Properties

Label 960.3.c.k.449.10
Level $960$
Weight $3$
Character 960.449
Analytic conductor $26.158$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 960.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(26.1581053786\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Defining polynomial: \( x^{12} + 34x^{10} + 305x^{8} + 616x^{6} + 305x^{4} + 34x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.10
Root \(0.304307i\) of defining polynomial
Character \(\chi\) \(=\) 960.449
Dual form 960.3.c.k.449.9

$q$-expansion

\(f(q)\) \(=\) \(q+(2.49147 + 1.67109i) q^{3} +(4.19906 + 2.71439i) q^{5} +12.7692i q^{7} +(3.41489 + 8.32698i) q^{9} +O(q^{10})\) \(q+(2.49147 + 1.67109i) q^{3} +(4.19906 + 2.71439i) q^{5} +12.7692i q^{7} +(3.41489 + 8.32698i) q^{9} -12.6296i q^{11} +7.44085i q^{13} +(5.92583 + 13.7799i) q^{15} -14.0550 q^{17} +31.0176 q^{19} +(-21.3386 + 31.8142i) q^{21} +7.50423 q^{23} +(10.2641 + 22.7958i) q^{25} +(-5.40707 + 26.4530i) q^{27} -15.7298i q^{29} -20.4893 q^{31} +(21.1053 - 31.4663i) q^{33} +(-34.6607 + 53.6186i) q^{35} +12.9261i q^{37} +(-12.4344 + 18.5387i) q^{39} -13.8451i q^{41} -30.0797i q^{43} +(-8.26340 + 44.2348i) q^{45} +20.2570 q^{47} -114.053 q^{49} +(-35.0176 - 23.4872i) q^{51} -29.1185 q^{53} +(34.2817 - 53.0324i) q^{55} +(77.2795 + 51.8333i) q^{57} -47.6333i q^{59} -43.0176 q^{61} +(-106.329 + 43.6054i) q^{63} +(-20.1974 + 31.2445i) q^{65} -0.630153i q^{67} +(18.6966 + 12.5403i) q^{69} -90.4047i q^{71} +46.2193i q^{73} +(-12.5211 + 73.9474i) q^{75} +161.270 q^{77} +37.9610 q^{79} +(-57.6771 + 56.8713i) q^{81} +80.2267 q^{83} +(-59.0176 - 38.1507i) q^{85} +(26.2860 - 39.1904i) q^{87} +140.923i q^{89} -95.0138 q^{91} +(-51.0486 - 34.2396i) q^{93} +(130.245 + 84.1939i) q^{95} -10.3429i q^{97} +(105.166 - 43.1286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 8 q^{9} + 16 q^{15} - 4 q^{21} + 36 q^{25} - 48 q^{31} - 128 q^{39} + 68 q^{45} - 252 q^{49} - 48 q^{51} - 48 q^{55} - 144 q^{61} - 268 q^{69} - 304 q^{75} + 432 q^{79} - 188 q^{81} - 336 q^{85} + 560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.49147 + 1.67109i 0.830491 + 0.557032i
\(4\) 0 0
\(5\) 4.19906 + 2.71439i 0.839811 + 0.542879i
\(6\) 0 0
\(7\) 12.7692i 1.82417i 0.409998 + 0.912086i \(0.365529\pi\)
−0.409998 + 0.912086i \(0.634471\pi\)
\(8\) 0 0
\(9\) 3.41489 + 8.32698i 0.379432 + 0.925220i
\(10\) 0 0
\(11\) 12.6296i 1.14815i −0.818804 0.574073i \(-0.805363\pi\)
0.818804 0.574073i \(-0.194637\pi\)
\(12\) 0 0
\(13\) 7.44085i 0.572373i 0.958174 + 0.286187i \(0.0923877\pi\)
−0.958174 + 0.286187i \(0.907612\pi\)
\(14\) 0 0
\(15\) 5.92583 + 13.7799i 0.395055 + 0.918657i
\(16\) 0 0
\(17\) −14.0550 −0.826763 −0.413381 0.910558i \(-0.635652\pi\)
−0.413381 + 0.910558i \(0.635652\pi\)
\(18\) 0 0
\(19\) 31.0176 1.63250 0.816252 0.577696i \(-0.196048\pi\)
0.816252 + 0.577696i \(0.196048\pi\)
\(20\) 0 0
\(21\) −21.3386 + 31.8142i −1.01612 + 1.51496i
\(22\) 0 0
\(23\) 7.50423 0.326271 0.163135 0.986604i \(-0.447839\pi\)
0.163135 + 0.986604i \(0.447839\pi\)
\(24\) 0 0
\(25\) 10.2641 + 22.7958i 0.410565 + 0.911831i
\(26\) 0 0
\(27\) −5.40707 + 26.4530i −0.200262 + 0.979742i
\(28\) 0 0
\(29\) 15.7298i 0.542407i −0.962522 0.271204i \(-0.912578\pi\)
0.962522 0.271204i \(-0.0874217\pi\)
\(30\) 0 0
\(31\) −20.4893 −0.660945 −0.330473 0.943816i \(-0.607208\pi\)
−0.330473 + 0.943816i \(0.607208\pi\)
\(32\) 0 0
\(33\) 21.1053 31.4663i 0.639553 0.953525i
\(34\) 0 0
\(35\) −34.6607 + 53.6186i −0.990305 + 1.53196i
\(36\) 0 0
\(37\) 12.9261i 0.349355i 0.984626 + 0.174677i \(0.0558883\pi\)
−0.984626 + 0.174677i \(0.944112\pi\)
\(38\) 0 0
\(39\) −12.4344 + 18.5387i −0.318830 + 0.475351i
\(40\) 0 0
\(41\) 13.8451i 0.337685i −0.985643 0.168843i \(-0.945997\pi\)
0.985643 0.168843i \(-0.0540029\pi\)
\(42\) 0 0
\(43\) 30.0797i 0.699528i −0.936838 0.349764i \(-0.886262\pi\)
0.936838 0.349764i \(-0.113738\pi\)
\(44\) 0 0
