Properties

Label 960.2.y.f.943.2
Level $960$
Weight $2$
Character 960.943
Analytic conductor $7.666$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(847,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.847"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 943.2
Root \(-1.41400 - 0.0245121i\) of defining polynomial
Character \(\chi\) \(=\) 960.943
Dual form 960.2.y.f.847.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-1.85415 - 1.24985i) q^{5} +(-1.96536 + 1.96536i) q^{7} +1.00000 q^{9} +(2.59268 + 2.59268i) q^{11} +0.328451i q^{13} +(-1.85415 - 1.24985i) q^{15} +(3.36908 - 3.36908i) q^{17} +(0.361062 + 0.361062i) q^{19} +(-1.96536 + 1.96536i) q^{21} +(6.27687 + 6.27687i) q^{23} +(1.87574 + 4.63482i) q^{25} +1.00000 q^{27} +(-3.99896 + 3.99896i) q^{29} +3.02085i q^{31} +(2.59268 + 2.59268i) q^{33} +(6.10048 - 1.18766i) q^{35} -7.87281i q^{37} +0.328451i q^{39} +7.90024i q^{41} +5.87147i q^{43} +(-1.85415 - 1.24985i) q^{45} +(5.51736 + 5.51736i) q^{47} -0.725284i q^{49} +(3.36908 - 3.36908i) q^{51} +13.6546 q^{53} +(-1.56676 - 8.04769i) q^{55} +(0.361062 + 0.361062i) q^{57} +(5.41759 - 5.41759i) q^{59} +(-1.32047 - 1.32047i) q^{61} +(-1.96536 + 1.96536i) q^{63} +(0.410514 - 0.608997i) q^{65} -9.81578i q^{67} +(6.27687 + 6.27687i) q^{69} -8.07691 q^{71} +(-0.167116 + 0.167116i) q^{73} +(1.87574 + 4.63482i) q^{75} -10.1911 q^{77} -5.94905 q^{79} +1.00000 q^{81} -2.80013 q^{83} +(-10.4576 + 2.03593i) q^{85} +(-3.99896 + 3.99896i) q^{87} -10.2825 q^{89} +(-0.645524 - 0.645524i) q^{91} +3.02085i q^{93} +(-0.218189 - 1.12074i) q^{95} +(0.537048 - 0.537048i) q^{97} +(2.59268 + 2.59268i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} + 4 q^{7} + 20 q^{9} - 8 q^{11} + 12 q^{17} - 16 q^{19} + 4 q^{21} + 16 q^{23} + 4 q^{25} + 20 q^{27} - 8 q^{33} + 28 q^{35} + 12 q^{51} + 8 q^{53} + 4 q^{55} - 16 q^{57} + 16 q^{59} - 12 q^{61}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.85415 1.24985i −0.829201 0.558950i
\(6\) 0 0
\(7\) −1.96536 + 1.96536i −0.742836 + 0.742836i −0.973123 0.230286i \(-0.926034\pi\)
0.230286 + 0.973123i \(0.426034\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.59268 + 2.59268i 0.781723 + 0.781723i 0.980122 0.198398i \(-0.0635739\pi\)
−0.198398 + 0.980122i \(0.563574\pi\)
\(12\) 0 0
\(13\) 0.328451i 0.0910958i 0.998962 + 0.0455479i \(0.0145034\pi\)
−0.998962 + 0.0455479i \(0.985497\pi\)
\(14\) 0 0
\(15\) −1.85415 1.24985i −0.478739 0.322710i
\(16\) 0 0
\(17\) 3.36908 3.36908i 0.817121 0.817121i −0.168569 0.985690i \(-0.553914\pi\)
0.985690 + 0.168569i \(0.0539144\pi\)
\(18\) 0 0
\(19\) 0.361062 + 0.361062i 0.0828332 + 0.0828332i 0.747309 0.664476i \(-0.231345\pi\)
−0.664476 + 0.747309i \(0.731345\pi\)
\(20\) 0 0
\(21\) −1.96536 + 1.96536i −0.428877 + 0.428877i
\(22\) 0 0
\(23\) 6.27687 + 6.27687i 1.30882 + 1.30882i 0.922269 + 0.386550i \(0.126333\pi\)
0.386550 + 0.922269i \(0.373667\pi\)
\(24\) 0 0
\(25\) 1.87574 + 4.63482i 0.375149 + 0.926965i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.99896 + 3.99896i −0.742588 + 0.742588i −0.973075 0.230487i \(-0.925968\pi\)
0.230487 + 0.973075i \(0.425968\pi\)
\(30\) 0 0
\(31\) 3.02085i 0.542561i 0.962500 + 0.271281i \(0.0874472\pi\)
−0.962500 + 0.271281i \(0.912553\pi\)
\(32\) 0 0
\(33\) 2.59268 + 2.59268i 0.451328 + 0.451328i
\(34\) 0 0
\(35\) 6.10048 1.18766i 1.03117 0.200752i
\(36\) 0 0
\(37\) 7.87281i 1.29428i −0.762370 0.647141i \(-0.775964\pi\)
0.762370 0.647141i \(-0.224036\pi\)
\(38\) 0 0
\(39\) 0.328451i 0.0525942i
\(40\) 0 0
\(41\) 7.90024i 1.23381i 0.787038 + 0.616905i \(0.211614\pi\)
−0.787038 + 0.616905i \(0.788386\pi\)
\(42\) 0 0
\(43\) 5.87147i 0.895391i 0.894186 + 0.447695i \(0.147755\pi\)
−0.894186 + 0.447695i \(0.852245\pi\)
\(44\) 0 0
\(45\) −1.85415 1.24985i −0.276400 0.186317i
\(46\) 0 0
\(47\) 5.51736 + 5.51736i 0.804790 + 0.804790i 0.983840 0.179050i \(-0.0573023\pi\)
−0.179050 + 0.983840i \(0.557302\pi\)
\(48\) 0 0
\(49\) 0.725284i 0.103612i
\(50\) 0 0
\(51\) 3.36908 3.36908i 0.471765 0.471765i
\(52\) 0 0
\(53\) 13.6546 1.87560 0.937801 0.347173i \(-0.112858\pi\)
0.937801 + 0.347173i \(0.112858\pi\)
\(54\) 0 0
\(55\) −1.56676 8.04769i −0.211261 1.08515i
\(56\) 0 0
\(57\) 0.361062 + 0.361062i 0.0478238 + 0.0478238i
\(58\) 0 0
\(59\) 5.41759 5.41759i 0.705310 0.705310i −0.260236 0.965545i \(-0.583800\pi\)
0.965545 + 0.260236i \(0.0838002\pi\)
\(60\) 0 0
\(61\) −1.32047 1.32047i −0.169069 0.169069i 0.617501 0.786570i \(-0.288145\pi\)
−0.786570 + 0.617501i \(0.788145\pi\)
\(62\) 0 0
\(63\) −1.96536 + 1.96536i −0.247612 + 0.247612i
\(64\) 0 0
\(65\) 0.410514 0.608997i 0.0509180 0.0755367i
\(66\) 0 0
\(67\) 9.81578i 1.19919i −0.800304 0.599594i \(-0.795329\pi\)
0.800304 0.599594i \(-0.204671\pi\)
\(68\) 0 0
\(69\) 6.27687 + 6.27687i 0.755647 + 0.755647i
\(70\) 0 0
\(71\) −8.07691 −0.958553 −0.479276 0.877664i \(-0.659101\pi\)
−0.479276 + 0.877664i \(0.659101\pi\)
\(72\) 0 0
\(73\) −0.167116 + 0.167116i −0.0195595 + 0.0195595i −0.716819 0.697259i \(-0.754403\pi\)
0.697259 + 0.716819i \(0.254403\pi\)
\(74\) 0 0
\(75\) 1.87574 + 4.63482i 0.216592 + 0.535183i
\(76\) 0 0
\(77\) −10.1911 −1.16139
\(78\) 0 0
