# Properties

 Label 960.2.f.j Level $960$ Weight $2$ Character orbit 960.f Analytic conductor $7.666$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$960 = 2^{6} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 960.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.66563859404$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 480) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{3} + (i + 2) q^{5} + 2 i q^{7} - q^{9}+O(q^{10})$$ q + i * q^3 + (i + 2) * q^5 + 2*i * q^7 - q^9 $$q + i q^{3} + (i + 2) q^{5} + 2 i q^{7} - q^{9} + 6 q^{11} - 2 i q^{13} + (2 i - 1) q^{15} - 6 i q^{17} + 4 q^{19} - 2 q^{21} + 8 i q^{23} + (4 i + 3) q^{25} - i q^{27} - 8 q^{31} + 6 i q^{33} + (4 i - 2) q^{35} - 2 i q^{37} + 2 q^{39} - 6 q^{41} + 4 i q^{43} + ( - i - 2) q^{45} - 4 i q^{47} + 3 q^{49} + 6 q^{51} + 6 i q^{53} + (6 i + 12) q^{55} + 4 i q^{57} - 6 q^{59} + 6 q^{61} - 2 i q^{63} + ( - 4 i + 2) q^{65} - 8 q^{69} - 4 q^{71} - 12 i q^{73} + (3 i - 4) q^{75} + 12 i q^{77} + 8 q^{79} + q^{81} + 12 i q^{83} + ( - 12 i + 6) q^{85} - 14 q^{89} + 4 q^{91} - 8 i q^{93} + (4 i + 8) q^{95} + 8 i q^{97} - 6 q^{99} +O(q^{100})$$ q + i * q^3 + (i + 2) * q^5 + 2*i * q^7 - q^9 + 6 * q^11 - 2*i * q^13 + (2*i - 1) * q^15 - 6*i * q^17 + 4 * q^19 - 2 * q^21 + 8*i * q^23 + (4*i + 3) * q^25 - i * q^27 - 8 * q^31 + 6*i * q^33 + (4*i - 2) * q^35 - 2*i * q^37 + 2 * q^39 - 6 * q^41 + 4*i * q^43 + (-i - 2) * q^45 - 4*i * q^47 + 3 * q^49 + 6 * q^51 + 6*i * q^53 + (6*i + 12) * q^55 + 4*i * q^57 - 6 * q^59 + 6 * q^61 - 2*i * q^63 + (-4*i + 2) * q^65 - 8 * q^69 - 4 * q^71 - 12*i * q^73 + (3*i - 4) * q^75 + 12*i * q^77 + 8 * q^79 + q^81 + 12*i * q^83 + (-12*i + 6) * q^85 - 14 * q^89 + 4 * q^91 - 8*i * q^93 + (4*i + 8) * q^95 + 8*i * q^97 - 6 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 4 q^{5} - 2 q^{9}+O(q^{10})$$ 2 * q + 4 * q^5 - 2 * q^9 $$2 q + 4 q^{5} - 2 q^{9} + 12 q^{11} - 2 q^{15} + 8 q^{19} - 4 q^{21} + 6 q^{25} - 16 q^{31} - 4 q^{35} + 4 q^{39} - 12 q^{41} - 4 q^{45} + 6 q^{49} + 12 q^{51} + 24 q^{55} - 12 q^{59} + 12 q^{61} + 4 q^{65} - 16 q^{69} - 8 q^{71} - 8 q^{75} + 16 q^{79} + 2 q^{81} + 12 q^{85} - 28 q^{89} + 8 q^{91} + 16 q^{95} - 12 q^{99}+O(q^{100})$$ 2 * q + 4 * q^5 - 2 * q^9 + 12 * q^11 - 2 * q^15 + 8 * q^19 - 4 * q^21 + 6 * q^25 - 16 * q^31 - 4 * q^35 + 4 * q^39 - 12 * q^41 - 4 * q^45 + 6 * q^49 + 12 * q^51 + 24 * q^55 - 12 * q^59 + 12 * q^61 + 4 * q^65 - 16 * q^69 - 8 * q^71 - 8 * q^75 + 16 * q^79 + 2 * q^81 + 12 * q^85 - 28 * q^89 + 8 * q^91 + 16 * q^95 - 12 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/960\mathbb{Z}\right)^\times$$.

