Properties

Label 960.3.c.k.449.2
Level $960$
Weight $3$
Character 960.449
Analytic conductor $26.158$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 960.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(26.1581053786\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Defining polynomial: \( x^{12} + 34x^{10} + 305x^{8} + 616x^{6} + 305x^{4} + 34x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(4.54164i\) of defining polynomial
Character \(\chi\) \(=\) 960.449
Dual form 960.3.c.k.449.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.72256 + 1.26002i) q^{3} +(0.689011 + 4.95230i) q^{5} -0.735748i q^{7} +(5.82469 - 6.86097i) q^{9} +O(q^{10})\) \(q+(-2.72256 + 1.26002i) q^{3} +(0.689011 + 4.95230i) q^{5} -0.735748i q^{7} +(5.82469 - 6.86097i) q^{9} +10.9451i q^{11} -21.1901i q^{13} +(-8.11588 - 12.6148i) q^{15} -7.03488 q^{17} -23.1529 q^{19} +(0.927058 + 2.00312i) q^{21} +24.7483 q^{23} +(-24.0505 + 6.82438i) q^{25} +(-7.21312 + 26.0187i) q^{27} -32.3284i q^{29} -34.9482 q^{31} +(-13.7911 - 29.7987i) q^{33} +(3.64364 - 0.506939i) q^{35} -37.7818i q^{37} +(26.6999 + 57.6912i) q^{39} +39.0848i q^{41} -22.6804i q^{43} +(37.9909 + 24.1183i) q^{45} -39.1076 q^{47} +48.4587 q^{49} +(19.1529 - 8.86409i) q^{51} +60.9179 q^{53} +(-54.2034 + 7.54130i) q^{55} +(63.0352 - 29.1731i) q^{57} +7.79696i q^{59} +11.1529 q^{61} +(-5.04795 - 4.28551i) q^{63} +(104.939 - 14.6002i) q^{65} -33.3485i q^{67} +(-67.3787 + 31.1833i) q^{69} -96.9650i q^{71} -134.535i q^{73} +(56.8802 - 48.8840i) q^{75} +8.05284 q^{77} +121.049 q^{79} +(-13.1459 - 79.9261i) q^{81} -90.2345 q^{83} +(-4.84711 - 34.8388i) q^{85} +(40.7344 + 88.0160i) q^{87} +53.1846i q^{89} -15.5905 q^{91} +(95.1486 - 44.0354i) q^{93} +(-15.9526 - 114.660i) q^{95} -115.001i q^{97} +(75.0940 + 63.7519i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 8 q^{9} + 16 q^{15} - 4 q^{21} + 36 q^{25} - 48 q^{31} - 128 q^{39} + 68 q^{45} - 252 q^{49} - 48 q^{51} - 48 q^{55} - 144 q^{61} - 268 q^{69} - 304 q^{75} + 432 q^{79} - 188 q^{81} - 336 q^{85} + 560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.72256 + 1.26002i −0.907521 + 0.420007i
\(4\) 0 0
\(5\) 0.689011 + 4.95230i 0.137802 + 0.990460i
\(6\) 0 0
\(7\) 0.735748i 0.105107i −0.998618 0.0525534i \(-0.983264\pi\)
0.998618 0.0525534i \(-0.0167360\pi\)
\(8\) 0 0
\(9\) 5.82469 6.86097i 0.647188 0.762330i
\(10\) 0 0
\(11\) 10.9451i 0.995009i 0.867461 + 0.497505i \(0.165750\pi\)
−0.867461 + 0.497505i \(0.834250\pi\)
\(12\) 0 0
\(13\) 21.1901i 1.63000i −0.579458 0.815002i \(-0.696736\pi\)
0.579458 0.815002i \(-0.303264\pi\)
\(14\) 0 0
\(15\) −8.11588 12.6148i −0.541058 0.840985i
\(16\) 0 0
\(17\) −7.03488 −0.413816 −0.206908 0.978360i \(-0.566340\pi\)
−0.206908 + 0.978360i \(0.566340\pi\)
\(18\) 0 0
\(19\) −23.1529 −1.21857 −0.609287 0.792950i \(-0.708544\pi\)
−0.609287 + 0.792950i \(0.708544\pi\)
\(20\) 0 0
\(21\) 0.927058 + 2.00312i 0.0441456 + 0.0953867i
\(22\) 0 0
\(23\) 24.7483 1.07601 0.538006 0.842941i \(-0.319178\pi\)
0.538006 + 0.842941i \(0.319178\pi\)
\(24\) 0 0
\(25\) −24.0505 + 6.82438i −0.962021 + 0.272975i
\(26\) 0 0
\(27\) −7.21312 + 26.0187i −0.267153 + 0.963654i
\(28\) 0 0
\(29\) 32.3284i 1.11477i −0.830254 0.557386i \(-0.811804\pi\)
0.830254 0.557386i \(-0.188196\pi\)
\(30\) 0 0
\(31\) −34.9482 −1.12736 −0.563680 0.825993i \(-0.690615\pi\)
−0.563680 + 0.825993i \(0.690615\pi\)
\(32\) 0 0
\(33\) −13.7911 29.7987i −0.417911 0.902992i
\(34\) 0 0
\(35\) 3.64364 0.506939i 0.104104 0.0144840i
\(36\) 0 0
\(37\) 37.7818i 1.02113i −0.859839 0.510565i \(-0.829436\pi\)
0.859839 0.510565i \(-0.170564\pi\)
\(38\) 0 0
\(39\) 26.6999 + 57.6912i 0.684613 + 1.47926i
\(40\) 0 0
\(41\) 39.0848i 0.953288i 0.879096 + 0.476644i \(0.158147\pi\)
−0.879096 + 0.476644i \(0.841853\pi\)
\(42\) 0 0
\(43\) 22.6804i 0.527451i −0.964598 0.263725i \(-0.915049\pi\)
0.964598 0.263725i \(-0.0849513\pi\)
\(44\) 0 0
\(45\) 37.9909 + 24.1183i 0.844241 + 0.535963i