\(45\) −8.26340 + 44.2348i −0.183631 + 0.982995i
\(46\) 0 0
\(47\) 20.2570 0.431000 0.215500 0.976504i \(-0.430862\pi\)
0.215500 + 0.976504i \(0.430862\pi\)
\(48\) 0 0
\(49\) −114.053 −2.32761
\(50\) 0 0
\(51\) −35.0176 23.4872i −0.686619 0.460533i
\(52\) 0 0
\(53\) −29.1185 −0.549406 −0.274703 0.961529i \(-0.588580\pi\)
−0.274703 + 0.961529i \(0.588580\pi\)
\(54\) 0 0
\(55\) 34.2817 53.0324i 0.623304 0.964226i
\(56\) 0 0
\(57\) 77.2795 + 51.8333i 1.35578 + 0.909356i
\(58\) 0 0
\(59\) 47.6333i 0.807344i −0.914904 0.403672i \(-0.867734\pi\)
0.914904 0.403672i \(-0.132266\pi\)
\(60\) 0 0
\(61\) −43.0176 −0.705206 −0.352603 0.935773i \(-0.614703\pi\)
−0.352603 + 0.935773i \(0.614703\pi\)
\(62\) 0 0
\(63\) −106.329 + 43.6054i −1.68776 + 0.692149i
\(64\) 0 0
\(65\) −20.1974 + 31.2445i −0.310729 + 0.480685i
\(66\) 0 0
\(67\) 0.630153i 0.00940527i −0.999989 0.00470264i \(-0.998503\pi\)
0.999989 0.00470264i \(-0.00149690\pi\)
\(68\) 0 0
\(69\) 18.6966 + 12.5403i 0.270965 + 0.181743i
\(70\) 0 0
\(71\) 90.4047i 1.27330i −0.771151 0.636652i \(-0.780319\pi\)
0.771151 0.636652i \(-0.219681\pi\)
\(72\) 0 0
\(73\) 46.2193i 0.633140i 0.948569 + 0.316570i \(0.102531\pi\)
−0.948569 + 0.316570i \(0.897469\pi\)
\(74\) 0 0
\(75\) −12.5211 + 73.9474i −0.166948 + 0.985966i
\(76\) 0 0
\(77\) 161.270 2.09442
\(78\) 0 0
\(79\) 37.9610 0.480519 0.240260 0.970709i \(-0.422767\pi\)
0.240260 + 0.970709i \(0.422767\pi\)
\(80\) 0 0
\(81\) −57.6771 + 56.8713i −0.712063 + 0.702115i
\(82\) 0 0
\(83\) 80.2267 0.966587 0.483294 0.875458i \(-0.339440\pi\)
0.483294 + 0.875458i \(0.339440\pi\)
\(84\) 0 0
\(85\) −59.0176 38.1507i −0.694324 0.448832i
\(86\) 0 0
\(87\) 26.2860 39.1904i 0.302138 0.450465i
\(88\) 0 0
\(89\) 140.923i 1.58341i 0.610907 + 0.791703i \(0.290805\pi\)
−0.610907 + 0.791703i \(0.709195\pi\)
\(90\) 0 0
\(91\) −95.0138 −1.04411
\(92\) 0 0
\(93\) −51.0486 34.2396i −0.548909 0.368168i
\(94\) 0 0
\(95\) 130.245 + 84.1939i 1.37100 + 0.886252i
\(96\) 0 0
\(97\) 10.3429i 0.106628i −0.998578 0.0533138i \(-0.983022\pi\)
0.998578 0.0533138i \(-0.0169784\pi\)
\(98\) 0 0
\(99\) 105.166 43.1286i 1.06229 0.435643i
\(100\) 0 0
\(101\) 19.2739i 0.190830i −0.995438 0.0954152i \(-0.969582\pi\)
0.995438 0.0954152i \(-0.0304179\pi\)
\(102\) 0 0
\(103\) 6.97008i 0.0676707i 0.999427 + 0.0338353i \(0.0107722\pi\)
−0.999427 + 0.0338353i \(0.989228\pi\)
\(104\) 0 0
\(105\) −175.958 + 75.6682i −1.67579 + 0.720649i
\(106\) 0 0
\(107\) 73.7731 0.689468 0.344734 0.938700i \(-0.387969\pi\)
0.344734 + 0.938700i \(0.387969\pi\)
\(108\) 0 0
\(109\) −74.0314 −0.679187 −0.339593 0.940572i \(-0.610289\pi\)
−0.339593 + 0.940572i \(0.610289\pi\)
\(110\) 0 0
\(111\) −21.6008 + 32.2051i −0.194602 + 0.290136i
\(112\) 0 0
\(113\) 147.215 1.30279 0.651394 0.758739i \(-0.274184\pi\)
0.651394 + 0.758739i \(0.274184\pi\)
\(114\) 0 0
\(115\) 31.5107 + 20.3694i 0.274006 + 0.177126i
\(116\) 0 0
\(117\) −61.9598 + 25.4096i −0.529571 + 0.217176i
\(118\) 0 0
\(119\) 179.471i 1.50816i
\(120\) 0 0
\(121\) −38.5069 −0.318239
\(122\) 0 0
\(123\) 23.1364 34.4947i 0.188101 0.280444i
\(124\) 0 0
\(125\) −18.7770 + 123.582i −0.150216 + 0.988653i
\(126\) 0 0
\(127\) 90.0171i 0.708796i −0.935095 0.354398i \(-0.884686\pi\)
0.935095 0.354398i \(-0.115314\pi\)
\(128\) 0 0
\(129\) 50.2660 74.9428i 0.389659 0.580952i
\(130\) 0 0
\(131\) 11.2911i 0.0861917i 0.999071 + 0.0430958i \(0.0137221\pi\)
−0.999071 + 0.0430958i \(0.986278\pi\)
\(132\) 0 0
\(133\) 396.070i 2.97797i
\(134\) 0 0
\(135\) −94.5086 + 96.4009i −0.700063 + 0.714081i
\(136\) 0 0
\(137\) −22.4905 −0.164164 −0.0820822 0.996626i \(-0.526157\pi\)
−0.0820822 + 0.996626i \(0.526157\pi\)
\(138\) 0 0
\(139\) −91.0955 −0.655363 −0.327682 0.944788i \(-0.606267\pi\)
−0.327682 + 0.944788i \(0.606267\pi\)
\(140\) 0 0
\(141\) 50.4698 + 33.8514i 0.357942 + 0.240081i
\(142\) 0 0
\(143\) 93.9750 0.657168
\(144\) 0 0
\(145\) 42.6969 66.0504i 0.294461 0.455520i
\(146\) 0 0