\(79\) −5.94905 −0.669320 −0.334660 0.942339i \(-0.608621\pi\)
−0.334660 + 0.942339i \(0.608621\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −2.80013 −0.307354 −0.153677 0.988121i \(-0.549112\pi\)
−0.153677 + 0.988121i \(0.549112\pi\)
\(84\) 0 0
\(85\) −10.4576 + 2.03593i −1.13429 + 0.220828i
\(86\) 0 0
\(87\) −3.99896 + 3.99896i −0.428733 + 0.428733i
\(88\) 0 0
\(89\) −10.2825 −1.08994 −0.544972 0.838454i \(-0.683460\pi\)
−0.544972 + 0.838454i \(0.683460\pi\)
\(90\) 0 0
\(91\) −0.645524 0.645524i −0.0676693 0.0676693i
\(92\) 0 0
\(93\) 3.02085i 0.313248i
\(94\) 0 0
\(95\) −0.218189 1.12074i −0.0223857 0.114985i
\(96\) 0 0
\(97\) 0.537048 0.537048i 0.0545290 0.0545290i −0.679316 0.733845i \(-0.737724\pi\)
0.733845 + 0.679316i \(0.237724\pi\)
\(98\) 0 0
\(99\) 2.59268 + 2.59268i 0.260574 + 0.260574i
\(100\) 0 0
\(101\) 7.00905 7.00905i 0.697426 0.697426i −0.266428 0.963855i \(-0.585844\pi\)
0.963855 + 0.266428i \(0.0858436\pi\)
\(102\) 0 0
\(103\) −8.14591 8.14591i −0.802640 0.802640i 0.180867 0.983507i \(-0.442109\pi\)
−0.983507 + 0.180867i \(0.942109\pi\)
\(104\) 0 0
\(105\) 6.10048 1.18766i 0.595346 0.115904i
\(106\) 0 0
\(107\) −12.8117 −1.23855 −0.619275 0.785174i \(-0.712573\pi\)
−0.619275 + 0.785174i \(0.712573\pi\)
\(108\) 0 0
\(109\) 4.65039 4.65039i 0.445427 0.445427i −0.448404 0.893831i \(-0.648007\pi\)
0.893831 + 0.448404i \(0.148007\pi\)
\(110\) 0 0
\(111\) 7.87281i 0.747254i
\(112\) 0 0
\(113\) 8.92382 + 8.92382i 0.839482 + 0.839482i 0.988791 0.149308i \(-0.0477047\pi\)
−0.149308 + 0.988791i \(0.547705\pi\)
\(114\) 0 0
\(115\) −3.79311 19.4834i −0.353709 1.81684i
\(116\) 0 0
\(117\) 0.328451i 0.0303653i
\(118\) 0 0
\(119\) 13.2429i 1.21398i
\(120\) 0 0
\(121\) 2.44401i 0.222183i
\(122\) 0 0
\(123\) 7.90024i 0.712341i
\(124\) 0 0
\(125\) 2.31493 10.9381i 0.207053 0.978330i
\(126\) 0 0
\(127\) 8.89383 + 8.89383i 0.789199 + 0.789199i 0.981363 0.192164i \(-0.0615504\pi\)
−0.192164 + 0.981363i \(0.561550\pi\)
\(128\) 0 0
\(129\) 5.87147i 0.516954i
\(130\) 0 0
\(131\) −5.04824 + 5.04824i −0.441067 + 0.441067i −0.892371 0.451303i \(-0.850959\pi\)
0.451303 + 0.892371i \(0.350959\pi\)
\(132\) 0 0
\(133\) −1.41923 −0.123063
\(134\) 0 0
\(135\) −1.85415 1.24985i −0.159580 0.107570i
\(136\) 0 0
\(137\) 8.94353 + 8.94353i 0.764097 + 0.764097i 0.977060 0.212963i \(-0.0683114\pi\)
−0.212963 + 0.977060i \(0.568311\pi\)
\(138\) 0 0
\(139\) 1.67569 1.67569i 0.142130 0.142130i −0.632462 0.774592i \(-0.717955\pi\)
0.774592 + 0.632462i \(0.217955\pi\)
\(140\) 0 0
\(141\) 5.51736 + 5.51736i 0.464646 + 0.464646i
\(142\) 0 0
\(143\) −0.851568 + 0.851568i −0.0712117 + 0.0712117i
\(144\) 0 0
\(145\) 12.4128 2.41657i 1.03082 0.200685i
\(146\) 0 0
\(147\) 0.725284i 0.0598204i
\(148\) 0 0
\(149\) −1.65655 1.65655i −0.135710 0.135710i 0.635988 0.771699i \(-0.280593\pi\)
−0.771699 + 0.635988i \(0.780593\pi\)
\(150\) 0 0
\(151\) −9.40919 −0.765709 −0.382854 0.923809i \(-0.625059\pi\)
−0.382854 + 0.923809i \(0.625059\pi\)
\(152\) 0 0
\(153\) 3.36908 3.36908i 0.272374 0.272374i
\(154\) 0 0
\(155\) 3.77562 5.60112i 0.303265 0.449892i
\(156\) 0 0
\(157\) −15.5285 −1.23931 −0.619655 0.784874i \(-0.712728\pi\)
−0.619655 + 0.784874i \(0.712728\pi\)
\(158\) 0 0
\(159\) 13.6546 1.08288
\(160\) 0 0
\(161\) −24.6726 −1.94448
\(162\) 0 0
\(163\) −4.41190 −0.345567 −0.172783 0.984960i \(-0.555276\pi\)
−0.172783 + 0.984960i \(0.555276\pi\)
\(164\) 0 0
\(165\) −1.56676 8.04769i −0.121972 0.626512i
\(166\) 0 0
\(167\) 1.70055 1.70055i 0.131593 0.131593i −0.638243 0.769835i \(-0.720338\pi\)
0.769835 + 0.638243i \(0.220338\pi\)
\(168\) 0 0
\(169\) 12.8921 0.991702
\(170\) 0 0
\(171\) 0.361062 + 0.361062i 0.0276111 + 0.0276111i
\(172\) 0 0
\(173\) 15.0010i 1.14051i −0.821469 0.570253i \(-0.806845\pi\)
0.821469 0.570253i \(-0.193155\pi\)
\(174\) 0 0
\(175\) −12.7956 5.42258i −0.967257 0.409909i
\(176\) 0 0
\(177\) 5.41759 5.41759i 0.407211 0.407211i
\(178\) 0 0
\(179\) 8.06006 + 8.06006i 0.602437 + 0.602437i 0.940959 0.338521i \(-0.109927\pi\)
−0.338521 + 0.940959i \(0.609927\pi\)
\(180\) 0 0
\(181\) −12.4443 + 12.4443i −0.924979 + 0.924979i −0.997376 0.0723968i \(-0.976935\pi\)
0.0723968 + 0.997376i \(0.476935\pi\)
\(182\) 0 0
\(183\) −1.32047 1.32047i −0.0976119 0.0976119i
\(184\) 0 0
\(185\) −9.83984 + 14.5974i −0.723440 + 1.07322i
\(186\) 0 0
\(187\) 17.4699 1.27753
\(188\) 0 0
\(189\) −1.96536 + 1.96536i −0.142959 + 0.142959i
\(190\) 0 0
\(191\) 13.0787i 0.946340i 0.880971 + 0.473170i \(0.156890\pi\)
−0.880971 + 0.473170i \(0.843110\pi\)
\(192\) 0 0
\(193\) −15.0162 15.0162i −1.08089 1.08089i −0.996427 0.0844610i \(-0.973083\pi\)
−0.0844610 0.996427i \(-0.526917\pi\)
\(194\) 0 0
\(195\) 0.410514 0.608997i 0.0293975 0.0436111i
\(196\) 0 0
\(197\) 4.49246i 0.320074i −0.987111 0.160037i \(-0.948839\pi\)
0.987111 0.160037i \(-0.0511614\pi\)
\(198\) 0 0
\(199\) 2.17777i 0.154378i 0.997016 + 0.0771890i \(0.0245945\pi\)
−0.997016 + 0.0771890i \(0.975406\pi\)
\(200\) 0 0
\(201\) 9.81578i 0.692352i
\(202\) 0 0
\(203\) 15.7188i 1.10324i
\(204\) 0 0
\(205\) 9.87412 14.6482i 0.689639 1.02308i
\(206\) 0 0
\(207\) 6.27687 + 6.27687i 0.436273 + 0.436273i
\(208\) 0 0