\(46\) 0 0
\(47\) −39.1076 −0.832076 −0.416038 0.909347i \(-0.636582\pi\)
−0.416038 + 0.909347i \(0.636582\pi\)
\(48\) 0 0
\(49\) 48.4587 0.988953
\(50\) 0 0
\(51\) 19.1529 8.86409i 0.375547 0.173806i
\(52\) 0 0
\(53\) 60.9179 1.14939 0.574697 0.818366i \(-0.305120\pi\)
0.574697 + 0.818366i \(0.305120\pi\)
\(54\) 0 0
\(55\) −54.2034 + 7.54130i −0.985517 + 0.137115i
\(56\) 0 0
\(57\) 63.0352 29.1731i 1.10588 0.511809i
\(58\) 0 0
\(59\) 7.79696i 0.132152i 0.997815 + 0.0660759i \(0.0210480\pi\)
−0.997815 + 0.0660759i \(0.978952\pi\)
\(60\) 0 0
\(61\) 11.1529 0.182834 0.0914171 0.995813i \(-0.470860\pi\)
0.0914171 + 0.995813i \(0.470860\pi\)
\(62\) 0 0
\(63\) −5.04795 4.28551i −0.0801262 0.0680239i
\(64\) 0 0
\(65\) 104.939 14.6002i 1.61445 0.224618i
\(66\) 0 0
\(67\) 33.3485i 0.497739i −0.968537 0.248869i \(-0.919941\pi\)
0.968537 0.248869i \(-0.0800590\pi\)
\(68\) 0 0
\(69\) −67.3787 + 31.1833i −0.976503 + 0.451933i
\(70\) 0 0
\(71\) 96.9650i 1.36570i −0.730557 0.682852i \(-0.760739\pi\)
0.730557 0.682852i \(-0.239261\pi\)
\(72\) 0 0
\(73\) 134.535i 1.84295i −0.388436 0.921476i \(-0.626984\pi\)
0.388436 0.921476i \(-0.373016\pi\)
\(74\) 0 0
\(75\) 56.8802 48.8840i 0.758403 0.651786i
\(76\) 0 0
\(77\) 8.05284 0.104582
\(78\) 0 0
\(79\) 121.049 1.53227 0.766134 0.642681i \(-0.222178\pi\)
0.766134 + 0.642681i \(0.222178\pi\)
\(80\) 0 0
\(81\) −13.1459 79.9261i −0.162295 0.986742i
\(82\) 0 0
\(83\) −90.2345 −1.08716 −0.543582 0.839356i \(-0.682932\pi\)
−0.543582 + 0.839356i \(0.682932\pi\)
\(84\) 0 0
\(85\) −4.84711 34.8388i −0.0570248 0.409868i
\(86\) 0 0
\(87\) 40.7344 + 88.0160i 0.468212 + 1.01168i
\(88\) 0 0
\(89\) 53.1846i 0.597579i 0.954319 + 0.298790i \(0.0965829\pi\)
−0.954319 + 0.298790i \(0.903417\pi\)
\(90\) 0 0
\(91\) −15.5905 −0.171325
\(92\) 0 0
\(93\) 95.1486 44.0354i 1.02310 0.473499i
\(94\) 0 0
\(95\) −15.9526 114.660i −0.167922 1.20695i
\(96\) 0 0
\(97\) 115.001i 1.18557i −0.805359 0.592787i \(-0.798028\pi\)
0.805359 0.592787i \(-0.201972\pi\)
\(98\) 0 0
\(99\) 75.0940 + 63.7519i 0.758526 + 0.643958i
\(100\) 0 0
\(101\) 29.1802i 0.288913i 0.989511 + 0.144457i \(0.0461434\pi\)
−0.989511 + 0.144457i \(0.953857\pi\)
\(102\) 0 0
\(103\) 89.9481i 0.873283i 0.899636 + 0.436641i \(0.143832\pi\)
−0.899636 + 0.436641i \(0.856168\pi\)
\(104\) 0 0
\(105\) −9.28130 + 5.97124i −0.0883933 + 0.0568690i
\(106\) 0 0
\(107\) 153.586 1.43538 0.717689 0.696363i \(-0.245200\pi\)
0.717689 + 0.696363i \(0.245200\pi\)
\(108\) 0 0
\(109\) 59.5623 0.546444 0.273222 0.961951i \(-0.411911\pi\)
0.273222 + 0.961951i \(0.411911\pi\)
\(110\) 0 0
\(111\) 47.6059 + 102.863i 0.428882 + 0.926697i
\(112\) 0 0
\(113\) 1.01796 0.00900851 0.00450426 0.999990i \(-0.498566\pi\)
0.00450426 + 0.999990i \(0.498566\pi\)
\(114\) 0 0
\(115\) 17.0518 + 122.561i 0.148277 + 1.06575i
\(116\) 0 0
\(117\) −145.384 123.426i −1.24260 1.05492i
\(118\) 0 0
\(119\) 5.17590i 0.0434949i
\(120\) 0 0
\(121\) 1.20473 0.00995643
\(122\) 0 0
\(123\) −49.2477 106.411i −0.400388 0.865129i
\(124\) 0 0
\(125\) −50.3674 114.403i −0.402940 0.915227i
\(126\) 0 0
\(127\) 209.731i 1.65142i −0.564091 0.825712i \(-0.690773\pi\)
0.564091 0.825712i \(-0.309227\pi\)
\(128\) 0 0
\(129\) 28.5778 + 61.7488i 0.221533 + 0.478672i
\(130\) 0 0
\(131\) 210.051i 1.60344i −0.597698 0.801721i \(-0.703918\pi\)
0.597698 0.801721i \(-0.296082\pi\)
\(132\) 0 0
\(133\) 17.0347i 0.128080i
\(134\) 0 0
\(135\) −133.822 17.7944i −0.991275 0.131810i
\(136\) 0 0
\(137\) −168.688 −1.23130 −0.615648 0.788021i \(-0.711106\pi\)
−0.615648 + 0.788021i \(0.711106\pi\)
\(138\) 0 0
\(139\) 129.251 0.929866 0.464933 0.885346i \(-0.346078\pi\)
0.464933 + 0.885346i \(0.346078\pi\)
\(140\) 0 0
\(141\) 106.473 49.2763i 0.755126 0.349478i
\(142\) 0 0
\(143\) 231.927 1.62187
\(144\) 0 0
\(145\) 160.100 22.2746i 1.10414 0.153618i
\(146\) 0 0
\(147\) −131.932 + 61.0590i −0.897495 + 0.415367i
\(148\) 0 0