\(147\) −284.159 190.593i −1.93306 1.29655i
\(148\) 0 0
\(149\) 228.330i 1.53242i 0.642593 + 0.766208i \(0.277859\pi\)
−0.642593 + 0.766208i \(0.722141\pi\)
\(150\) 0 0
\(151\) −74.0390 −0.490324 −0.245162 0.969482i \(-0.578841\pi\)
−0.245162 + 0.969482i \(0.578841\pi\)
\(152\) 0 0
\(153\) −47.9961 117.035i −0.313700 0.764937i
\(154\) 0 0
\(155\) −86.0358 55.6161i −0.555069 0.358813i
\(156\) 0 0
\(157\) 245.742i 1.56523i −0.622504 0.782616i \(-0.713885\pi\)
0.622504 0.782616i \(-0.286115\pi\)
\(158\) 0 0
\(159\) −72.5481 48.6598i −0.456277 0.306037i
\(160\) 0 0
\(161\) 95.8231i 0.595175i
\(162\) 0 0
\(163\) 60.1570i 0.369061i −0.982827 0.184531i \(-0.940924\pi\)
0.982827 0.184531i \(-0.0590765\pi\)
\(164\) 0 0
\(165\) 174.034 74.8409i 1.05475 0.453581i
\(166\) 0 0
\(167\) −81.5664 −0.488421 −0.244211 0.969722i \(-0.578529\pi\)
−0.244211 + 0.969722i \(0.578529\pi\)
\(168\) 0 0
\(169\) 113.634 0.672389
\(170\) 0 0
\(171\) 105.921 + 258.283i 0.619424 + 1.51043i
\(172\) 0 0
\(173\) −167.064 −0.965687 −0.482843 0.875707i \(-0.660396\pi\)
−0.482843 + 0.875707i \(0.660396\pi\)
\(174\) 0 0
\(175\) −291.084 + 131.065i −1.66334 + 0.748942i
\(176\) 0 0
\(177\) 79.5997 118.677i 0.449716 0.670492i
\(178\) 0 0
\(179\) 270.104i 1.50896i −0.656322 0.754481i \(-0.727889\pi\)
0.656322 0.754481i \(-0.272111\pi\)
\(180\) 0 0
\(181\) −86.9786 −0.480545 −0.240272 0.970705i \(-0.577237\pi\)
−0.240272 + 0.970705i \(0.577237\pi\)
\(182\) 0 0
\(183\) −107.177 71.8865i −0.585668 0.392822i
\(184\) 0 0
\(185\) −35.0866 + 54.2776i −0.189657 + 0.293392i
\(186\) 0 0
\(187\) 177.509i 0.949244i
\(188\) 0 0
\(189\) −337.785 69.0440i −1.78722 0.365312i
\(190\) 0 0
\(191\) 302.223i 1.58232i 0.611610 + 0.791159i \(0.290522\pi\)
−0.611610 + 0.791159i \(0.709478\pi\)
\(192\) 0 0
\(193\) 306.780i 1.58953i 0.606916 + 0.794766i \(0.292407\pi\)
−0.606916 + 0.794766i \(0.707593\pi\)
\(194\) 0 0
\(195\) −102.534 + 44.0932i −0.525815 + 0.226119i
\(196\) 0 0
\(197\) 289.956 1.47186 0.735930 0.677058i \(-0.236745\pi\)
0.735930 + 0.677058i \(0.236745\pi\)
\(198\) 0 0
\(199\) 382.595 1.92259 0.961293 0.275527i \(-0.0888522\pi\)
0.961293 + 0.275527i \(0.0888522\pi\)
\(200\) 0 0
\(201\) 1.05305 1.57001i 0.00523903 0.00781100i
\(202\) 0 0
\(203\) 200.857 0.989445
\(204\) 0 0
\(205\) 37.5810 58.1363i 0.183322 0.283592i
\(206\) 0 0
\(207\) 25.6261 + 62.4876i 0.123798 + 0.301872i
\(208\) 0 0
\(209\) 391.740i 1.87435i
\(210\) 0 0
\(211\) 321.115 1.52187 0.760937 0.648826i \(-0.224740\pi\)
0.760937 + 0.648826i \(0.224740\pi\)
\(212\) 0 0
\(213\) 151.075 225.241i 0.709271 1.05747i
\(214\) 0 0
\(215\) 81.6482 126.306i 0.379759 0.587471i
\(216\) 0 0
\(217\) 261.632i 1.20568i
\(218\) 0 0
\(219\) −77.2368 + 115.154i −0.352679 + 0.525818i
\(220\) 0 0
\(221\) 104.581i 0.473217i
\(222\) 0 0
\(223\) 292.432i 1.31135i 0.755042 + 0.655676i \(0.227616\pi\)
−0.755042 + 0.655676i \(0.772384\pi\)
\(224\) 0 0
\(225\) −154.769 + 163.314i −0.687863 + 0.725841i
\(226\) 0 0
\(227\) 370.155 1.63064 0.815319 0.579013i \(-0.196562\pi\)
0.815319 + 0.579013i \(0.196562\pi\)
\(228\) 0 0
\(229\) 381.985 1.66806 0.834028 0.551722i \(-0.186029\pi\)
0.834028 + 0.551722i \(0.186029\pi\)
\(230\) 0 0
\(231\) 401.800 + 269.498i 1.73939 + 1.16666i
\(232\) 0 0
\(233\) −144.262 −0.619150 −0.309575 0.950875i \(-0.600187\pi\)
−0.309575 + 0.950875i \(0.600187\pi\)
\(234\) 0 0
\(235\) 85.0603 + 54.9855i 0.361959 + 0.233981i
\(236\) 0 0
\(237\) 94.5789 + 63.4365i 0.399067 + 0.267665i
\(238\) 0 0
\(239\) 249.478i 1.04384i −0.852994 0.521921i \(-0.825216\pi\)
0.852994 0.521921i \(-0.174784\pi\)
\(240\) 0 0
\(241\) 30.4541 0.126366 0.0631829 0.998002i \(-0.479875\pi\)
0.0631829 + 0.998002i \(0.479875\pi\)
\(242\) 0 0
\(243\) −238.738 + 45.3095i −0.982463 + 0.186459i
\(244\) 0 0
\(245\) −478.914 309.584i −1.95475 1.26361i
\(246\) 0 0
\(247\) 230.797i 0.934401i
\(248\) 0 0
\(249\) 199.883 + 134.066i 0.802742 + 0.538420i
