Defining parameters
| Level: | \( N \) | \(=\) | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 960.m (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 120 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(7\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(960, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 216 | 48 | 168 |
| Cusp forms | 168 | 48 | 120 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(960, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 960.2.m.a | $8$ | $7.666$ | 8.0.12960000.1 | \(\Q(\sqrt{-30}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{3}-\beta _{1}q^{5}-3q^{9}-\beta _{6}q^{11}+\cdots\) |
| 960.2.m.b | $8$ | $7.666$ | \(\Q(\zeta_{24})\) | \(\Q(\sqrt{-6}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_1 q^{3}-\beta_{3} q^{5}+(-2\beta_{4}-\beta_{2})q^{7}+\cdots\) |
| 960.2.m.c | $16$ | $7.666$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{3}-\beta _{11}q^{5}+\beta _{1}q^{7}+(-\beta _{9}+\cdots)q^{9}+\cdots\) |
| 960.2.m.d | $16$ | $7.666$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{8}q^{3}-\beta _{10}q^{5}+\beta _{1}q^{7}+(\beta _{7}+\beta _{12}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(960, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(960, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)