\(149\) 83.9655i 0.563527i 0.959484 + 0.281763i \(0.0909193\pi\)
−0.959484 + 0.281763i \(0.909081\pi\)
\(150\) 0 0
\(151\) 9.04922 0.0599286 0.0299643 0.999551i \(-0.490461\pi\)
0.0299643 + 0.999551i \(0.490461\pi\)
\(152\) 0 0
\(153\) −40.9760 + 48.2661i −0.267817 + 0.315465i
\(154\) 0 0
\(155\) −24.0797 173.074i −0.155353 1.11660i
\(156\) 0 0
\(157\) 162.054i 1.03219i −0.856530 0.516097i \(-0.827384\pi\)
0.856530 0.516097i \(-0.172616\pi\)
\(158\) 0 0
\(159\) −165.853 + 76.7578i −1.04310 + 0.482754i
\(160\) 0 0
\(161\) 18.2085i 0.113096i
\(162\) 0 0
\(163\) 136.172i 0.835411i 0.908583 + 0.417705i \(0.137166\pi\)
−0.908583 + 0.417705i \(0.862834\pi\)
\(164\) 0 0
\(165\) 138.070 88.8291i 0.836788 0.538358i
\(166\) 0 0
\(167\) −140.931 −0.843898 −0.421949 0.906620i \(-0.638654\pi\)
−0.421949 + 0.906620i \(0.638654\pi\)
\(168\) 0 0
\(169\) −280.018 −1.65691
\(170\) 0 0
\(171\) −134.859 + 158.851i −0.788646 + 0.928955i
\(172\) 0 0
\(173\) 132.351 0.765032 0.382516 0.923949i \(-0.375058\pi\)
0.382516 + 0.923949i \(0.375058\pi\)
\(174\) 0 0
\(175\) 5.02102 + 17.6951i 0.0286916 + 0.101115i
\(176\) 0 0
\(177\) −9.82433 21.2277i −0.0555047 0.119931i
\(178\) 0 0
\(179\) 92.2499i 0.515363i 0.966230 + 0.257681i \(0.0829585\pi\)
−0.966230 + 0.257681i \(0.917042\pi\)
\(180\) 0 0
\(181\) −115.896 −0.640311 −0.320156 0.947365i \(-0.603735\pi\)
−0.320156 + 0.947365i \(0.603735\pi\)
\(182\) 0 0
\(183\) −30.3644 + 14.0529i −0.165926 + 0.0767917i
\(184\) 0 0
\(185\) 187.107 26.0321i 1.01139 0.140714i
\(186\) 0 0
\(187\) 76.9974i 0.411751i
\(188\) 0 0
\(189\) 19.1432 + 5.30704i 0.101287 + 0.0280796i
\(190\) 0 0
\(191\) 53.1183i 0.278106i −0.990285 0.139053i \(-0.955594\pi\)
0.990285 0.139053i \(-0.0444059\pi\)
\(192\) 0 0
\(193\) 271.315i 1.40578i 0.711299 + 0.702890i \(0.248107\pi\)
−0.711299 + 0.702890i \(0.751893\pi\)
\(194\) 0 0
\(195\) −267.308 + 171.976i −1.37081 + 0.881928i
\(196\) 0 0
\(197\) −64.3941 −0.326873 −0.163437 0.986554i \(-0.552258\pi\)
−0.163437 + 0.986554i \(0.552258\pi\)
\(198\) 0 0
\(199\) 72.0308 0.361964 0.180982 0.983486i \(-0.442072\pi\)
0.180982 + 0.983486i \(0.442072\pi\)
\(200\) 0 0
\(201\) 42.0198 + 90.7933i 0.209054 + 0.451708i
\(202\) 0 0
\(203\) −23.7855 −0.117170
\(204\) 0 0
\(205\) −193.560 + 26.9299i −0.944194 + 0.131365i
\(206\) 0 0
\(207\) 144.151 169.797i 0.696382 0.820276i
\(208\) 0 0
\(209\) 253.411i 1.21249i
\(210\) 0 0
\(211\) −108.583 −0.514613 −0.257307 0.966330i \(-0.582835\pi\)
−0.257307 + 0.966330i \(0.582835\pi\)
\(212\) 0 0
\(213\) 122.178 + 263.993i 0.573605 + 1.23940i
\(214\) 0 0
\(215\) 112.320 15.6270i 0.522419 0.0726839i
\(216\) 0 0
\(217\) 25.7130i 0.118493i
\(218\) 0 0
\(219\) 169.518 + 366.281i 0.774053 + 1.67252i
\(220\) 0 0
\(221\) 149.069i 0.674522i
\(222\) 0 0
\(223\) 83.6192i 0.374974i −0.982267 0.187487i \(-0.939966\pi\)
0.982267 0.187487i \(-0.0600342\pi\)
\(224\) 0 0
\(225\) −93.2651 + 204.760i −0.414511 + 0.910044i
\(226\) 0 0
\(227\) 51.6591 0.227573 0.113787 0.993505i \(-0.463702\pi\)
0.113787 + 0.993505i \(0.463702\pi\)
\(228\) 0 0
\(229\) 280.974 1.22696 0.613480 0.789710i \(-0.289769\pi\)
0.613480 + 0.789710i \(0.289769\pi\)
\(230\) 0 0
\(231\) −21.9244 + 10.1467i −0.0949106 + 0.0439253i
\(232\) 0 0
\(233\) 169.192 0.726148 0.363074 0.931760i \(-0.381727\pi\)
0.363074 + 0.931760i \(0.381727\pi\)
\(234\) 0 0
\(235\) −26.9455 193.672i −0.114662 0.824137i
\(236\) 0 0
\(237\) −329.564 + 152.525i −1.39057 + 0.643564i
\(238\) 0 0
\(239\) 1.12039i 0.00468782i −0.999997 0.00234391i \(-0.999254\pi\)
0.999997 0.00234391i \(-0.000746090\pi\)
\(240\) 0 0
\(241\) 153.254 0.635908 0.317954 0.948106i \(-0.397004\pi\)
0.317954 + 0.948106i \(0.397004\pi\)
\(242\) 0 0
\(243\) 136.499 + 201.040i 0.561725 + 0.827324i
\(244\) 0 0
\(245\) 33.3886 + 239.982i 0.136280 + 0.979518i
\(246\) 0 0
\(247\) 490.611i 1.98628i
\(248\) 0 0
\(249\) 245.669 113.697i 0.986623 0.456616i
\(250\) 0 0