\(250\) 0 0
\(251\) 68.9183i 0.274575i 0.990531 + 0.137287i \(0.0438384\pi\)
−0.990531 + 0.137287i \(0.956162\pi\)
\(252\) 0 0
\(253\) 94.7755i 0.374607i
\(254\) 0 0
\(255\) −83.2873 193.675i −0.326617 0.759512i
\(256\) 0 0
\(257\) 362.374 1.41002 0.705009 0.709199i \(-0.250943\pi\)
0.705009 + 0.709199i \(0.250943\pi\)
\(258\) 0 0
\(259\) −165.057 −0.637284
\(260\) 0 0
\(261\) 130.982 53.7155i 0.501846 0.205807i
\(262\) 0 0
\(263\) −23.4485 −0.0891580 −0.0445790 0.999006i \(-0.514195\pi\)
−0.0445790 + 0.999006i \(0.514195\pi\)
\(264\) 0 0
\(265\) −122.270 79.0391i −0.461397 0.298261i
\(266\) 0 0
\(267\) −235.496 + 351.106i −0.882007 + 1.31500i
\(268\) 0 0
\(269\) 396.738i 1.47486i −0.675421 0.737432i \(-0.736038\pi\)
0.675421 0.737432i \(-0.263962\pi\)
\(270\) 0 0
\(271\) −143.926 −0.531092 −0.265546 0.964098i \(-0.585552\pi\)
−0.265546 + 0.964098i \(0.585552\pi\)
\(272\) 0 0
\(273\) −236.724 158.777i −0.867122 0.581601i
\(274\) 0 0
\(275\) 287.902 129.632i 1.04692 0.471389i
\(276\) 0 0
\(277\) 360.884i 1.30283i −0.758722 0.651415i \(-0.774176\pi\)
0.758722 0.651415i \(-0.225824\pi\)
\(278\) 0 0
\(279\) −69.9686 170.614i −0.250784 0.611520i
\(280\) 0 0
\(281\) 531.655i 1.89201i −0.324149 0.946006i \(-0.605078\pi\)
0.324149 0.946006i \(-0.394922\pi\)
\(282\) 0 0
\(283\) 257.400i 0.909541i 0.890609 + 0.454770i \(0.150279\pi\)
−0.890609 + 0.454770i \(0.849721\pi\)
\(284\) 0 0
\(285\) 183.805 + 427.418i 0.644929 + 1.49971i
\(286\) 0 0
\(287\) 176.791 0.615996
\(288\) 0 0
\(289\) −91.4579 −0.316463
\(290\) 0 0
\(291\) 17.2839 25.7690i 0.0593949 0.0885533i
\(292\) 0 0
\(293\) −310.456 −1.05958 −0.529789 0.848130i \(-0.677729\pi\)
−0.529789 + 0.848130i \(0.677729\pi\)
\(294\) 0 0
\(295\) 129.295 200.015i 0.438290 0.678016i
\(296\) 0 0
\(297\) 334.091 + 68.2892i 1.12489 + 0.229930i
\(298\) 0 0
\(299\) 55.8379i 0.186749i
\(300\) 0 0
\(301\) 384.094 1.27606
\(302\) 0 0
\(303\) 32.2085 48.0204i 0.106299 0.158483i
\(304\) 0 0
\(305\) −180.633 116.767i −0.592240 0.382841i
\(306\) 0 0
\(307\) 266.169i 0.866999i −0.901154 0.433499i \(-0.857279\pi\)
0.901154 0.433499i \(-0.142721\pi\)
\(308\) 0 0
\(309\) −11.6477 + 17.3658i −0.0376947 + 0.0561999i
\(310\) 0 0
\(311\) 186.580i 0.599934i −0.953950 0.299967i \(-0.903024\pi\)
0.953950 0.299967i \(-0.0969757\pi\)
\(312\) 0 0
\(313\) 20.5021i 0.0655019i 0.999464 + 0.0327510i \(0.0104268\pi\)
−0.999464 + 0.0327510i \(0.989573\pi\)
\(314\) 0 0
\(315\) −564.843 105.517i −1.79315 0.334975i
\(316\) 0 0
\(317\) −18.9792 −0.0598711 −0.0299356 0.999552i \(-0.509530\pi\)
−0.0299356 + 0.999552i \(0.509530\pi\)
\(318\) 0 0
\(319\) −198.661 −0.622763
\(320\) 0 0
\(321\) 183.804 + 123.282i 0.572597 + 0.384055i
\(322\) 0 0
\(323\) −435.951 −1.34969
\(324\) 0 0
\(325\) −169.620 + 76.3739i −0.521908 + 0.234997i
\(326\) 0 0
\(327\) −184.447 123.713i −0.564059 0.378328i
\(328\) 0 0
\(329\) 258.666i 0.786219i
\(330\) 0 0
\(331\) −413.193 −1.24832 −0.624159 0.781297i \(-0.714558\pi\)
−0.624159 + 0.781297i \(0.714558\pi\)
\(332\) 0 0
\(333\) −107.636 + 44.1413i −0.323230 + 0.132556i
\(334\) 0 0
\(335\) 1.71048 2.64605i 0.00510592 0.00789865i
\(336\) 0 0
\(337\) 484.733i 1.43838i −0.694816 0.719188i \(-0.744514\pi\)
0.694816 0.719188i \(-0.255486\pi\)
\(338\) 0 0
\(339\) 366.783 + 246.010i 1.08195 + 0.725694i
\(340\) 0 0
\(341\) 258.772i 0.758862i
\(342\) 0 0
\(343\) 830.672i 2.42178i
\(344\) 0 0
\(345\) 44.4688 + 103.407i 0.128895 + 0.299731i
\(346\) 0 0
\(347\) 336.214 0.968915 0.484457 0.874815i \(-0.339017\pi\)
0.484457 + 0.874815i \(0.339017\pi\)
\(348\) 0 0
\(349\) 428.261 1.22711 0.613555 0.789652i \(-0.289739\pi\)
0.613555 + 0.789652i \(0.289739\pi\)
\(350\) 0 0
\(351\) −196.833 40.2332i −0.560778 0.114625i
\(352\) 0 0
\(353\) −558.817 −1.58305 −0.791525 0.611137i \(-0.790713\pi\)
−0.791525 + 0.611137i \(0.790713\pi\)
\(354\) 0 0
\(355\) 245.394 379.614i 0.691250 1.06934i
\(356\) 0 0