\(209\) 1.87224i 0.129505i
\(210\) 0 0
\(211\) −13.3900 + 13.3900i −0.921807 + 0.921807i −0.997157 0.0753502i \(-0.975993\pi\)
0.0753502 + 0.997157i \(0.475993\pi\)
\(212\) 0 0
\(213\) −8.07691 −0.553421
\(214\) 0 0
\(215\) 7.33846 10.8866i 0.500479 0.742459i
\(216\) 0 0
\(217\) −5.93707 5.93707i −0.403034 0.403034i
\(218\) 0 0
\(219\) −0.167116 + 0.167116i −0.0112927 + 0.0112927i
\(220\) 0 0
\(221\) 1.10658 + 1.10658i 0.0744363 + 0.0744363i
\(222\) 0 0
\(223\) 13.9939 13.9939i 0.937100 0.937100i −0.0610360 0.998136i \(-0.519440\pi\)
0.998136 + 0.0610360i \(0.0194405\pi\)
\(224\) 0 0
\(225\) 1.87574 + 4.63482i 0.125050 + 0.308988i
\(226\) 0 0
\(227\) 27.3648i 1.81626i −0.418685 0.908132i \(-0.637509\pi\)
0.418685 0.908132i \(-0.362491\pi\)
\(228\) 0 0
\(229\) −6.18602 6.18602i −0.408783 0.408783i 0.472531 0.881314i \(-0.343341\pi\)
−0.881314 + 0.472531i \(0.843341\pi\)
\(230\) 0 0
\(231\) −10.1911 −0.670526
\(232\) 0 0
\(233\) 16.9076 16.9076i 1.10765 1.10765i 0.114196 0.993458i \(-0.463571\pi\)
0.993458 0.114196i \(-0.0364293\pi\)
\(234\) 0 0
\(235\) −3.33414 17.1259i −0.217495 1.11717i
\(236\) 0 0
\(237\) −5.94905 −0.386432
\(238\) 0 0
\(239\) −1.90480 −0.123212 −0.0616058 0.998101i \(-0.519622\pi\)
−0.0616058 + 0.998101i \(0.519622\pi\)
\(240\) 0 0
\(241\) −23.0653 −1.48577 −0.742884 0.669420i \(-0.766543\pi\)
−0.742884 + 0.669420i \(0.766543\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −0.906496 + 1.34478i −0.0579139 + 0.0859151i
\(246\) 0 0
\(247\) −0.118591 + 0.118591i −0.00754576 + 0.00754576i
\(248\) 0 0
\(249\) −2.80013 −0.177451
\(250\) 0 0
\(251\) −17.1103 17.1103i −1.07999 1.07999i −0.996509 0.0834806i \(-0.973396\pi\)
−0.0834806 0.996509i \(-0.526604\pi\)
\(252\) 0 0
\(253\) 32.5479i 2.04627i
\(254\) 0 0
\(255\) −10.4576 + 2.03593i −0.654882 + 0.127495i
\(256\) 0 0
\(257\) 4.11987 4.11987i 0.256990 0.256990i −0.566838 0.823829i \(-0.691834\pi\)
0.823829 + 0.566838i \(0.191834\pi\)
\(258\) 0 0
\(259\) 15.4729 + 15.4729i 0.961440 + 0.961440i
\(260\) 0 0
\(261\) −3.99896 + 3.99896i −0.247529 + 0.247529i
\(262\) 0 0
\(263\) 17.0258 + 17.0258i 1.04985 + 1.04985i 0.998690 + 0.0511644i \(0.0162933\pi\)
0.0511644 + 0.998690i \(0.483707\pi\)
\(264\) 0 0
\(265\) −25.3177 17.0662i −1.55525 1.04837i
\(266\) 0 0
\(267\) −10.2825 −0.629280
\(268\) 0 0
\(269\) 2.02914 2.02914i 0.123719 0.123719i −0.642536 0.766255i \(-0.722118\pi\)
0.766255 + 0.642536i \(0.222118\pi\)
\(270\) 0 0
\(271\) 17.1830i 1.04379i −0.853009 0.521896i \(-0.825225\pi\)
0.853009 0.521896i \(-0.174775\pi\)
\(272\) 0 0
\(273\) −0.645524 0.645524i −0.0390689 0.0390689i
\(274\) 0 0
\(275\) −7.15342 + 16.8798i −0.431367 + 1.01789i
\(276\) 0 0
\(277\) 6.31808i 0.379617i 0.981821 + 0.189808i \(0.0607866\pi\)
−0.981821 + 0.189808i \(0.939213\pi\)
\(278\) 0 0
\(279\) 3.02085i 0.180854i
\(280\) 0 0
\(281\) 19.5262i 1.16483i 0.812890 + 0.582417i \(0.197893\pi\)
−0.812890 + 0.582417i \(0.802107\pi\)
\(282\) 0 0
\(283\) 24.8436i 1.47680i 0.674363 + 0.738400i \(0.264418\pi\)
−0.674363 + 0.738400i \(0.735582\pi\)
\(284\) 0 0
\(285\) −0.218189 1.12074i −0.0129244 0.0663867i
\(286\) 0 0
\(287\) −15.5268 15.5268i −0.916519 0.916519i
\(288\) 0 0
\(289\) 5.70137i 0.335375i
\(290\) 0 0
\(291\) 0.537048 0.537048i 0.0314823 0.0314823i
\(292\) 0 0
\(293\) 29.0203 1.69539 0.847693 0.530487i \(-0.177991\pi\)
0.847693 + 0.530487i \(0.177991\pi\)
\(294\) 0 0
\(295\) −16.8162 + 3.27384i −0.979077 + 0.190610i
\(296\) 0 0
\(297\) 2.59268 + 2.59268i 0.150443 + 0.150443i
\(298\) 0 0
\(299\) −2.06164 + 2.06164i −0.119228 + 0.119228i
\(300\) 0 0
\(301\) −11.5396 11.5396i −0.665129 0.665129i
\(302\) 0 0
\(303\) 7.00905 7.00905i 0.402659 0.402659i
\(304\) 0 0
\(305\) 0.797958 + 4.09874i 0.0456909 + 0.234693i
\(306\) 0 0
\(307\) 5.46765i 0.312055i 0.987753 + 0.156028i \(0.0498689\pi\)
−0.987753 + 0.156028i \(0.950131\pi\)
\(308\) 0 0
\(309\) −8.14591 8.14591i −0.463404 0.463404i
\(310\) 0 0
\(311\) 20.7682 1.17765 0.588827 0.808259i \(-0.299590\pi\)
0.588827 + 0.808259i \(0.299590\pi\)
\(312\) 0 0
\(313\) 3.63603 3.63603i 0.205520 0.205520i −0.596840 0.802360i \(-0.703577\pi\)
0.802360 + 0.596840i \(0.203577\pi\)
\(314\) 0 0
\(315\) 6.10048 1.18766i 0.343723 0.0669173i
\(316\) 0 0
\(317\) 13.7806 0.773993 0.386996 0.922081i \(-0.373513\pi\)
0.386996 + 0.922081i \(0.373513\pi\)
\(318\) 0 0
\(319\) −20.7361 −1.16100
\(320\) 0 0
\(321\) −12.8117 −0.715077
\(322\) 0 0
\(323\) 2.43289 0.135370
\(324\) 0 0
\(325\) −1.52231 + 0.616089i −0.0844426 + 0.0341745i
\(326\) 0 0
\(327\) 4.65039 4.65039i 0.257167 0.257167i
\(328\) 0 0
\(329\) −21.6872 −1.19565
\(330\) 0 0
\(331\) −1.33711 1.33711i −0.0734944 0.0734944i 0.669404 0.742898i \(-0.266550\pi\)
−0.742898 + 0.669404i \(0.766550\pi\)
\(332\) 0 0
\(333\) 7.87281i 0.431427i
\(334\) 0 0
\(335\) −12.2683 + 18.1999i −0.670287 + 0.994369i
\(336\) 0 0
\(337\) 17.7527 17.7527i 0.967049 0.967049i −0.0324256 0.999474i \(-0.510323\pi\)
0.999474 + 0.0324256i \(0.0103232\pi\)
\(338\) 0 0
\(339\) 8.92382 + 8.92382i 0.484675 + 0.484675i
\(340\) 0 0
\(341\) −7.83212 + 7.83212i −0.424133 + 0.424133i
\(342\) 0 0
\(343\) −12.3321 12.3321i −0.665870 0.665870i