\(251\) 126.692i 0.504751i −0.967629 0.252375i \(-0.918788\pi\)
0.967629 0.252375i \(-0.0812118\pi\)
\(252\) 0 0
\(253\) 270.872i 1.07064i
\(254\) 0 0
\(255\) 57.0942 + 88.7434i 0.223899 + 0.348013i
\(256\) 0 0
\(257\) −396.692 −1.54355 −0.771774 0.635897i \(-0.780630\pi\)
−0.771774 + 0.635897i \(0.780630\pi\)
\(258\) 0 0
\(259\) −27.7979 −0.107328
\(260\) 0 0
\(261\) −221.804 188.303i −0.849824 0.721467i
\(262\) 0 0
\(263\) −394.431 −1.49974 −0.749868 0.661587i \(-0.769883\pi\)
−0.749868 + 0.661587i \(0.769883\pi\)
\(264\) 0 0
\(265\) 41.9731 + 301.684i 0.158389 + 1.13843i
\(266\) 0 0
\(267\) −67.0137 144.798i −0.250987 0.542316i
\(268\) 0 0
\(269\) 104.802i 0.389597i −0.980843 0.194798i \(-0.937595\pi\)
0.980843 0.194798i \(-0.0624053\pi\)
\(270\) 0 0
\(271\) −335.355 −1.23747 −0.618736 0.785599i \(-0.712355\pi\)
−0.618736 + 0.785599i \(0.712355\pi\)
\(272\) 0 0
\(273\) 42.4462 19.6444i 0.155481 0.0719576i
\(274\) 0 0
\(275\) −74.6935 263.235i −0.271613 0.957220i
\(276\) 0 0
\(277\) 167.790i 0.605739i 0.953032 + 0.302870i \(0.0979447\pi\)
−0.953032 + 0.302870i \(0.902055\pi\)
\(278\) 0 0
\(279\) −203.562 + 239.778i −0.729614 + 0.859421i
\(280\) 0 0
\(281\) 99.4601i 0.353950i 0.984215 + 0.176975i \(0.0566312\pi\)
−0.984215 + 0.176975i \(0.943369\pi\)
\(282\) 0 0
\(283\) 487.022i 1.72093i −0.509512 0.860464i \(-0.670174\pi\)
0.509512 0.860464i \(-0.329826\pi\)
\(284\) 0 0
\(285\) 187.906 + 292.069i 0.659319 + 1.02480i
\(286\) 0 0
\(287\) 28.7566 0.100197
\(288\) 0 0
\(289\) −239.511 −0.828756
\(290\) 0 0
\(291\) 144.903 + 313.097i 0.497950 + 1.07593i
\(292\) 0 0
\(293\) −343.107 −1.17101 −0.585507 0.810667i \(-0.699105\pi\)
−0.585507 + 0.810667i \(0.699105\pi\)
\(294\) 0 0
\(295\) −38.6129 + 5.37219i −0.130891 + 0.0182108i
\(296\) 0 0
\(297\) −284.777 78.9484i −0.958845 0.265819i
\(298\) 0 0
\(299\) 524.417i 1.75390i
\(300\) 0 0
\(301\) −16.6870 −0.0554387
\(302\) 0 0
\(303\) −36.7677 79.4450i −0.121346 0.262195i
\(304\) 0 0
\(305\) 7.68447 + 55.2325i 0.0251950 + 0.181090i
\(306\) 0 0
\(307\) 364.627i 1.18771i 0.804573 + 0.593854i \(0.202394\pi\)
−0.804573 + 0.593854i \(0.797606\pi\)
\(308\) 0 0
\(309\) −113.337 244.889i −0.366785 0.792522i
\(310\) 0 0
\(311\) 121.963i 0.392164i −0.980587 0.196082i \(-0.937178\pi\)
0.980587 0.196082i \(-0.0628219\pi\)
\(312\) 0 0
\(313\) 94.8060i 0.302895i 0.988465 + 0.151447i \(0.0483934\pi\)
−0.988465 + 0.151447i \(0.951607\pi\)
\(314\) 0 0
\(315\) 17.7450 27.9517i 0.0563334 0.0887356i
\(316\) 0 0
\(317\) −511.282 −1.61288 −0.806438 0.591318i \(-0.798608\pi\)
−0.806438 + 0.591318i \(0.798608\pi\)
\(318\) 0 0
\(319\) 353.837 1.10921
\(320\) 0 0
\(321\) −418.146 + 193.521i −1.30264 + 0.602869i
\(322\) 0 0
\(323\) 162.878 0.504265
\(324\) 0 0
\(325\) 144.609 + 509.632i 0.444951 + 1.56810i
\(326\) 0 0
\(327\) −162.162 + 75.0498i −0.495909 + 0.229510i
\(328\) 0 0
\(329\) 28.7733i 0.0874569i
\(330\) 0 0
\(331\) 182.682 0.551909 0.275954 0.961171i \(-0.411006\pi\)
0.275954 + 0.961171i \(0.411006\pi\)
\(332\) 0 0
\(333\) −259.220 220.067i −0.778438 0.660863i
\(334\) 0 0
\(335\) 165.152 22.9775i 0.492990 0.0685895i
\(336\) 0 0
\(337\) 89.0617i 0.264278i 0.991231 + 0.132139i \(0.0421845\pi\)
−0.991231 + 0.132139i \(0.957815\pi\)
\(338\) 0 0
\(339\) −2.77147 + 1.28265i −0.00817541 + 0.00378364i
\(340\) 0 0
\(341\) 382.511i 1.12173i
\(342\) 0 0
\(343\) 71.7050i 0.209053i
\(344\) 0 0
\(345\) −200.854 312.194i −0.582185 0.904910i
\(346\) 0 0
\(347\) 17.7180 0.0510605 0.0255303 0.999674i \(-0.491873\pi\)
0.0255303 + 0.999674i \(0.491873\pi\)
\(348\) 0 0
\(349\) −229.114 −0.656488 −0.328244 0.944593i \(-0.606457\pi\)
−0.328244 + 0.944593i \(0.606457\pi\)
\(350\) 0 0
\(351\) 551.337 + 152.846i 1.57076 + 0.435460i
\(352\) 0 0
\(353\) 183.760 0.520566 0.260283 0.965532i \(-0.416184\pi\)
0.260283 + 0.965532i \(0.416184\pi\)
\(354\) 0 0
\(355\) 480.199 66.8099i 1.35267 0.188197i
\(356\) 0 0
\(357\) −6.52174 14.0917i −0.0182682 0.0394726i