\(357\) 299.913 447.147i 0.840092 1.25251i
\(358\) 0 0
\(359\) 206.915i 0.576365i 0.957576 + 0.288182i \(0.0930509\pi\)
−0.957576 + 0.288182i \(0.906949\pi\)
\(360\) 0 0
\(361\) 601.090 1.66507
\(362\) 0 0
\(363\) −95.9389 64.3487i −0.264295 0.177269i
\(364\) 0 0
\(365\) −125.457 + 194.077i −0.343718 + 0.531718i
\(366\) 0 0
\(367\) 185.425i 0.505246i −0.967565 0.252623i \(-0.918707\pi\)
0.967565 0.252623i \(-0.0812932\pi\)
\(368\) 0 0
\(369\) 115.288 47.2794i 0.312433 0.128128i
\(370\) 0 0
\(371\) 371.821i 1.00221i
\(372\) 0 0
\(373\) 427.345i 1.14570i −0.819661 0.572848i \(-0.805838\pi\)
0.819661 0.572848i \(-0.194162\pi\)
\(374\) 0 0
\(375\) −253.299 + 276.522i −0.675464 + 0.737393i
\(376\) 0 0
\(377\) 117.043 0.310459
\(378\) 0 0
\(379\) −117.727 −0.310626 −0.155313 0.987865i \(-0.549639\pi\)
−0.155313 + 0.987865i \(0.549639\pi\)
\(380\) 0 0
\(381\) 150.427 224.275i 0.394822 0.588649i
\(382\) 0 0
\(383\) 470.016 1.22720 0.613598 0.789619i \(-0.289722\pi\)
0.613598 + 0.789619i \(0.289722\pi\)
\(384\) 0 0
\(385\) 677.182 + 437.750i 1.75891 + 1.13701i
\(386\) 0 0
\(387\) 250.473 102.719i 0.647217 0.265423i
\(388\) 0 0
\(389\) 128.160i 0.329461i −0.986339 0.164730i \(-0.947325\pi\)
0.986339 0.164730i \(-0.0526754\pi\)
\(390\) 0 0
\(391\) −105.472 −0.269749
\(392\) 0 0
\(393\) −18.8685 + 28.1315i −0.0480115 + 0.0715814i
\(394\) 0 0
\(395\) 159.401 + 103.041i 0.403546 + 0.260864i
\(396\) 0 0
\(397\) 276.316i 0.696011i 0.937493 + 0.348005i \(0.113141\pi\)
−0.937493 + 0.348005i \(0.886859\pi\)
\(398\) 0 0
\(399\) −661.871 + 986.798i −1.65882 + 2.47318i
\(400\) 0 0
\(401\) 549.912i 1.37135i 0.727907 + 0.685675i \(0.240493\pi\)
−0.727907 + 0.685675i \(0.759507\pi\)
\(402\) 0 0
\(403\) 152.458i 0.378307i
\(404\) 0 0
\(405\) −396.561 + 82.2475i −0.979162 + 0.203080i
\(406\) 0 0
\(407\) 163.252 0.401110
\(408\) 0 0
\(409\) −219.166 −0.535858 −0.267929 0.963439i \(-0.586339\pi\)
−0.267929 + 0.963439i \(0.586339\pi\)
\(410\) 0 0
\(411\) −56.0346 37.5838i −0.136337 0.0914448i
\(412\) 0 0
\(413\) 608.240 1.47273
\(414\) 0 0
\(415\) 336.877 + 217.767i 0.811751 + 0.524740i
\(416\) 0 0
\(417\) −226.962 152.229i −0.544274 0.365058i
\(418\) 0 0
\(419\) 204.522i 0.488119i −0.969760 0.244060i \(-0.921521\pi\)
0.969760 0.244060i \(-0.0784792\pi\)
\(420\) 0 0
\(421\) −577.186 −1.37099 −0.685494 0.728078i \(-0.740414\pi\)
−0.685494 + 0.728078i \(0.740414\pi\)
\(422\) 0 0
\(423\) 69.1754 + 168.680i 0.163535 + 0.398770i
\(424\) 0 0
\(425\) −144.262 320.394i −0.339440 0.753868i
\(426\) 0 0
\(427\) 549.301i 1.28642i
\(428\) 0 0
\(429\) 234.136 + 157.041i 0.545772 + 0.366063i
\(430\) 0 0
\(431\) 663.363i 1.53913i −0.638571 0.769563i \(-0.720474\pi\)
0.638571 0.769563i \(-0.279526\pi\)
\(432\) 0 0
\(433\) 226.876i 0.523964i −0.965073 0.261982i \(-0.915624\pi\)
0.965073 0.261982i \(-0.0843760\pi\)
\(434\) 0 0
\(435\) 216.755 93.2122i 0.498287 0.214281i
\(436\) 0 0
\(437\) 232.763 0.532639
\(438\) 0 0
\(439\) 282.524 0.643564 0.321782 0.946814i \(-0.395718\pi\)
0.321782 + 0.946814i \(0.395718\pi\)
\(440\) 0 0
\(441\) −389.477 949.715i −0.883168 2.15355i
\(442\) 0 0
\(443\) 455.605 1.02845 0.514227 0.857654i \(-0.328079\pi\)
0.514227 + 0.857654i \(0.328079\pi\)
\(444\) 0 0
\(445\) −382.521 + 591.744i −0.859597 + 1.32976i
\(446\) 0 0
\(447\) −381.561 + 568.878i −0.853604 + 1.27266i
\(448\) 0 0
\(449\) 157.206i 0.350124i −0.984557 0.175062i \(-0.943987\pi\)
0.984557 0.175062i \(-0.0560127\pi\)
\(450\) 0 0
\(451\) −174.858 −0.387712
\(452\) 0 0
\(453\) −184.466 123.726i −0.407210 0.273126i
\(454\) 0 0
\(455\) −398.968 257.905i −0.876853 0.566824i
\(456\) 0 0
\(457\) 397.152i 0.869041i −0.900662 0.434520i \(-0.856918\pi\)
0.900662 0.434520i \(-0.143082\pi\)
\(458\) 0 0
\(459\) 75.9962 371.797i 0.165569 0.810014i
\(460\) 0 0
\(461\) 350.730i 0.760803i −0.924821 0.380401i \(-0.875786\pi\)
0.924821 0.380401i \(-0.124214\pi\)
\(462\) 0 0