\(344\) 0 0
\(345\) −3.79311 19.4834i −0.204214 1.04895i
\(346\) 0 0
\(347\) −17.7610 −0.953463 −0.476732 0.879049i \(-0.658179\pi\)
−0.476732 + 0.879049i \(0.658179\pi\)
\(348\) 0 0
\(349\) 4.63321 4.63321i 0.248010 0.248010i −0.572143 0.820154i \(-0.693888\pi\)
0.820154 + 0.572143i \(0.193888\pi\)
\(350\) 0 0
\(351\) 0.328451i 0.0175314i
\(352\) 0 0
\(353\) −12.5956 12.5956i −0.670398 0.670398i 0.287409 0.957808i \(-0.407206\pi\)
−0.957808 + 0.287409i \(0.907206\pi\)
\(354\) 0 0
\(355\) 14.9758 + 10.0949i 0.794833 + 0.535783i
\(356\) 0 0
\(357\) 13.2429i 0.700889i
\(358\) 0 0
\(359\) 11.1031i 0.585999i −0.956113 0.293000i \(-0.905347\pi\)
0.956113 0.293000i \(-0.0946535\pi\)
\(360\) 0 0
\(361\) 18.7393i 0.986277i
\(362\) 0 0
\(363\) 2.44401i 0.128277i
\(364\) 0 0
\(365\) 0.518729 0.100988i 0.0271515 0.00528596i
\(366\) 0 0
\(367\) 13.4477 + 13.4477i 0.701963 + 0.701963i 0.964832 0.262869i \(-0.0846687\pi\)
−0.262869 + 0.964832i \(0.584669\pi\)
\(368\) 0 0
\(369\) 7.90024i 0.411270i
\(370\) 0 0
\(371\) −26.8362 + 26.8362i −1.39327 + 1.39327i
\(372\) 0 0
\(373\) −10.8013 −0.559268 −0.279634 0.960107i \(-0.590213\pi\)
−0.279634 + 0.960107i \(0.590213\pi\)
\(374\) 0 0
\(375\) 2.31493 10.9381i 0.119542 0.564839i
\(376\) 0 0
\(377\) −1.31346 1.31346i −0.0676466 0.0676466i
\(378\) 0 0
\(379\) −10.8059 + 10.8059i −0.555061 + 0.555061i −0.927897 0.372836i \(-0.878385\pi\)
0.372836 + 0.927897i \(0.378385\pi\)
\(380\) 0 0
\(381\) 8.89383 + 8.89383i 0.455644 + 0.455644i
\(382\) 0 0
\(383\) 17.8896 17.8896i 0.914118 0.914118i −0.0824750 0.996593i \(-0.526282\pi\)
0.996593 + 0.0824750i \(0.0262825\pi\)
\(384\) 0 0
\(385\) 18.8959 + 12.7374i 0.963022 + 0.649157i
\(386\) 0 0
\(387\) 5.87147i 0.298464i
\(388\) 0 0
\(389\) 15.1376 + 15.1376i 0.767509 + 0.767509i 0.977667 0.210159i \(-0.0673981\pi\)
−0.210159 + 0.977667i \(0.567398\pi\)
\(390\) 0 0
\(391\) 42.2945 2.13893
\(392\) 0 0
\(393\) −5.04824 + 5.04824i −0.254650 + 0.254650i
\(394\) 0 0
\(395\) 11.0304 + 7.43542i 0.555001 + 0.374117i
\(396\) 0 0
\(397\) 17.2400 0.865251 0.432626 0.901574i \(-0.357587\pi\)
0.432626 + 0.901574i \(0.357587\pi\)
\(398\) 0 0
\(399\) −1.41923 −0.0710505
\(400\) 0 0
\(401\) −9.32631 −0.465734 −0.232867 0.972509i \(-0.574811\pi\)
−0.232867 + 0.972509i \(0.574811\pi\)
\(402\) 0 0
\(403\) −0.992201 −0.0494251
\(404\) 0 0
\(405\) −1.85415 1.24985i −0.0921335 0.0621056i
\(406\) 0 0
\(407\) 20.4117 20.4117i 1.01177 1.01177i
\(408\) 0 0
\(409\) 25.0691 1.23959 0.619793 0.784765i \(-0.287216\pi\)
0.619793 + 0.784765i \(0.287216\pi\)
\(410\) 0 0
\(411\) 8.94353 + 8.94353i 0.441152 + 0.441152i
\(412\) 0 0
\(413\) 21.2950i 1.04786i
\(414\) 0 0
\(415\) 5.19186 + 3.49975i 0.254858 + 0.171796i
\(416\) 0 0
\(417\) 1.67569 1.67569i 0.0820588 0.0820588i
\(418\) 0 0
\(419\) −19.5372 19.5372i −0.954452 0.954452i 0.0445546 0.999007i \(-0.485813\pi\)
−0.999007 + 0.0445546i \(0.985813\pi\)
\(420\) 0 0
\(421\) 19.4102 19.4102i 0.945996 0.945996i −0.0526183 0.998615i \(-0.516757\pi\)
0.998615 + 0.0526183i \(0.0167567\pi\)
\(422\) 0 0
\(423\) 5.51736 + 5.51736i 0.268263 + 0.268263i
\(424\) 0 0
\(425\) 21.9346 + 9.29555i 1.06398 + 0.450901i
\(426\) 0 0
\(427\) 5.19040 0.251181
\(428\) 0 0
\(429\) −0.851568 + 0.851568i −0.0411141 + 0.0411141i
\(430\) 0 0
\(431\) 18.4295i 0.887718i −0.896097 0.443859i \(-0.853609\pi\)
0.896097 0.443859i \(-0.146391\pi\)
\(432\) 0 0
\(433\) 24.9318 + 24.9318i 1.19815 + 1.19815i 0.974721 + 0.223425i \(0.0717238\pi\)
0.223425 + 0.974721i \(0.428276\pi\)
\(434\) 0 0
\(435\) 12.4128 2.41657i 0.595147 0.115865i
\(436\) 0 0
\(437\) 4.53268i 0.216827i
\(438\) 0 0
\(439\) 13.7877i 0.658050i −0.944321 0.329025i \(-0.893280\pi\)
0.944321 0.329025i \(-0.106720\pi\)
\(440\) 0 0
\(441\) 0.725284i 0.0345373i
\(442\) 0 0
\(443\) 3.84992i 0.182915i 0.995809 + 0.0914577i \(0.0291526\pi\)
−0.995809 + 0.0914577i \(0.970847\pi\)
\(444\) 0 0
\(445\) 19.0653 + 12.8516i 0.903783 + 0.609225i
\(446\) 0 0
\(447\) −1.65655 1.65655i −0.0783524 0.0783524i
\(448\) 0 0
\(449\) 16.4518i 0.776410i 0.921573 + 0.388205i \(0.126905\pi\)
−0.921573 + 0.388205i \(0.873095\pi\)
\(450\) 0 0
\(451\) −20.4828 + 20.4828i −0.964498 + 0.964498i
\(452\) 0 0
\(453\) −9.40919 −0.442082
\(454\) 0 0
\(455\) 0.390089 + 2.00371i 0.0182877 + 0.0939352i
\(456\) 0 0
\(457\) −10.1758 10.1758i −0.476005 0.476005i 0.427846 0.903851i \(-0.359272\pi\)
−0.903851 + 0.427846i \(0.859272\pi\)
\(458\) 0 0
\(459\) 3.36908 3.36908i 0.157255 0.157255i
\(460\) 0 0
\(461\) 21.3206 + 21.3206i 0.992997 + 0.992997i 0.999976 0.00697835i \(-0.00222130\pi\)
−0.00697835 + 0.999976i \(0.502221\pi\)
\(462\) 0 0
\(463\) −4.62419 + 4.62419i −0.214904 + 0.214904i −0.806347 0.591443i \(-0.798559\pi\)
0.591443 + 0.806347i \(0.298559\pi\)
\(464\) 0 0
\(465\) 3.77562 5.60112i 0.175090 0.259746i
\(466\) 0 0
\(467\) 22.4668i 1.03964i −0.854276 0.519819i \(-0.825999\pi\)
0.854276 0.519819i \(-0.174001\pi\)
\(468\) 0 0
\(469\) 19.2916 + 19.2916i 0.890801 + 0.890801i
\(470\) 0 0
\(471\) −15.5285 −0.715516
\(472\) 0 0
\(473\) −15.2229 + 15.2229i −0.699948 + 0.699948i
\(474\) 0 0
\(475\) −0.996198 + 2.35072i −0.0457087 + 0.107858i
\(476\) 0 0