 $$n$$ $$511$$ $$577$$ $$641$$ $$901$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
769.1
 − 1.00000i 1.00000i
0 1.00000i 0 2.00000 1.00000i 0 2.00000i 0 −1.00000 0
769.2 0 1.00000i 0 2.00000 + 1.00000i 0 2.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.2.f.j 2
3.b odd 2 1 2880.2.f.a 2
4.b odd 2 1 960.2.f.g 2
5.b even 2 1 inner 960.2.f.j 2
5.c odd 4 1 4800.2.a.ba 1
5.c odd 4 1 4800.2.a.bu 1
8.b even 2 1 480.2.f.a 2
8.d odd 2 1 480.2.f.b yes 2
12.b even 2 1 2880.2.f.g 2
15.d odd 2 1 2880.2.f.a 2
16.e even 4 1 3840.2.d.k 2
16.e even 4 1 3840.2.d.u 2
16.f odd 4 1 3840.2.d.e 2
16.f odd 4 1 3840.2.d.bc 2
20.d odd 2 1 960.2.f.g 2
20.e even 4 1 4800.2.a.z 1
20.e even 4 1 4800.2.a.bt 1
24.f even 2 1 1440.2.f.e 2
24.h odd 2 1 1440.2.f.g 2
40.e odd 2 1 480.2.f.b yes 2
40.f even 2 1 480.2.f.a 2
40.i odd 4 1 2400.2.a.c 1
40.i odd 4 1 2400.2.a.be 1
40.k even 4 1 2400.2.a.d 1
40.k even 4 1 2400.2.a.bf 1
60.h even 2 1 2880.2.f.g 2
80.k odd 4 1 3840.2.d.e 2
80.k odd 4 1 3840.2.d.bc 2
80.q even 4 1 3840.2.d.k 2
80.q even 4 1 3840.2.d.u 2
120.i odd 2 1 1440.2.f.g 2
120.m even 2 1 1440.2.f.e 2
120.q odd 4 1 7200.2.a.j 1
120.q odd 4 1 7200.2.a.bl 1
120.w even 4 1 7200.2.a.p 1
120.w even 4 1 7200.2.a.br 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.2.f.a 2 8.b even 2 1
480.2.f.a 2 40.f even 2 1
480.2.f.b yes 2 8.d odd 2 1
480.2.f.b yes 2 40.e odd 2 1
960.2.f.g 2 4.b odd 2 1
960.2.f.g 2 20.d odd 2 1
960.2.f.j 2 1.a even 1 1 trivial
960.2.f.j 2 5.b even 2 1 inner
1440.2.f.e 2 24.f even 2 1
1440.2.f.e 2 120.m even 2 1
1440.2.f.g 2 24.h odd 2 1
1440.2.f.g 2 120.i odd 2 1
2400.2.a.c 1 40.i odd 4 1
2400.2.a.d 1 40.k even 4 1
2400.2.a.be 1 40.i odd 4 1
2400.2.a.bf 1 40.k even 4 1
2880.2.f.a 2 3.b odd 2 1
2880.2.f.a 2 15.d odd 2 1
2880.2.f.g 2 12.b even 2 1
2880.2.f.g 2 60.h even 2 1
3840.2.d.e 2 16.f odd 4 1
3840.2.d.e 2 80.k odd 4 1
3840.2.d.k 2 16.e even 4 1
3840.2.d.k 2 80.q even 4 1
3840.2.d.u 2 16.e even 4 1
3840.2.d.u 2 80.q even 4 1
3840.2.d.bc 2 16.f odd 4 1
3840.2.d.bc 2 80.k odd 4 1
4800.2.a.z 1 20.e even 4 1
4800.2.a.ba 1 5.c odd 4 1
4800.2.a.bt 1 20.e even 4 1
4800.2.a.bu 1 5.c odd 4 1
7200.2.a.j 1 120.q odd 4 1
7200.2.a.p 1 120.w even 4 1
7200.2.a.bl 1 120.q odd 4 1
7200.2.a.br 1 120.w even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(960, [\chi])$$:

 $$T_{7}^{2} + 4$$ T7^2 + 4 $$T_{11} - 6$$ T11 - 6 $$T_{13}^{2} + 4$$ T13^2 + 4 $$T_{19} - 4$$ T19 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2} - 4T + 5$$
$7$ $$T^{2} + 4$$
$11$ $$(T - 6)^{2}$$
$13$ $$T^{2} + 4$$
$17$ $$T^{2} + 36$$
$19$ $$(T - 4)^{2}$$
$23$ $$T^{2} + 64$$
$29$ $$T^{2}$$
$31$ $$(T + 8)^{2}$$
$37$ $$T^{2} + 4$$
$41$ $$(T + 6)^{2}$$
$43$ $$T^{2} + 16$$
$47$ $$T^{2} + 16$$
$53$ $$T^{2} + 36$$
$59$ $$(T + 6)^{2}$$
$61$ $$(T - 6)^{2}$$
$67$ $$T^{2}$$
$71$ $$(T + 4)^{2}$$
$73$ $$T^{2} + 144$$
$79$ $$(T - 8)^{2}$$
$83$ $$T^{2} + 144$$
$89$ $$(T + 14)^{2}$$
$97$ $$T^{2} + 64$$