\(463\) 308.385i 0.666058i 0.942917 + 0.333029i \(0.108071\pi\)
−0.942917 + 0.333029i \(0.891929\pi\)
\(464\) 0 0
\(465\) −121.416 282.340i −0.261110 0.607182i
\(466\) 0 0
\(467\) −800.129 −1.71334 −0.856669 0.515866i \(-0.827470\pi\)
−0.856669 + 0.515866i \(0.827470\pi\)
\(468\) 0 0
\(469\) 8.04656 0.0171568
\(470\) 0 0
\(471\) 410.657 612.259i 0.871884 1.29991i
\(472\) 0 0
\(473\) −379.895 −0.803160
\(474\) 0 0
\(475\) 318.369 + 707.070i 0.670250 + 1.48857i
\(476\) 0 0
\(477\) −99.4364 242.469i −0.208462 0.508321i
\(478\) 0 0
\(479\) 630.135i 1.31552i 0.753227 + 0.657761i \(0.228496\pi\)
−0.753227 + 0.657761i \(0.771504\pi\)
\(480\) 0 0
\(481\) −96.1814 −0.199961
\(482\) 0 0
\(483\) −160.130 + 238.741i −0.331531 + 0.494287i
\(484\) 0 0
\(485\) 28.0746 43.4303i 0.0578858 0.0895470i
\(486\) 0 0
\(487\) 103.952i 0.213454i −0.994288 0.106727i \(-0.965963\pi\)
0.994288 0.106727i \(-0.0340372\pi\)
\(488\) 0 0
\(489\) 100.528 149.879i 0.205579 0.306502i
\(490\) 0 0
\(491\) 286.049i 0.582585i −0.956634 0.291292i \(-0.905915\pi\)
0.956634 0.291292i \(-0.0940853\pi\)
\(492\) 0 0
\(493\) 221.082i 0.448442i
\(494\) 0 0
\(495\) 558.668 + 104.364i 1.12862 + 0.210835i
\(496\) 0 0
\(497\) 1154.40 2.32273
\(498\) 0 0
\(499\) 528.285 1.05869 0.529344 0.848407i \(-0.322438\pi\)
0.529344 + 0.848407i \(0.322438\pi\)
\(500\) 0 0
\(501\) −203.220 136.305i −0.405630 0.272066i
\(502\) 0 0
\(503\) 733.418 1.45809 0.729044 0.684467i \(-0.239965\pi\)
0.729044 + 0.684467i \(0.239965\pi\)
\(504\) 0 0
\(505\) 52.3169 80.9321i 0.103598 0.160262i
\(506\) 0 0
\(507\) 283.116 + 189.893i 0.558413 + 0.374542i
\(508\) 0 0
\(509\) 312.619i 0.614183i 0.951680 + 0.307092i \(0.0993558\pi\)
−0.951680 + 0.307092i \(0.900644\pi\)
\(510\) 0 0
\(511\) −590.183 −1.15496
\(512\) 0 0
\(513\) −167.714 + 820.509i −0.326928 + 1.59943i
\(514\) 0 0
\(515\) −18.9195 + 29.2677i −0.0367370 + 0.0568306i
\(516\) 0 0
\(517\) 255.838i 0.494851i
\(518\) 0 0
\(519\) −416.235 279.179i −0.801995 0.537918i
\(520\) 0 0
\(521\) 715.719i 1.37374i 0.726780 + 0.686870i \(0.241016\pi\)
−0.726780 + 0.686870i \(0.758984\pi\)
\(522\) 0 0
\(523\) 109.080i 0.208567i 0.994548 + 0.104283i \(0.0332549\pi\)
−0.994548 + 0.104283i \(0.966745\pi\)
\(524\) 0 0
\(525\) −944.250 159.884i −1.79857 0.304542i
\(526\) 0 0
\(527\) 287.977 0.546445
\(528\) 0 0
\(529\) −472.686 −0.893547
\(530\) 0 0
\(531\) 396.641 162.662i 0.746971 0.306332i
\(532\) 0 0
\(533\) 103.019 0.193282
\(534\) 0 0
\(535\) 309.777 + 200.249i 0.579023 + 0.374297i
\(536\) 0 0
\(537\) 451.370 672.958i 0.840540 1.25318i
\(538\) 0 0
\(539\) 1440.44i 2.67243i
\(540\) 0 0
\(541\) 14.9710 0.0276729 0.0138364 0.999904i \(-0.495596\pi\)
0.0138364 + 0.999904i \(0.495596\pi\)
\(542\) 0 0
\(543\) −216.705 145.350i −0.399088 0.267679i
\(544\) 0 0
\(545\) −310.862 200.950i −0.570389 0.368716i
\(546\) 0 0
\(547\) 842.765i 1.54070i 0.637618 + 0.770352i \(0.279920\pi\)
−0.637618 + 0.770352i \(0.720080\pi\)
\(548\) 0 0
\(549\) −146.900 358.206i −0.267578 0.652471i
\(550\) 0 0
\(551\) 487.901i 0.885482i
\(552\) 0 0
\(553\) 484.733i 0.876551i
\(554\) 0 0
\(555\) −178.120 + 76.5981i −0.320938 + 0.138015i
\(556\) 0 0
\(557\) 845.989 1.51883 0.759415 0.650606i \(-0.225485\pi\)
0.759415 + 0.650606i \(0.225485\pi\)
\(558\) 0 0
\(559\) 223.819 0.400391
\(560\) 0 0
\(561\) −296.634 + 442.258i −0.528759 + 0.788339i
\(562\) 0 0
\(563\) −336.509 −0.597707 −0.298853 0.954299i \(-0.596604\pi\)
−0.298853 + 0.954299i \(0.596604\pi\)
\(564\) 0 0
\(565\) 618.164 + 399.600i 1.09410 + 0.707256i
\(566\) 0 0
\(567\) −726.202 736.491i −1.28078 1.29893i
\(568\) 0 0
\(569\) 552.736i 0.971416i 0.874121 + 0.485708i \(0.161438\pi\)
−0.874121 + 0.485708i \(0.838562\pi\)
\(570\) 0 0
\(571\) −772.222 −1.35240 −0.676202 0.736717i \(-0.736375\pi\)
−0.676202 + 0.736717i \(0.736375\pi\)
\(572\) 0 0
\(573\) −505.043 + 752.980i −0.881401 + 1.31410i
\(574\) 0 0
\(575\) 77.0245 + 171.065i 0.133956 + 0.297504i