\(477\) 13.6546 0.625201
\(478\) 0 0
\(479\) −15.4368 −0.705323 −0.352662 0.935751i \(-0.614723\pi\)
−0.352662 + 0.935751i \(0.614723\pi\)
\(480\) 0 0
\(481\) 2.58583 0.117904
\(482\) 0 0
\(483\) −24.6726 −1.12264
\(484\) 0 0
\(485\) −1.66700 + 0.324537i −0.0756945 + 0.0147365i
\(486\) 0 0
\(487\) −7.05304 + 7.05304i −0.319604 + 0.319604i −0.848615 0.529011i \(-0.822563\pi\)
0.529011 + 0.848615i \(0.322563\pi\)
\(488\) 0 0
\(489\) −4.41190 −0.199513
\(490\) 0 0
\(491\) 4.18235 + 4.18235i 0.188747 + 0.188747i 0.795154 0.606407i \(-0.207390\pi\)
−0.606407 + 0.795154i \(0.707390\pi\)
\(492\) 0 0
\(493\) 26.9456i 1.21357i
\(494\) 0 0
\(495\) −1.56676 8.04769i −0.0704204 0.361717i
\(496\) 0 0
\(497\) 15.8740 15.8740i 0.712048 0.712048i
\(498\) 0 0
\(499\) 12.8087 + 12.8087i 0.573395 + 0.573395i 0.933076 0.359680i \(-0.117114\pi\)
−0.359680 + 0.933076i \(0.617114\pi\)
\(500\) 0 0
\(501\) 1.70055 1.70055i 0.0759750 0.0759750i
\(502\) 0 0
\(503\) 13.5229 + 13.5229i 0.602956 + 0.602956i 0.941096 0.338140i \(-0.109798\pi\)
−0.338140 + 0.941096i \(0.609798\pi\)
\(504\) 0 0
\(505\) −21.7561 + 4.23556i −0.968133 + 0.188480i
\(506\) 0 0
\(507\) 12.8921 0.572559
\(508\) 0 0
\(509\) 9.46330 9.46330i 0.419454 0.419454i −0.465562 0.885015i \(-0.654148\pi\)
0.885015 + 0.465562i \(0.154148\pi\)
\(510\) 0 0
\(511\) 0.656887i 0.0290590i
\(512\) 0 0
\(513\) 0.361062 + 0.361062i 0.0159413 + 0.0159413i
\(514\) 0 0
\(515\) 4.92256 + 25.2849i 0.216914 + 1.11419i
\(516\) 0 0
\(517\) 28.6096i 1.25825i
\(518\) 0 0
\(519\) 15.0010i 0.658472i
\(520\) 0 0
\(521\) 40.1350i 1.75834i −0.476504 0.879172i \(-0.658096\pi\)
0.476504 0.879172i \(-0.341904\pi\)
\(522\) 0 0
\(523\) 26.6375i 1.16477i −0.812911 0.582387i \(-0.802119\pi\)
0.812911 0.582387i \(-0.197881\pi\)
\(524\) 0 0
\(525\) −12.7956 5.42258i −0.558446 0.236661i
\(526\) 0 0
\(527\) 10.1775 + 10.1775i 0.443338 + 0.443338i
\(528\) 0 0
\(529\) 55.7983i 2.42601i
\(530\) 0 0
\(531\) 5.41759 5.41759i 0.235103 0.235103i
\(532\) 0 0
\(533\) −2.59484 −0.112395
\(534\) 0 0
\(535\) 23.7547 + 16.0127i 1.02701 + 0.692288i
\(536\) 0 0
\(537\) 8.06006 + 8.06006i 0.347817 + 0.347817i
\(538\) 0 0
\(539\) 1.88043 1.88043i 0.0809959 0.0809959i
\(540\) 0 0
\(541\) 13.3757 + 13.3757i 0.575067 + 0.575067i 0.933540 0.358473i \(-0.116703\pi\)
−0.358473 + 0.933540i \(0.616703\pi\)
\(542\) 0 0
\(543\) −12.4443 + 12.4443i −0.534037 + 0.534037i
\(544\) 0 0
\(545\) −14.4348 + 2.81023i −0.618320 + 0.120377i
\(546\) 0 0
\(547\) 22.1477i 0.946967i −0.880803 0.473484i \(-0.842996\pi\)
0.880803 0.473484i \(-0.157004\pi\)
\(548\) 0 0
\(549\) −1.32047 1.32047i −0.0563563 0.0563563i
\(550\) 0 0
\(551\) −2.88774 −0.123022
\(552\) 0 0
\(553\) 11.6920 11.6920i 0.497195 0.497195i
\(554\) 0 0
\(555\) −9.83984 + 14.5974i −0.417678 + 0.619624i
\(556\) 0 0
\(557\) −43.6968 −1.85149 −0.925746 0.378146i \(-0.876562\pi\)
−0.925746 + 0.378146i \(0.876562\pi\)
\(558\) 0 0
\(559\) −1.92849 −0.0815663
\(560\) 0 0
\(561\) 17.4699 0.737580
\(562\) 0 0
\(563\) 2.28960 0.0964951 0.0482475 0.998835i \(-0.484636\pi\)
0.0482475 + 0.998835i \(0.484636\pi\)
\(564\) 0 0
\(565\) −5.39265 27.6995i −0.226871 1.16533i
\(566\) 0 0
\(567\) −1.96536 + 1.96536i −0.0825374 + 0.0825374i
\(568\) 0 0
\(569\) −3.49978 −0.146718 −0.0733592 0.997306i \(-0.523372\pi\)
−0.0733592 + 0.997306i \(0.523372\pi\)
\(570\) 0 0
\(571\) 18.9855 + 18.9855i 0.794519 + 0.794519i 0.982225 0.187707i \(-0.0601054\pi\)
−0.187707 + 0.982225i \(0.560105\pi\)
\(572\) 0 0
\(573\) 13.0787i 0.546370i
\(574\) 0 0
\(575\) −17.3184 + 40.8660i −0.722227 + 1.70423i
\(576\) 0 0
\(577\) −21.0061 + 21.0061i −0.874494 + 0.874494i −0.992958 0.118464i \(-0.962203\pi\)
0.118464 + 0.992958i \(0.462203\pi\)
\(578\) 0 0
\(579\) −15.0162 15.0162i −0.624051 0.624051i
\(580\) 0 0
\(581\) 5.50326 5.50326i 0.228314 0.228314i
\(582\) 0 0
\(583\) 35.4020 + 35.4020i 1.46620 + 1.46620i
\(584\) 0 0
\(585\) 0.410514 0.608997i 0.0169727 0.0251789i
\(586\) 0 0
\(587\) 8.65348 0.357167 0.178584 0.983925i \(-0.442848\pi\)
0.178584 + 0.983925i \(0.442848\pi\)
\(588\) 0 0
\(589\) −1.09071 + 1.09071i −0.0449421 + 0.0449421i
\(590\) 0 0
\(591\) 4.49246i 0.184795i
\(592\) 0 0
\(593\) −14.6188 14.6188i −0.600323 0.600323i 0.340075 0.940398i \(-0.389548\pi\)
−0.940398 + 0.340075i \(0.889548\pi\)
\(594\) 0 0
\(595\) 16.5517 24.5543i 0.678552 1.00663i
\(596\) 0 0
\(597\) 2.17777i 0.0891302i
\(598\) 0 0
\(599\) 1.77632i 0.0725785i −0.999341 0.0362892i \(-0.988446\pi\)
0.999341 0.0362892i \(-0.0115538\pi\)
\(600\) 0 0
\(601\) 18.3608i 0.748952i 0.927237 + 0.374476i \(0.122177\pi\)
−0.927237 + 0.374476i \(0.877823\pi\)
\(602\) 0 0
\(603\) 9.81578i 0.399730i
\(604\) 0 0
\(605\) 3.05465 4.53157i 0.124189 0.184234i
\(606\) 0 0
\(607\) 10.3710 + 10.3710i 0.420946 + 0.420946i 0.885529 0.464583i \(-0.153796\pi\)
−0.464583 + 0.885529i \(0.653796\pi\)
\(608\) 0 0
\(609\) 15.7188i 0.636957i
\(610\) 0 0
\(611\) −1.81218 + 1.81218i −0.0733130 + 0.0733130i
\(612\) 0 0
\(613\) 2.01402 0.0813455 0.0406727 0.999173i \(-0.487050\pi\)
0.0406727 + 0.999173i \(0.487050\pi\)
\(614\) 0 0
\(615\) 9.87412 14.6482i 0.398163 0.590674i
\(616\) 0 0