\(358\) 0 0
\(359\) 537.837i 1.49815i −0.662484 0.749076i \(-0.730498\pi\)
0.662484 0.749076i \(-0.269502\pi\)
\(360\) 0 0
\(361\) 175.056 0.484921
\(362\) 0 0
\(363\) −3.27995 + 1.51798i −0.00903567 + 0.00418177i
\(364\) 0 0
\(365\) 666.260 92.6964i 1.82537 0.253963i
\(366\) 0 0
\(367\) 153.740i 0.418909i −0.977818 0.209455i \(-0.932831\pi\)
0.977818 0.209455i \(-0.0671689\pi\)
\(368\) 0 0
\(369\) 268.160 + 227.657i 0.726721 + 0.616957i
\(370\) 0 0
\(371\) 44.8202i 0.120809i
\(372\) 0 0
\(373\) 211.056i 0.565833i −0.959145 0.282917i \(-0.908698\pi\)
0.959145 0.282917i \(-0.0913020\pi\)
\(374\) 0 0
\(375\) 281.279 + 248.006i 0.750078 + 0.661350i
\(376\) 0 0
\(377\) −685.040 −1.81708
\(378\) 0 0
\(379\) −699.345 −1.84524 −0.922618 0.385715i \(-0.873955\pi\)
−0.922618 + 0.385715i \(0.873955\pi\)
\(380\) 0 0
\(381\) 264.265 + 571.006i 0.693610 + 1.49870i
\(382\) 0 0
\(383\) 186.008 0.485662 0.242831 0.970069i \(-0.421924\pi\)
0.242831 + 0.970069i \(0.421924\pi\)
\(384\) 0 0
\(385\) 5.54850 + 39.8801i 0.0144117 + 0.103585i
\(386\) 0 0
\(387\) −155.609 132.106i −0.402092 0.341360i
\(388\) 0 0
\(389\) 288.194i 0.740858i 0.928861 + 0.370429i \(0.120789\pi\)
−0.928861 + 0.370429i \(0.879211\pi\)
\(390\) 0 0
\(391\) −174.101 −0.445271
\(392\) 0 0
\(393\) 264.669 + 571.877i 0.673457 + 1.45516i
\(394\) 0 0
\(395\) 83.4043 + 599.472i 0.211150 + 1.51765i
\(396\) 0 0
\(397\) 64.3054i 0.161978i 0.996715 + 0.0809892i \(0.0258079\pi\)
−0.996715 + 0.0809892i \(0.974192\pi\)
\(398\) 0 0
\(399\) −21.4641 46.3780i −0.0537947 0.116236i
\(400\) 0 0
\(401\) 659.774i 1.64532i −0.568533 0.822661i \(-0.692489\pi\)
0.568533 0.822661i \(-0.307511\pi\)
\(402\) 0 0
\(403\) 740.553i 1.83760i
\(404\) 0 0
\(405\) 386.760 120.172i 0.954964 0.296722i
\(406\) 0 0
\(407\) 413.526 1.01603
\(408\) 0 0
\(409\) 217.863 0.532672 0.266336 0.963880i \(-0.414187\pi\)
0.266336 + 0.963880i \(0.414187\pi\)
\(410\) 0 0
\(411\) 459.263 212.550i 1.11743 0.517153i
\(412\) 0 0
\(413\) 5.73660 0.0138901
\(414\) 0 0
\(415\) −62.1726 446.868i −0.149814 1.07679i
\(416\) 0 0
\(417\) −351.895 + 162.859i −0.843872 + 0.390550i
\(418\) 0 0
\(419\) 407.129i 0.971668i −0.874051 0.485834i \(-0.838516\pi\)
0.874051 0.485834i \(-0.161484\pi\)
\(420\) 0 0
\(421\) 69.1949 0.164359 0.0821793 0.996618i \(-0.473812\pi\)
0.0821793 + 0.996618i \(0.473812\pi\)
\(422\) 0 0
\(423\) −227.790 + 268.316i −0.538510 + 0.634316i
\(424\) 0 0
\(425\) 169.192 48.0087i 0.398100 0.112962i
\(426\) 0 0
\(427\) 8.20572i 0.0192171i
\(428\) 0 0
\(429\) −631.437 + 292.233i −1.47188 + 0.681197i
\(430\) 0 0
\(431\) 452.663i 1.05026i −0.851021 0.525132i \(-0.824016\pi\)
0.851021 0.525132i \(-0.175984\pi\)
\(432\) 0 0
\(433\) 226.323i 0.522686i 0.965246 + 0.261343i \(0.0841654\pi\)
−0.965246 + 0.261343i \(0.915835\pi\)
\(434\) 0 0
\(435\) −407.815 + 262.373i −0.937506 + 0.603156i
\(436\) 0 0
\(437\) −572.994 −1.31120
\(438\) 0 0
\(439\) 188.642 0.429709 0.214855 0.976646i \(-0.431072\pi\)
0.214855 + 0.976646i \(0.431072\pi\)
\(440\) 0 0
\(441\) 282.257 332.474i 0.640038 0.753908i
\(442\) 0 0
\(443\) 499.705 1.12800 0.564001 0.825774i \(-0.309261\pi\)
0.564001 + 0.825774i \(0.309261\pi\)
\(444\) 0 0
\(445\) −263.386 + 36.6448i −0.591878 + 0.0823478i
\(446\) 0 0
\(447\) −105.798 228.601i −0.236685 0.511412i
\(448\) 0 0
\(449\) 818.928i 1.82389i 0.410310 + 0.911946i \(0.365421\pi\)
−0.410310 + 0.911946i \(0.634579\pi\)
\(450\) 0 0
\(451\) −427.787 −0.948531
\(452\) 0 0
\(453\) −24.6371 + 11.4022i −0.0543864 + 0.0251704i
\(454\) 0 0
\(455\) −10.7421 77.2090i −0.0236089 0.169690i
\(456\) 0 0
\(457\) 311.602i 0.681842i −0.940092 0.340921i \(-0.889261\pi\)
0.940092 0.340921i \(-0.110739\pi\)
\(458\) 0 0
\(459\) 50.7434 183.038i 0.110552 0.398776i
\(460\) 0 0
\(461\) 7.18351i 0.0155825i 0.999970 + 0.00779123i \(0.00248005\pi\)
−0.999970 + 0.00779123i \(0.997520\pi\)
\(462\) 0 0
\(463\) 557.563i 1.20424i −0.798406 0.602120i \(-0.794323\pi\)