\(576\) 0 0
\(577\) 848.557i 1.47064i 0.677722 + 0.735318i \(0.262967\pi\)
−0.677722 + 0.735318i \(0.737033\pi\)
\(578\) 0 0
\(579\) −512.658 + 764.334i −0.885420 + 1.32009i
\(580\) 0 0
\(581\) 1024.43i 1.76322i
\(582\) 0 0
\(583\) 367.755i 0.630798i
\(584\) 0 0
\(585\) −329.144 61.4867i −0.562640 0.105106i
\(586\) 0 0
\(587\) −575.536 −0.980470 −0.490235 0.871590i \(-0.663089\pi\)
−0.490235 + 0.871590i \(0.663089\pi\)
\(588\) 0 0
\(589\) −635.529 −1.07900
\(590\) 0 0
\(591\) 722.419 + 484.544i 1.22237 + 0.819872i
\(592\) 0 0
\(593\) 156.935 0.264646 0.132323 0.991207i \(-0.457756\pi\)
0.132323 + 0.991207i \(0.457756\pi\)
\(594\) 0 0
\(595\) 487.154 753.608i 0.818747 1.26657i
\(596\) 0 0
\(597\) 953.225 + 639.352i 1.59669 + 1.07094i
\(598\) 0 0
\(599\) 517.564i 0.864047i 0.901862 + 0.432024i \(0.142200\pi\)
−0.901862 + 0.432024i \(0.857800\pi\)
\(600\) 0 0
\(601\) −883.588 −1.47020 −0.735098 0.677961i \(-0.762864\pi\)
−0.735098 + 0.677961i \(0.762864\pi\)
\(602\) 0 0
\(603\) 5.24727 2.15190i 0.00870194 0.00356866i
\(604\) 0 0
\(605\) −161.693 104.523i −0.267260 0.172765i
\(606\) 0 0
\(607\) 242.929i 0.400212i −0.979774 0.200106i \(-0.935871\pi\)
0.979774 0.200106i \(-0.0641287\pi\)
\(608\) 0 0
\(609\) 500.431 + 335.652i 0.821725 + 0.551152i
\(610\) 0 0
\(611\) 150.729i 0.246693i
\(612\) 0 0
\(613\) 157.263i 0.256546i −0.991739 0.128273i \(-0.959057\pi\)
0.991739 0.128273i \(-0.0409434\pi\)
\(614\) 0 0
\(615\) 190.783 82.0436i 0.310217 0.133404i
\(616\) 0 0
\(617\) 471.040 0.763436 0.381718 0.924279i \(-0.375333\pi\)
0.381718 + 0.924279i \(0.375333\pi\)
\(618\) 0 0
\(619\) −550.320 −0.889047 −0.444524 0.895767i \(-0.646627\pi\)
−0.444524 + 0.895767i \(0.646627\pi\)
\(620\) 0 0
\(621\) −40.5759 + 198.510i −0.0653396 + 0.319662i
\(622\) 0 0
\(623\) −1799.48 −2.88841
\(624\) 0 0
\(625\) −414.295 + 467.958i −0.662872 + 0.748733i
\(626\) 0 0
\(627\) 654.634 976.009i 1.04407 1.55663i
\(628\) 0 0
\(629\) 181.676i 0.288834i
\(630\) 0 0
\(631\) −347.362 −0.550495 −0.275248 0.961373i \(-0.588760\pi\)
−0.275248 + 0.961373i \(0.588760\pi\)
\(632\) 0 0
\(633\) 800.051 + 536.614i 1.26390 + 0.847732i
\(634\) 0 0
\(635\) 244.342 377.987i 0.384790 0.595255i
\(636\) 0 0
\(637\) 848.649i 1.33226i
\(638\) 0 0
\(639\) 752.798 308.721i 1.17809 0.483132i
\(640\) 0 0
\(641\) 333.802i 0.520752i −0.965507 0.260376i \(-0.916153\pi\)
0.965507 0.260376i \(-0.0838465\pi\)
\(642\) 0 0
\(643\) 495.512i 0.770625i 0.922786 + 0.385313i \(0.125906\pi\)
−0.922786 + 0.385313i \(0.874094\pi\)
\(644\) 0 0
\(645\) 414.494 178.247i 0.642627 0.276352i
\(646\) 0 0
\(647\) −149.493 −0.231056 −0.115528 0.993304i \(-0.536856\pi\)
−0.115528 + 0.993304i \(0.536856\pi\)
\(648\) 0 0
\(649\) −601.590 −0.926948
\(650\) 0 0
\(651\) 437.212 651.850i 0.671601 1.00131i
\(652\) 0 0
\(653\) −261.846 −0.400990 −0.200495 0.979695i \(-0.564255\pi\)
−0.200495 + 0.979695i \(0.564255\pi\)
\(654\) 0 0
\(655\) −30.6485 + 47.4120i −0.0467916 + 0.0723847i
\(656\) 0 0
\(657\) −384.867 + 157.833i −0.585794 + 0.240234i
\(658\) 0 0
\(659\) 148.718i 0.225672i −0.993614 0.112836i \(-0.964006\pi\)
0.993614 0.112836i \(-0.0359935\pi\)
\(660\) 0 0
\(661\) 535.548 0.810209 0.405104 0.914270i \(-0.367235\pi\)
0.405104 + 0.914270i \(0.367235\pi\)
\(662\) 0 0
\(663\) 174.765 260.561i 0.263597 0.393002i
\(664\) 0 0
\(665\) −1075.09 + 1663.12i −1.61668 + 2.50093i
\(666\) 0 0
\(667\) 118.040i 0.176972i
\(668\) 0 0
\(669\) −488.681 + 728.586i −0.730465 + 1.08907i
\(670\) 0 0
\(671\) 543.295i 0.809680i
\(672\) 0 0
\(673\) 678.388i 1.00801i −0.863702 0.504003i \(-0.831860\pi\)
0.863702 0.504003i \(-0.168140\pi\)
\(674\) 0 0
\(675\) −658.517 + 148.259i −0.975580 + 0.219643i
\(676\) 0 0
\(677\) −809.743 −1.19608 −0.598038 0.801468i \(-0.704053\pi\)
−0.598038 + 0.801468i \(0.704053\pi\)
\(678\) 0 0
\(679\) 132.070 0.194507
\(680\) 0 0
\(681\) 922.231 + 618.563i 1.35423 + 0.908316i
\(682\) 0 0