\(617\) −17.7461 17.7461i −0.714431 0.714431i 0.253028 0.967459i \(-0.418573\pi\)
−0.967459 + 0.253028i \(0.918573\pi\)
\(618\) 0 0
\(619\) −19.7692 + 19.7692i −0.794590 + 0.794590i −0.982237 0.187647i \(-0.939914\pi\)
0.187647 + 0.982237i \(0.439914\pi\)
\(620\) 0 0
\(621\) 6.27687 + 6.27687i 0.251882 + 0.251882i
\(622\) 0 0
\(623\) 20.2089 20.2089i 0.809651 0.809651i
\(624\) 0 0
\(625\) −17.9632 + 17.3875i −0.718527 + 0.695499i
\(626\) 0 0
\(627\) 1.87224i 0.0747700i
\(628\) 0 0
\(629\) −26.5241 26.5241i −1.05759 1.05759i
\(630\) 0 0
\(631\) 4.44887 0.177107 0.0885534 0.996071i \(-0.471776\pi\)
0.0885534 + 0.996071i \(0.471776\pi\)
\(632\) 0 0
\(633\) −13.3900 + 13.3900i −0.532205 + 0.532205i
\(634\) 0 0
\(635\) −5.37453 27.6064i −0.213282 1.09553i
\(636\) 0 0
\(637\) 0.238220 0.00943861
\(638\) 0 0
\(639\) −8.07691 −0.319518
\(640\) 0 0
\(641\) 8.90582 0.351759 0.175879 0.984412i \(-0.443723\pi\)
0.175879 + 0.984412i \(0.443723\pi\)
\(642\) 0 0
\(643\) 31.8622 1.25652 0.628261 0.778003i \(-0.283767\pi\)
0.628261 + 0.778003i \(0.283767\pi\)
\(644\) 0 0
\(645\) 7.33846 10.8866i 0.288952 0.428659i
\(646\) 0 0
\(647\) −22.4710 + 22.4710i −0.883426 + 0.883426i −0.993881 0.110455i \(-0.964769\pi\)
0.110455 + 0.993881i \(0.464769\pi\)
\(648\) 0 0
\(649\) 28.0922 1.10271
\(650\) 0 0
\(651\) −5.93707 5.93707i −0.232692 0.232692i
\(652\) 0 0
\(653\) 24.4911i 0.958410i −0.877703 0.479205i \(-0.840925\pi\)
0.877703 0.479205i \(-0.159075\pi\)
\(654\) 0 0
\(655\) 15.6698 3.05065i 0.612268 0.119199i
\(656\) 0 0
\(657\) −0.167116 + 0.167116i −0.00651982 + 0.00651982i
\(658\) 0 0
\(659\) −1.67655 1.67655i −0.0653092 0.0653092i 0.673698 0.739007i \(-0.264705\pi\)
−0.739007 + 0.673698i \(0.764705\pi\)
\(660\) 0 0
\(661\) 5.00448 5.00448i 0.194652 0.194652i −0.603051 0.797703i \(-0.706048\pi\)
0.797703 + 0.603051i \(0.206048\pi\)
\(662\) 0 0
\(663\) 1.10658 + 1.10658i 0.0429758 + 0.0429758i
\(664\) 0 0
\(665\) 2.63147 + 1.77383i 0.102044 + 0.0687862i
\(666\) 0 0
\(667\) −50.2019 −1.94383
\(668\) 0 0
\(669\) 13.9939 13.9939i 0.541035 0.541035i
\(670\) 0 0
\(671\) 6.84712i 0.264330i
\(672\) 0 0
\(673\) −33.7116 33.7116i −1.29948 1.29948i −0.928731 0.370753i \(-0.879099\pi\)
−0.370753 0.928731i \(-0.620901\pi\)
\(674\) 0 0
\(675\) 1.87574 + 4.63482i 0.0721974 + 0.178394i
\(676\) 0 0
\(677\) 20.5805i 0.790972i −0.918472 0.395486i \(-0.870576\pi\)
0.918472 0.395486i \(-0.129424\pi\)
\(678\) 0 0
\(679\) 2.11099i 0.0810122i
\(680\) 0 0
\(681\) 27.3648i 1.04862i
\(682\) 0 0
\(683\) 9.74375i 0.372834i −0.982471 0.186417i \(-0.940312\pi\)
0.982471 0.186417i \(-0.0596876\pi\)
\(684\) 0 0
\(685\) −5.40456 27.7607i −0.206498 1.06068i
\(686\) 0 0
\(687\) −6.18602 6.18602i −0.236011 0.236011i
\(688\) 0 0
\(689\) 4.48486i 0.170859i
\(690\) 0 0
\(691\) −0.547587 + 0.547587i −0.0208312 + 0.0208312i −0.717446 0.696614i \(-0.754689\pi\)
0.696614 + 0.717446i \(0.254689\pi\)
\(692\) 0 0
\(693\) −10.1911 −0.387128
\(694\) 0 0
\(695\) −5.20134 + 1.01262i −0.197298 + 0.0384107i
\(696\) 0 0
\(697\) 26.6165 + 26.6165i 1.00817 + 1.00817i
\(698\) 0 0
\(699\) 16.9076 16.9076i 0.639505 0.639505i
\(700\) 0 0
\(701\) 23.4694 + 23.4694i 0.886428 + 0.886428i 0.994178 0.107750i \(-0.0343645\pi\)
−0.107750 + 0.994178i \(0.534364\pi\)
\(702\) 0 0
\(703\) 2.84257 2.84257i 0.107210 0.107210i
\(704\) 0 0
\(705\) −3.33414 17.1259i −0.125571 0.644999i
\(706\) 0 0
\(707\) 27.5506i 1.03615i
\(708\) 0 0
\(709\) −4.85224 4.85224i −0.182230 0.182230i 0.610097 0.792327i \(-0.291130\pi\)
−0.792327 + 0.610097i \(0.791130\pi\)
\(710\) 0 0
\(711\) −5.94905 −0.223107
\(712\) 0 0
\(713\) −18.9615 + 18.9615i −0.710114 + 0.710114i
\(714\) 0 0
\(715\) 2.64327 0.514602i 0.0988526 0.0192450i
\(716\) 0 0
\(717\) −1.90480 −0.0711362
\(718\) 0 0
\(719\) −4.46550 −0.166535 −0.0832676 0.996527i \(-0.526536\pi\)
−0.0832676 + 0.996527i \(0.526536\pi\)
\(720\) 0 0
\(721\) 32.0193 1.19246
\(722\) 0 0
\(723\) −23.0653 −0.857809
\(724\) 0 0
\(725\) −26.0355 11.0334i −0.966934 0.409772i
\(726\) 0 0
\(727\) −8.26309 + 8.26309i −0.306461 + 0.306461i −0.843535 0.537074i \(-0.819530\pi\)
0.537074 + 0.843535i \(0.319530\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 19.7814 + 19.7814i 0.731643 + 0.731643i
\(732\) 0 0
\(733\) 4.71219i 0.174049i −0.996206 0.0870244i \(-0.972264\pi\)
0.996206 0.0870244i \(-0.0277358\pi\)
\(734\) 0 0
\(735\) −0.906496 + 1.34478i −0.0334366 + 0.0496031i
\(736\) 0 0
\(737\) 25.4492 25.4492i 0.937434 0.937434i
\(738\) 0 0
\(739\) −0.159375 0.159375i −0.00586271 0.00586271i 0.704169 0.710032i \(-0.251320\pi\)
−0.710032 + 0.704169i \(0.751320\pi\)
\(740\) 0 0
\(741\) −0.118591 + 0.118591i −0.00435655 + 0.00435655i
\(742\) 0 0
\(743\) −16.1456 16.1456i −0.592324 0.592324i 0.345934 0.938259i \(-0.387562\pi\)
−0.938259 + 0.345934i \(0.887562\pi\)
\(744\) 0 0
\(745\) 1.00105 + 5.14195i 0.0366758 + 0.188386i
\(746\) 0 0
\(747\) −2.80013 −0.102451
\(748\) 0 0
\(749\) 25.1795 25.1795i 0.920040 0.920040i
\(750\) 0 0
\(751\) 23.4293i 0.854946i −0.904028 0.427473i \(-0.859404\pi\)
0.904028 0.427473i \(-0.140596\pi\)
\(752\) 0 0
\(753\) −17.1103 17.1103i −0.623533 0.623533i
\(754\) 0 0