0.798406 0.602120i \(-0.205677\pi\)
\(464\) 0 0
\(465\) 283.635 + 440.863i 0.609968 + 0.948093i
\(466\) 0 0
\(467\) −659.257 −1.41168 −0.705842 0.708369i \(-0.749431\pi\)
−0.705842 + 0.708369i \(0.749431\pi\)
\(468\) 0 0
\(469\) −24.5361 −0.0523157
\(470\) 0 0
\(471\) 204.192 + 441.203i 0.433529 + 0.936738i
\(472\) 0 0
\(473\) 248.239 0.524818
\(474\) 0 0
\(475\) 556.839 158.004i 1.17229 0.332640i
\(476\) 0 0
\(477\) 354.828 417.956i 0.743875 0.876218i
\(478\) 0 0
\(479\) 30.3870i 0.0634384i 0.999497 + 0.0317192i \(0.0100982\pi\)
−0.999497 + 0.0317192i \(0.989902\pi\)
\(480\) 0 0
\(481\) −800.598 −1.66445
\(482\) 0 0
\(483\) 22.9431 + 49.5738i 0.0475012 + 0.102637i
\(484\) 0 0
\(485\) 569.518 79.2368i 1.17426 0.163375i
\(486\) 0 0
\(487\) 26.5618i 0.0545416i −0.999628 0.0272708i \(-0.991318\pi\)
0.999628 0.0272708i \(-0.00868164\pi\)
\(488\) 0 0
\(489\) −171.580 370.737i −0.350878 0.758153i
\(490\) 0 0
\(491\) 19.3354i 0.0393796i −0.999806 0.0196898i \(-0.993732\pi\)
0.999806 0.0196898i \(-0.00626786\pi\)
\(492\) 0 0
\(493\) 227.426i 0.461311i
\(494\) 0 0
\(495\) −263.978 + 415.814i −0.533288 + 0.840028i
\(496\) 0 0
\(497\) −71.3418 −0.143545
\(498\) 0 0
\(499\) −313.190 −0.627635 −0.313817 0.949483i \(-0.601608\pi\)
−0.313817 + 0.949483i \(0.601608\pi\)
\(500\) 0 0
\(501\) 383.693 177.576i 0.765855 0.354443i
\(502\) 0 0
\(503\) −551.684 −1.09679 −0.548394 0.836220i \(-0.684760\pi\)
−0.548394 + 0.836220i \(0.684760\pi\)
\(504\) 0 0
\(505\) −144.509 + 20.1055i −0.286157 + 0.0398129i
\(506\) 0 0
\(507\) 762.368 352.829i 1.50368 0.695915i
\(508\) 0 0
\(509\) 567.057i 1.11406i −0.830492 0.557031i \(-0.811941\pi\)
0.830492 0.557031i \(-0.188059\pi\)
\(510\) 0 0
\(511\) −98.9842 −0.193707
\(512\) 0 0
\(513\) 167.005 602.407i 0.325545 1.17428i
\(514\) 0 0
\(515\) −445.450 + 61.9753i −0.864951 + 0.120340i
\(516\) 0 0
\(517\) 428.036i 0.827923i
\(518\) 0 0
\(519\) −360.333 + 166.764i −0.694283 + 0.321319i
\(520\) 0 0
\(521\) 740.223i 1.42077i 0.703811 + 0.710387i \(0.251480\pi\)
−0.703811 + 0.710387i \(0.748520\pi\)
\(522\) 0 0
\(523\) 2.11805i 0.00404981i −0.999998 0.00202491i \(-0.999355\pi\)
0.999998 0.00202491i \(-0.000644548\pi\)
\(524\) 0 0
\(525\) −35.9663 41.8495i −0.0685072 0.0797133i
\(526\) 0 0
\(527\) 245.856 0.466520
\(528\) 0 0
\(529\) 83.4771 0.157802
\(530\) 0 0
\(531\) 53.4947 + 45.4149i 0.100743 + 0.0855271i
\(532\) 0 0
\(533\) 828.210 1.55386
\(534\) 0 0
\(535\) 105.822 + 760.602i 0.197798 + 1.42169i
\(536\) 0 0
\(537\) −116.237 251.156i −0.216456 0.467702i
\(538\) 0 0
\(539\) 530.385i 0.984017i
\(540\) 0 0
\(541\) −6.61681 −0.0122307 −0.00611535 0.999981i \(-0.501947\pi\)
−0.00611535 + 0.999981i \(0.501947\pi\)
\(542\) 0 0
\(543\) 315.535 146.032i 0.581096 0.268935i
\(544\) 0 0
\(545\) 41.0391 + 294.971i 0.0753011 + 0.541230i
\(546\) 0 0
\(547\) 230.092i 0.420644i −0.977632 0.210322i \(-0.932549\pi\)
0.977632 0.210322i \(-0.0674512\pi\)
\(548\) 0 0
\(549\) 64.9622 76.5197i 0.118328 0.139380i
\(550\) 0 0
\(551\) 748.495i 1.35843i
\(552\) 0 0
\(553\) 89.0617i 0.161052i
\(554\) 0 0
\(555\) −476.609 + 306.632i −0.858755 + 0.552491i
\(556\) 0 0
\(557\) −529.620 −0.950844 −0.475422 0.879758i \(-0.657705\pi\)
−0.475422 + 0.879758i \(0.657705\pi\)
\(558\) 0 0
\(559\) −480.598 −0.859747
\(560\) 0 0
\(561\) 97.0184 + 209.630i 0.172938 + 0.373673i
\(562\) 0 0
\(563\) 131.530 0.233623 0.116812 0.993154i \(-0.462733\pi\)
0.116812 + 0.993154i \(0.462733\pi\)
\(564\) 0 0
\(565\) 0.701387 + 5.04125i 0.00124139 + 0.00892257i
\(566\) 0 0
\(567\) −58.8055 + 9.67206i −0.103713 + 0.0170583i
\(568\) 0 0
\(569\) 172.534i 0.303224i −0.988440 0.151612i \(-0.951554\pi\)
0.988440 0.151612i \(-0.0484464\pi\)
\(570\) 0 0
\(571\) −197.935 −0.346646 −0.173323 0.984865i \(-0.555450\pi\)
−0.173323 + 0.984865i \(0.555450\pi\)
\(572\) 0 0
\(573\) 66.9302 + 144.618i 0.116807 + 0.252387i
\(574\) 0 0
\(575\) −595.209 + 168.892i −1.03515 + 0.293724i
