c | 4 | 40.k | even | 4 | 2 | ||
300.3.b.c | 4 | 120.q | odd | 4 | 2 | ||
300.3.g.d | 2 | 40.e | odd | 2 | 1 | ||
300.3.g.d | 2 | 120.m | even | 2 | 1 | ||
960.3.l.a | 2 | 4.b | odd | 2 | 1 | ||
960.3.l.a | 2 | 12.b | even | 2 | 1 | ||
960.3.l.d | 2 | 1.a | even | 1 | 1 | trivial | |
960.3.l.d | 2 | 3.b | odd | 2 | 1 | inner | |
1200.3.c.e | 4 | 40.i | odd | 4 | 2 | ||
1200.3.c.e | 4 | 120.w | even | 4 | 2 | ||
1200.3.l.r | 2 | 40.f | even | 2 | 1 | ||
1200.3.l.r | 2 | 120.i | odd | 2 | 1 | ||
1620.3.o.b | 4 | 72.l | even | 6 | 2 | ||
1620.3.o.b | 4 | 72.p | odd | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7} + 2 \)
acting on \(S_{3}^{\mathrm{new}}(960, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} - 4T + 9 \)
$5$
\( T^{2} + 5 \)
$7$
\( (T + 2)^{2} \)
$11$
\( T^{2} + 180 \)
$13$
\( (T + 8)^{2} \)
$17$
\( T^{2} + 180 \)
$19$
\( (T + 34)^{2} \)
$23$
\( T^{2} + 1620 \)
$29$
\( T^{2} + 1620 \)
$31$
\( (T + 14)^{2} \)
$37$
\( (T + 56)^{2} \)
$41$
\( T^{2} + 720 \)
$43$
\( (T - 8)^{2} \)
$47$
\( T^{2} + 1620 \)
$53$
\( T^{2} + 1620 \)
$59$
\( T^{2} + 180 \)
$61$
\( (T - 46)^{2} \)
$67$
\( (T - 32)^{2} \)
$71$
\( T^{2} + 2880 \)
$73$
\( (T + 106)^{2} \)
$79$
\( (T - 22)^{2} \)
$83$
\( T^{2} + 14580 \)
$89$
\( T^{2} + 11520 \)
$97$
\( (T - 122)^{2} \)
show more
show less