\(755\) 17.4460 + 11.7601i 0.634926 + 0.427993i
\(756\) 0 0
\(757\) 21.6310i 0.786191i 0.919498 + 0.393096i \(0.128596\pi\)
−0.919498 + 0.393096i \(0.871404\pi\)
\(758\) 0 0
\(759\) 32.5479i 1.18141i
\(760\) 0 0
\(761\) 5.69977i 0.206617i −0.994649 0.103308i \(-0.967057\pi\)
0.994649 0.103308i \(-0.0329428\pi\)
\(762\) 0 0
\(763\) 18.2794i 0.661758i
\(764\) 0 0
\(765\) −10.4576 + 2.03593i −0.378096 + 0.0736092i
\(766\) 0 0
\(767\) 1.77941 + 1.77941i 0.0642507 + 0.0642507i
\(768\) 0 0
\(769\) 37.8742i 1.36578i −0.730522 0.682889i \(-0.760723\pi\)
0.730522 0.682889i \(-0.239277\pi\)
\(770\) 0 0
\(771\) 4.11987 4.11987i 0.148374 0.148374i
\(772\) 0 0
\(773\) 1.09218 0.0392830 0.0196415 0.999807i \(-0.493748\pi\)
0.0196415 + 0.999807i \(0.493748\pi\)
\(774\) 0 0
\(775\) −14.0011 + 5.66635i −0.502935 + 0.203541i
\(776\) 0 0
\(777\) 15.4729 + 15.4729i 0.555088 + 0.555088i
\(778\) 0 0
\(779\) −2.85247 + 2.85247i −0.102200 + 0.102200i
\(780\) 0 0
\(781\) −20.9409 20.9409i −0.749323 0.749323i
\(782\) 0 0
\(783\) −3.99896 + 3.99896i −0.142911 + 0.142911i
\(784\) 0 0
\(785\) 28.7922 + 19.4083i 1.02764 + 0.692713i
\(786\) 0 0
\(787\) 3.77885i 0.134701i −0.997729 0.0673507i \(-0.978545\pi\)
0.997729 0.0673507i \(-0.0214546\pi\)
\(788\) 0 0
\(789\) 17.0258 + 17.0258i 0.606134 + 0.606134i
\(790\) 0 0
\(791\) −35.0770 −1.24720
\(792\) 0 0
\(793\) 0.433709 0.433709i 0.0154015 0.0154015i
\(794\) 0 0
\(795\) −25.3177 17.0662i −0.897925 0.605276i
\(796\) 0 0
\(797\) −18.4489 −0.653492 −0.326746 0.945112i \(-0.605952\pi\)
−0.326746 + 0.945112i \(0.605952\pi\)
\(798\) 0 0
\(799\) 37.1769 1.31522
\(800\) 0 0
\(801\) −10.2825 −0.363315
\(802\) 0 0
\(803\) −0.866559 −0.0305802
\(804\) 0 0
\(805\) 45.7468 + 30.8371i 1.61236 + 1.08687i
\(806\) 0 0
\(807\) 2.02914 2.02914i 0.0714293 0.0714293i
\(808\) 0 0
\(809\) −36.4892 −1.28289 −0.641446 0.767168i \(-0.721665\pi\)
−0.641446 + 0.767168i \(0.721665\pi\)
\(810\) 0 0
\(811\) 7.01356 + 7.01356i 0.246279 + 0.246279i 0.819442 0.573162i \(-0.194284\pi\)
−0.573162 + 0.819442i \(0.694284\pi\)
\(812\) 0 0
\(813\) 17.1830i 0.602634i
\(814\) 0 0
\(815\) 8.18032 + 5.51422i 0.286544 + 0.193155i
\(816\) 0 0
\(817\) −2.11996 + 2.11996i −0.0741681 + 0.0741681i
\(818\) 0 0
\(819\) −0.645524 0.645524i −0.0225564 0.0225564i
\(820\) 0 0
\(821\) −33.0652 + 33.0652i −1.15398 + 1.15398i −0.168235 + 0.985747i \(0.553807\pi\)
−0.985747 + 0.168235i \(0.946193\pi\)
\(822\) 0 0
\(823\) −34.1975 34.1975i −1.19205 1.19205i −0.976490 0.215561i \(-0.930842\pi\)
−0.215561 0.976490i \(-0.569158\pi\)
\(824\) 0 0
\(825\) −7.15342 + 16.8798i −0.249050 + 0.587681i
\(826\) 0 0
\(827\) −2.06318 −0.0717439 −0.0358720 0.999356i \(-0.511421\pi\)
−0.0358720 + 0.999356i \(0.511421\pi\)
\(828\) 0 0
\(829\) −19.1593 + 19.1593i −0.665430 + 0.665430i −0.956655 0.291225i \(-0.905937\pi\)
0.291225 + 0.956655i \(0.405937\pi\)
\(830\) 0 0
\(831\) 6.31808i 0.219172i
\(832\) 0 0
\(833\) −2.44354 2.44354i −0.0846635 0.0846635i
\(834\) 0 0
\(835\) −5.27851 + 1.02764i −0.182670 + 0.0355630i
\(836\) 0 0
\(837\) 3.02085i 0.104416i
\(838\) 0 0
\(839\) 33.2213i 1.14693i −0.819231 0.573463i \(-0.805600\pi\)
0.819231 0.573463i \(-0.194400\pi\)
\(840\) 0 0
\(841\) 2.98333i 0.102874i
\(842\) 0 0
\(843\) 19.5262i 0.672517i
\(844\) 0 0
\(845\) −23.9039 16.1132i −0.822320 0.554312i
\(846\) 0 0
\(847\) −4.80337 4.80337i −0.165046 0.165046i
\(848\) 0 0
\(849\) 24.8436i 0.852631i
\(850\) 0 0
\(851\) 49.4166 49.4166i 1.69398 1.69398i
\(852\) 0 0
\(853\) −28.7388 −0.983998 −0.491999 0.870596i \(-0.663734\pi\)
−0.491999 + 0.870596i \(0.663734\pi\)
\(854\) 0 0
\(855\) −0.218189 1.12074i −0.00746191 0.0383284i
\(856\) 0 0
\(857\) 6.08056 + 6.08056i 0.207708 + 0.207708i 0.803293 0.595585i \(-0.203080\pi\)
−0.595585 + 0.803293i \(0.703080\pi\)
\(858\) 0 0
\(859\) 7.01497 7.01497i 0.239348 0.239348i −0.577232 0.816580i \(-0.695867\pi\)
0.816580 + 0.577232i \(0.195867\pi\)
\(860\) 0 0
\(861\) −15.5268 15.5268i −0.529153 0.529153i
\(862\) 0 0
\(863\) 18.1343 18.1343i 0.617300 0.617300i −0.327538 0.944838i \(-0.606219\pi\)
0.944838 + 0.327538i \(0.106219\pi\)
\(864\) 0 0
\(865\) −18.7490 + 27.8141i −0.637487 + 0.945709i
\(866\) 0 0
\(867\) 5.70137i 0.193629i
\(868\) 0 0
\(869\) −15.4240 15.4240i −0.523223 0.523223i
\(870\) 0 0
\(871\) 3.22400 0.109241
\(872\) 0 0
\(873\) 0.537048 0.537048i 0.0181763 0.0181763i
\(874\) 0 0
\(875\) 16.9476 + 26.0469i 0.572932 + 0.880546i
\(876\) 0 0
\(877\) −49.4950 −1.67133 −0.835665 0.549240i \(-0.814917\pi\)
−0.835665 + 0.549240i \(0.814917\pi\)
\(878\) 0 0
\(879\) 29.0203 0.978832
\(880\) 0 0
\(881\) 4.94736 0.166681 0.0833404 0.996521i \(-0.473441\pi\)
0.0833404 + 0.996521i \(0.473441\pi\)
\(882\) 0 0
\(883\) −11.9844 −0.403308 −0.201654 0.979457i \(-0.564632\pi\)
−0.201654 + 0.979457i \(0.564632\pi\)
\(884\) 0 0
\(885\) −16.8162 + 3.27384i −0.565270 + 0.110049i
\(886\) 0 0
\(887\) −11.2856 + 11.2856i −0.378932 + 0.378932i −0.870717 0.491785i \(-0.836345\pi\)
0.491785 + 0.870717i \(0.336345\pi\)
\(888\) 0 0
\(889\) −34.9591 −1.17249
\(890\) 0 0
\(891\) 2.59268 + 2.59268i 0.0868582 + 0.0868582i
\(892\) 0 0
\(893\) 3.98422i 0.133327i
\(894\) 0 0