\(576\) 0 0
\(577\) 865.374i 1.49978i −0.661562 0.749891i \(-0.730106\pi\)
0.661562 0.749891i \(-0.269894\pi\)
\(578\) 0 0
\(579\) −341.863 738.673i −0.590437 1.27577i
\(580\) 0 0
\(581\) 66.3899i 0.114268i
\(582\) 0 0
\(583\) 666.753i 1.14366i
\(584\) 0 0
\(585\) 511.069 805.028i 0.873622 1.37612i
\(586\) 0 0
\(587\) −30.8886 −0.0526211 −0.0263105 0.999654i \(-0.508376\pi\)
−0.0263105 + 0.999654i \(0.508376\pi\)
\(588\) 0 0
\(589\) 809.151 1.37377
\(590\) 0 0
\(591\) 175.317 81.1379i 0.296644 0.137289i
\(592\) 0 0
\(593\) 511.286 0.862202 0.431101 0.902304i \(-0.358125\pi\)
0.431101 + 0.902304i \(0.358125\pi\)
\(594\) 0 0
\(595\) −25.6326 + 3.56625i −0.0430800 + 0.00599370i
\(596\) 0 0
\(597\) −196.108 + 90.7603i −0.328490 + 0.152027i
\(598\) 0 0
\(599\) 514.866i 0.859543i −0.902938 0.429772i \(-0.858594\pi\)
0.902938 0.429772i \(-0.141406\pi\)
\(600\) 0 0
\(601\) 853.532 1.42019 0.710093 0.704107i \(-0.248653\pi\)
0.710093 + 0.704107i \(0.248653\pi\)
\(602\) 0 0
\(603\) −228.803 194.245i −0.379441 0.322131i
\(604\) 0 0
\(605\) 0.830071 + 5.96618i 0.00137202 + 0.00986145i
\(606\) 0 0
\(607\) 88.0713i 0.145093i 0.997365 + 0.0725464i \(0.0231125\pi\)
−0.997365 + 0.0725464i \(0.976887\pi\)
\(608\) 0 0
\(609\) 64.7576 29.9703i 0.106334 0.0492123i
\(610\) 0 0
\(611\) 828.691i 1.35629i
\(612\) 0 0
\(613\) 403.346i 0.657987i −0.944332 0.328994i \(-0.893291\pi\)
0.944332 0.328994i \(-0.106709\pi\)
\(614\) 0 0
\(615\) 493.046 317.208i 0.801701 0.515785i
\(616\) 0 0
\(617\) 365.738 0.592769 0.296384 0.955069i \(-0.404219\pi\)
0.296384 + 0.955069i \(0.404219\pi\)
\(618\) 0 0
\(619\) 399.495 0.645389 0.322694 0.946503i \(-0.395411\pi\)
0.322694 + 0.946503i \(0.395411\pi\)
\(620\) 0 0
\(621\) −178.512 + 643.917i −0.287460 + 1.03690i
\(622\) 0 0
\(623\) 39.1304 0.0628097
\(624\) 0 0
\(625\) 531.856 328.260i 0.850969 0.525216i
\(626\) 0 0
\(627\) 319.303 + 689.927i 0.509255 + 1.10036i
\(628\) 0 0
\(629\) 265.790i 0.422560i
\(630\) 0 0
\(631\) −715.762 −1.13433 −0.567165 0.823604i \(-0.691960\pi\)
−0.567165 + 0.823604i \(0.691960\pi\)
\(632\) 0 0
\(633\) 295.625 136.817i 0.467022 0.216141i
\(634\) 0 0
\(635\) 1038.65 144.507i 1.63567 0.227570i
\(636\) 0 0
\(637\) 1026.84i 1.61200i
\(638\) 0 0
\(639\) −665.274 564.791i −1.04112 0.883867i
\(640\) 0 0
\(641\) 627.158i 0.978406i −0.872170 0.489203i \(-0.837288\pi\)
0.872170 0.489203i \(-0.162712\pi\)
\(642\) 0 0
\(643\) 802.039i 1.24734i −0.781688 0.623669i \(-0.785641\pi\)
0.781688 0.623669i \(-0.214359\pi\)
\(644\) 0 0
\(645\) −286.108 + 184.071i −0.443578 + 0.285382i
\(646\) 0 0
\(647\) −19.9275 −0.0307998 −0.0153999 0.999881i \(-0.504902\pi\)
−0.0153999 + 0.999881i \(0.504902\pi\)
\(648\) 0 0
\(649\) −85.3385 −0.131492
\(650\) 0 0
\(651\) −32.3990 70.0054i −0.0497680 0.107535i
\(652\) 0 0
\(653\) 78.4638 0.120159 0.0600795 0.998194i \(-0.480865\pi\)
0.0600795 + 0.998194i \(0.480865\pi\)
\(654\) 0 0
\(655\) 1040.23 144.727i 1.58815 0.220958i
\(656\) 0 0
\(657\) −923.044 783.628i −1.40494 1.19274i
\(658\) 0 0
\(659\) 371.793i 0.564178i 0.959388 + 0.282089i \(0.0910274\pi\)
−0.959388 + 0.282089i \(0.908973\pi\)
\(660\) 0 0
\(661\) −782.868 −1.18437 −0.592185 0.805802i \(-0.701734\pi\)
−0.592185 + 0.805802i \(0.701734\pi\)
\(662\) 0 0
\(663\) −187.831 405.851i −0.283304 0.612143i
\(664\) 0 0
\(665\) −84.3609 + 11.7371i −0.126859 + 0.0176498i
\(666\) 0 0
\(667\) 800.071i 1.19951i
\(668\) 0 0
\(669\) 105.362 + 227.658i 0.157492 + 0.340297i
\(670\) 0 0
\(671\) 122.070i 0.181922i
\(672\) 0 0
\(673\) 221.323i 0.328860i −0.986389 0.164430i \(-0.947421\pi\)
0.986389 0.164430i \(-0.0525785\pi\)
\(674\) 0 0
\(675\) −4.08178 674.988i −0.00604707 0.999982i
\(676\) 0 0
\(677\) −576.855 −0.852076 −0.426038 0.904705i \(-0.640091\pi\)
−0.426038 + 0.904705i \(0.640091\pi\)
\(678\) 0 0
\(679\) −84.6116 −0.124612
\(680\) 0 0
\(681\) −140.645 + 65.0916i −0.206527 + 0.0955824i
\(682\) 0 0