\(683\) 150.099 0.219764 0.109882 0.993945i \(-0.464953\pi\)
0.109882 + 0.993945i \(0.464953\pi\)
\(684\) 0 0
\(685\) −94.4390 61.0481i −0.137867 0.0891214i
\(686\) 0 0
\(687\) 951.705 + 638.333i 1.38531 + 0.929160i
\(688\) 0 0
\(689\) 216.667i 0.314465i
\(690\) 0 0
\(691\) 334.001 0.483359 0.241679 0.970356i \(-0.422302\pi\)
0.241679 + 0.970356i \(0.422302\pi\)
\(692\) 0 0
\(693\) 550.719 + 1342.89i 0.794688 + 1.93780i
\(694\) 0 0
\(695\) −382.515 247.269i −0.550381 0.355783i
\(696\) 0 0
\(697\) 194.592i 0.279185i
\(698\) 0 0
\(699\) −359.425 241.076i −0.514199 0.344886i
\(700\) 0 0
\(701\) 924.471i 1.31879i −0.751797 0.659394i \(-0.770813\pi\)
0.751797 0.659394i \(-0.229187\pi\)
\(702\) 0 0
\(703\) 400.937i 0.570324i
\(704\) 0 0
\(705\) 120.040 + 279.139i 0.170269 + 0.395942i
\(706\) 0 0
\(707\) 246.112 0.348108
\(708\) 0 0
\(709\) −797.459 −1.12477 −0.562383 0.826877i \(-0.690115\pi\)
−0.562383 + 0.826877i \(0.690115\pi\)
\(710\) 0 0
\(711\) 129.633 + 316.101i 0.182324 + 0.444586i
\(712\) 0 0
\(713\) −153.757 −0.215647
\(714\) 0 0
\(715\) 394.606 + 255.085i 0.551897 + 0.356762i
\(716\) 0 0
\(717\) 416.902 621.568i 0.581453 0.866902i
\(718\) 0 0
\(719\) 907.966i 1.26282i −0.775450 0.631409i \(-0.782477\pi\)
0.775450 0.631409i \(-0.217523\pi\)
\(720\) 0 0
\(721\) −89.0024 −0.123443
\(722\) 0 0
\(723\) 75.8757 + 50.8918i 0.104946 + 0.0703897i
\(724\) 0 0
\(725\) 358.573 161.453i 0.494584 0.222694i
\(726\) 0 0
\(727\) 1038.16i 1.42801i 0.700140 + 0.714005i \(0.253121\pi\)
−0.700140 + 0.714005i \(0.746879\pi\)
\(728\) 0 0
\(729\) −670.527 286.067i −0.919790 0.392410i
\(730\) 0 0
\(731\) 422.769i 0.578344i
\(732\) 0 0
\(733\) 399.107i 0.544485i 0.962229 + 0.272242i \(0.0877652\pi\)
−0.962229 + 0.272242i \(0.912235\pi\)
\(734\) 0 0
\(735\) −675.857 1571.63i −0.919533 2.13827i
\(736\) 0 0
\(737\) −7.95858 −0.0107986
\(738\) 0 0
\(739\) −452.504 −0.612319 −0.306159 0.951980i \(-0.599044\pi\)
−0.306159 + 0.951980i \(0.599044\pi\)
\(740\) 0 0
\(741\) −385.684 + 575.025i −0.520491 + 0.776012i
\(742\) 0 0
\(743\) 486.909 0.655328 0.327664 0.944794i \(-0.393739\pi\)
0.327664 + 0.944794i \(0.393739\pi\)
\(744\) 0 0
\(745\) −619.777 + 958.770i −0.831916 + 1.28694i
\(746\) 0 0
\(747\) 273.965 + 668.046i 0.366754 + 0.894306i
\(748\) 0 0
\(749\) 942.024i 1.25771i
\(750\) 0 0
\(751\) −470.899 −0.627029 −0.313515 0.949583i \(-0.601506\pi\)
−0.313515 + 0.949583i \(0.601506\pi\)
\(752\) 0 0
\(753\) −115.169 + 171.708i −0.152947 + 0.228032i
\(754\) 0 0
\(755\) −310.894 200.971i −0.411780 0.266187i
\(756\) 0 0
\(757\) 886.264i 1.17076i 0.810760 + 0.585379i \(0.199054\pi\)
−0.810760 + 0.585379i \(0.800946\pi\)
\(758\) 0 0
\(759\) 158.379 236.131i 0.208668 0.311108i
\(760\) 0 0
\(761\) 1022.30i 1.34336i −0.740841 0.671680i \(-0.765573\pi\)
0.740841 0.671680i \(-0.234427\pi\)
\(762\) 0 0
\(763\) 945.322i 1.23895i
\(764\) 0 0
\(765\) 116.142 621.718i 0.151819 0.812704i
\(766\) 0 0
\(767\) 354.432 0.462102
\(768\) 0 0
\(769\) 1051.96 1.36796 0.683982 0.729499i \(-0.260247\pi\)
0.683982 + 0.729499i \(0.260247\pi\)
\(770\) 0 0
\(771\) 902.847 + 605.562i 1.17101 + 0.785424i
\(772\) 0 0
\(773\) −983.554 −1.27238 −0.636192 0.771530i \(-0.719492\pi\)
−0.636192 + 0.771530i \(0.719492\pi\)
\(774\) 0 0
\(775\) −210.305 467.070i −0.271361 0.602671i
\(776\) 0 0
\(777\) −411.234 275.825i −0.529259 0.354987i
\(778\) 0 0
\(779\) 429.441i 0.551272i
\(780\) 0 0
\(781\) −1141.77 −1.46194
\(782\) 0 0
\(783\) 416.101 + 85.0522i 0.531419 + 0.108624i
\(784\) 0 0
\(785\) 667.039 1031.88i 0.849731 1.31450i
\(786\) 0 0
\(787\) 984.726i 1.25124i 0.780128 + 0.625620i \(0.215154\pi\)
−0.780128 + 0.625620i \(0.784846\pi\)
\(788\) 0 0
\(789\) −58.4214 39.1847i −0.0740449 0.0496638i
\(790\) 0 0
\(791\) 1879.82i 2.37651i
\(792\) 0 0
\(793\) 320.087i 0.403641i
\(794\) 0 0
\(795\) −172.551 401.249i −0.217046 0.504716i
\(796\) 0 0
\(797\) 359.710 0.451330 0.225665 0.974205i \(-0.427544\pi\)