\(895\) −4.87069 25.0184i −0.162809 0.836274i
\(896\) 0 0
\(897\) −2.06164 + 2.06164i −0.0688362 + 0.0688362i
\(898\) 0 0
\(899\) −12.0803 12.0803i −0.402899 0.402899i
\(900\) 0 0
\(901\) 46.0034 46.0034i 1.53259 1.53259i
\(902\) 0 0
\(903\) −11.5396 11.5396i −0.384012 0.384012i
\(904\) 0 0
\(905\) 38.6272 7.52009i 1.28401 0.249976i
\(906\) 0 0
\(907\) 26.9222 0.893938 0.446969 0.894549i \(-0.352503\pi\)
0.446969 + 0.894549i \(0.352503\pi\)
\(908\) 0 0
\(909\) 7.00905 7.00905i 0.232475 0.232475i
\(910\) 0 0
\(911\) 35.0373i 1.16084i 0.814319 + 0.580418i \(0.197111\pi\)
−0.814319 + 0.580418i \(0.802889\pi\)
\(912\) 0 0
\(913\) −7.25985 7.25985i −0.240266 0.240266i
\(914\) 0 0
\(915\) 0.797958 + 4.09874i 0.0263797 + 0.135500i
\(916\) 0 0
\(917\) 19.8432i 0.655282i
\(918\) 0 0
\(919\) 9.58700i 0.316246i −0.987419 0.158123i \(-0.949456\pi\)
0.987419 0.158123i \(-0.0505442\pi\)
\(920\) 0 0
\(921\) 5.46765i 0.180165i
\(922\) 0 0
\(923\) 2.65286i 0.0873201i
\(924\) 0 0
\(925\) 36.4891 14.7674i 1.19975 0.485549i
\(926\) 0 0
\(927\) −8.14591 8.14591i −0.267547 0.267547i
\(928\) 0 0
\(929\) 37.6651i 1.23575i −0.786275 0.617877i \(-0.787993\pi\)
0.786275 0.617877i \(-0.212007\pi\)
\(930\) 0 0
\(931\) 0.261872 0.261872i 0.00858251 0.00858251i
\(932\) 0 0
\(933\) 20.7682 0.679919
\(934\) 0 0
\(935\) −32.3918 21.8348i −1.05933 0.714074i
\(936\) 0 0
\(937\) 7.96119 + 7.96119i 0.260081 + 0.260081i 0.825087 0.565006i \(-0.191126\pi\)
−0.565006 + 0.825087i \(0.691126\pi\)
\(938\) 0 0
\(939\) 3.63603 3.63603i 0.118657 0.118657i
\(940\) 0 0
\(941\) −18.5116 18.5116i −0.603460 0.603460i 0.337769 0.941229i \(-0.390328\pi\)
−0.941229 + 0.337769i \(0.890328\pi\)
\(942\) 0 0
\(943\) −49.5888 + 49.5888i −1.61483 + 1.61483i
\(944\) 0 0
\(945\) 6.10048 1.18766i 0.198449 0.0386347i
\(946\) 0 0
\(947\) 28.4982i 0.926066i 0.886341 + 0.463033i \(0.153239\pi\)
−0.886341 + 0.463033i \(0.846761\pi\)
\(948\) 0 0
\(949\) −0.0548894 0.0548894i −0.00178179 0.00178179i
\(950\) 0 0
\(951\) 13.7806 0.446865
\(952\) 0 0
\(953\) 16.4326 16.4326i 0.532304 0.532304i −0.388953 0.921257i \(-0.627163\pi\)
0.921257 + 0.388953i \(0.127163\pi\)
\(954\) 0 0
\(955\) 16.3464 24.2498i 0.528957 0.784706i
\(956\) 0 0
\(957\) −20.7361 −0.670302
\(958\) 0 0
\(959\) −35.1545 −1.13520
\(960\) 0 0
\(961\) 21.8744 0.705627
\(962\) 0 0
\(963\) −12.8117 −0.412850
\(964\) 0 0
\(965\) 9.07425 + 46.6102i 0.292111 + 1.50044i
\(966\) 0 0
\(967\) −17.0971 + 17.0971i −0.549806 + 0.549806i −0.926385 0.376578i \(-0.877101\pi\)
0.376578 + 0.926385i \(0.377101\pi\)
\(968\) 0 0
\(969\) 2.43289 0.0781557
\(970\) 0 0
\(971\) 18.3662 + 18.3662i 0.589400 + 0.589400i 0.937469 0.348069i \(-0.113162\pi\)
−0.348069 + 0.937469i \(0.613162\pi\)
\(972\) 0 0
\(973\) 6.58666i 0.211159i
\(974\) 0 0
\(975\) −1.52231 + 0.616089i −0.0487529 + 0.0197306i
\(976\) 0 0
\(977\) −15.4378 + 15.4378i −0.493898 + 0.493898i −0.909532 0.415634i \(-0.863560\pi\)
0.415634 + 0.909532i \(0.363560\pi\)
\(978\) 0 0
\(979\) −26.6593 26.6593i −0.852035 0.852035i
\(980\) 0 0
\(981\) 4.65039 4.65039i 0.148476 0.148476i
\(982\) 0 0
\(983\) −7.27569 7.27569i −0.232059 0.232059i 0.581493 0.813551i \(-0.302469\pi\)
−0.813551 + 0.581493i \(0.802469\pi\)
\(984\) 0 0
\(985\) −5.61490 + 8.32969i −0.178906 + 0.265406i
\(986\) 0 0
\(987\) −21.6872 −0.690312
\(988\) 0 0
\(989\) −36.8545 + 36.8545i −1.17190 + 1.17190i
\(990\) 0 0
\(991\) 33.6571i 1.06915i −0.845120 0.534577i \(-0.820471\pi\)
0.845120 0.534577i \(-0.179529\pi\)
\(992\) 0 0
\(993\) −1.33711 1.33711i −0.0424320 0.0424320i
\(994\) 0 0
\(995\) 2.72189 4.03791i 0.0862897 0.128010i
\(996\) 0 0
\(997\) 23.5114i 0.744614i 0.928110 + 0.372307i \(0.121433\pi\)
−0.928110 + 0.372307i \(0.878567\pi\)
\(998\) 0 0
\(999\) 7.87281i 0.249085i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.y.f.943.2 20
4.3 odd 2 240.2.y.f.163.6 20
5.2 odd 4 960.2.bc.f.367.7 20
8.3 odd 2 1920.2.y.l.223.9 20
8.5 even 2 1920.2.y.k.223.9 20
12.11 even 2 720.2.z.h.163.5 20
16.3 odd 4 1920.2.bc.l.1183.4 20
16.5 even 4 240.2.bc.f.43.1 yes 20
16.11 odd 4 960.2.bc.f.463.7 20
16.13 even 4 1920.2.bc.k.1183.4 20
20.7 even 4 240.2.bc.f.67.1 yes 20
40.27 even 4 1920.2.bc.k.607.4 20
40.37 odd 4 1920.2.bc.l.607.4 20
48.5 odd 4 720.2.bd.h.523.10 20
60.47 odd 4 720.2.bd.h.307.10 20
80.27 even 4 inner 960.2.y.f.847.2 20
80.37 odd 4 240.2.y.f.187.6 yes 20
80.67 even 4 1920.2.y.k.1567.9 20
80.77 odd 4 1920.2.y.l.1567.9 20
240.197 even 4 720.2.z.h.667.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.6 20 4.3 odd 2
240.2.y.f.187.6 yes 20 80.37 odd 4
240.2.bc.f.43.1 yes 20 16.5 even 4
240.2.bc.f.67.1 yes 20 20.7 even 4
720.2.z.h.163.5 20 12.11 even 2
720.2.z.h.667.5 20 240.197 even 4
720.2.bd.h.307.10 20 60.47 odd 4
720.2.bd.h.523.10 20 48.5 odd 4
960.2.y.f.847.2 20 80.27 even 4 inner
960.2.y.f.943.2 20 1.1 even 1 trivial
960.2.bc.f.367.7 20 5.2 odd 4
960.2.bc.f.463.7 20 16.11 odd 4
1920.2.y.k.223.9 20 8.5 even 2
1920.2.y.k.1567.9 20 80.67 even 4
1920.2.y.l.223.9 20 8.3 odd 2
1920.2.y.l.1567.9 20 80.77 odd 4
1920.2.bc.k.607.4 20 40.27 even 4
1920.2.bc.k.1183.4 20 16.13 even 4
1920.2.bc.l.607.4 20 40.37 odd 4
1920.2.bc.l.1183.4 20 16.3 odd 4