\(683\) −1272.02 −1.86239 −0.931197 0.364516i \(-0.881234\pi\)
−0.931197 + 0.364516i \(0.881234\pi\)
\(684\) 0 0
\(685\) −116.228 835.392i −0.169675 1.21955i
\(686\) 0 0
\(687\) −764.969 + 354.033i −1.11349 + 0.515332i
\(688\) 0 0
\(689\) 1290.85i 1.87352i
\(690\) 0 0
\(691\) −1.61487 −0.00233701 −0.00116851 0.999999i \(-0.500372\pi\)
−0.00116851 + 0.999999i \(0.500372\pi\)
\(692\) 0 0
\(693\) 46.9053 55.2503i 0.0676844 0.0797263i
\(694\) 0 0
\(695\) 89.0556 + 640.091i 0.128138 + 0.920995i
\(696\) 0 0
\(697\) 274.957i 0.394486i
\(698\) 0 0
\(699\) −460.637 + 213.186i −0.658994 + 0.304987i
\(700\) 0 0
\(701\) 550.235i 0.784929i −0.919767 0.392465i \(-0.871623\pi\)
0.919767 0.392465i \(-0.128377\pi\)
\(702\) 0 0
\(703\) 874.758i 1.24432i
\(704\) 0 0
\(705\) 317.392 + 493.333i 0.450202 + 0.699763i
\(706\) 0 0
\(707\) 21.4693 0.0303668
\(708\) 0 0
\(709\) 430.539 0.607249 0.303624 0.952792i \(-0.401803\pi\)
0.303624 + 0.952792i \(0.401803\pi\)
\(710\) 0 0
\(711\) 705.075 830.515i 0.991666 1.16809i
\(712\) 0 0
\(713\) −864.907 −1.21305
\(714\) 0 0
\(715\) 159.801 + 1148.57i 0.223497 + 1.60640i
\(716\) 0 0
\(717\) 1.41171 + 3.05033i 0.00196892 + 0.00425429i
\(718\) 0 0
\(719\) 460.561i 0.640558i 0.947323 + 0.320279i \(0.103777\pi\)
−0.947323 + 0.320279i \(0.896223\pi\)
\(720\) 0 0
\(721\) 66.1792 0.0917880
\(722\) 0 0
\(723\) −417.243 + 193.103i −0.577100 + 0.267086i
\(724\) 0 0
\(725\) 220.621 + 777.514i 0.304305 + 1.07243i
\(726\) 0 0
\(727\) 413.275i 0.568467i −0.958755 0.284233i \(-0.908261\pi\)
0.958755 0.284233i \(-0.0917390\pi\)
\(728\) 0 0
\(729\) −624.942 375.352i −0.857259 0.514886i
\(730\) 0 0
\(731\) 159.554i 0.218268i
\(732\) 0 0
\(733\) 307.003i 0.418831i 0.977827 + 0.209416i \(0.0671562\pi\)
−0.977827 + 0.209416i \(0.932844\pi\)
\(734\) 0 0
\(735\) −393.285 611.295i −0.535081 0.831694i
\(736\) 0 0
\(737\) 365.003 0.495255
\(738\) 0 0
\(739\) 988.511 1.33763 0.668817 0.743427i \(-0.266801\pi\)
0.668817 + 0.743427i \(0.266801\pi\)
\(740\) 0 0
\(741\) −618.180 1335.72i −0.834251 1.80259i
\(742\) 0 0
\(743\) 652.187 0.877775 0.438887 0.898542i \(-0.355373\pi\)
0.438887 + 0.898542i \(0.355373\pi\)
\(744\) 0 0
\(745\) −415.822 + 57.8532i −0.558151 + 0.0776552i
\(746\) 0 0
\(747\) −525.589 + 619.097i −0.703599 + 0.828777i
\(748\) 0 0
\(749\) 113.000i 0.150868i
\(750\) 0 0
\(751\) 554.876 0.738850 0.369425 0.929261i \(-0.379555\pi\)
0.369425 + 0.929261i \(0.379555\pi\)
\(752\) 0 0
\(753\) 159.635 + 344.928i 0.211999 + 0.458072i
\(754\) 0 0
\(755\) 6.23501 + 44.8144i 0.00825829 + 0.0593569i
\(756\) 0 0
\(757\) 547.156i 0.722795i −0.932412 0.361397i \(-0.882300\pi\)
0.932412 0.361397i \(-0.117700\pi\)
\(758\) 0 0
\(759\) −341.305 737.467i −0.449677 0.971630i
\(760\) 0 0
\(761\) 1361.34i 1.78888i 0.447184 + 0.894442i \(0.352427\pi\)
−0.447184 + 0.894442i \(0.647573\pi\)
\(762\) 0 0
\(763\) 43.8229i 0.0574350i
\(764\) 0 0
\(765\) −267.261 169.670i −0.349361 0.221790i
\(766\) 0 0
\(767\) 165.218 0.215408
\(768\) 0 0
\(769\) −396.180 −0.515188 −0.257594 0.966253i \(-0.582930\pi\)
−0.257594 + 0.966253i \(0.582930\pi\)
\(770\) 0 0
\(771\) 1080.02 499.840i 1.40080 0.648301i
\(772\) 0 0
\(773\) 664.286 0.859361 0.429681 0.902981i \(-0.358626\pi\)
0.429681 + 0.902981i \(0.358626\pi\)
\(774\) 0 0
\(775\) 840.522 238.499i 1.08454 0.307741i
\(776\) 0 0
\(777\) 75.6815 35.0259i 0.0974022 0.0450784i
\(778\) 0 0
\(779\) 904.927i 1.16165i
\(780\) 0 0
\(781\) 1061.29 1.35889
\(782\) 0 0
\(783\) 841.141 + 233.189i 1.07425 + 0.297814i
\(784\) 0 0
\(785\) 802.542 111.657i 1.02235 0.142239i
\(786\) 0 0
\(787\) 957.551i 1.21671i 0.793665 + 0.608355i \(0.208170\pi\)
−0.793665 + 0.608355i \(0.791830\pi\)
\(788\) 0 0
\(789\) 1073.86 496.991i 1.36104 0.629900i
\(790\) 0 0
\(791\) 0.748964i 0.000946857i
\(792\) 0 0
\(793\) 236.330i 0.298021i
\(794\) 0 0
\(795\) −494.402 768.466i −0.621890 0.966623i
\(796\) 0 0
\(797\) 643.860 0.807854 0.403927 0.914791i \(-0.367645\pi\)