Properties

Label 960.2.m
Level $960$
Weight $2$
Character orbit 960.m
Rep. character $\chi_{960}(479,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $4$
Sturm bound $384$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 120 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(384\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(7\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(960, [\chi])\).

Total New Old
Modular forms 216 48 168
Cusp forms 168 48 120
Eisenstein series 48 0 48

Trace form

\( 48 q + 48 q^{49} + 48 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(960, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
960.2.m.a 960.m 120.m $8$ $7.666$ 8.0.12960000.1 \(\Q(\sqrt{-30}) \) 960.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{3}-\beta _{1}q^{5}-3q^{9}-\beta _{6}q^{11}+\cdots\)
960.2.m.b 960.m 120.m $8$ $7.666$ \(\Q(\zeta_{24})\) \(\Q(\sqrt{-6}) \) 960.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta_1 q^{3}-\beta_{3} q^{5}+(-2\beta_{4}-\beta_{2})q^{7}+\cdots\)
960.2.m.c 960.m 120.m $16$ $7.666$ 16.0.\(\cdots\).9 None 960.2.m.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}-\beta _{11}q^{5}+\beta _{1}q^{7}+(-\beta _{9}+\cdots)q^{9}+\cdots\)
960.2.m.d 960.m 120.m $16$ $7.666$ 16.0.\(\cdots\).9 None 960.2.m.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{8}q^{3}-\beta _{10}q^{5}+\beta _{1}q^{7}+(\beta _{7}+\beta _{12}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(960, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(960, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)