# Properties

 Label 960.2.f.i.769.1 Level $960$ Weight $2$ Character 960.769 Analytic conductor $7.666$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$960 = 2^{6} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 960.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.66563859404$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 30) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 769.1 Root $$1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 960.769 Dual form 960.2.f.i.769.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000i q^{3} +(2.00000 - 1.00000i) q^{5} +2.00000i q^{7} -1.00000 q^{9} +O(q^{10})$$ $$q-1.00000i q^{3} +(2.00000 - 1.00000i) q^{5} +2.00000i q^{7} -1.00000 q^{9} +2.00000 q^{11} -6.00000i q^{13} +(-1.00000 - 2.00000i) q^{15} -2.00000i q^{17} +2.00000 q^{21} +4.00000i q^{23} +(3.00000 - 4.00000i) q^{25} +1.00000i q^{27} +8.00000 q^{31} -2.00000i q^{33} +(2.00000 + 4.00000i) q^{35} +2.00000i q^{37} -6.00000 q^{39} +2.00000 q^{41} -4.00000i q^{43} +(-2.00000 + 1.00000i) q^{45} -8.00000i q^{47} +3.00000 q^{49} -2.00000 q^{51} -6.00000i q^{53} +(4.00000 - 2.00000i) q^{55} -10.0000 q^{59} -2.00000 q^{61} -2.00000i q^{63} +(-6.00000 - 12.0000i) q^{65} +8.00000i q^{67} +4.00000 q^{69} -12.0000 q^{71} -4.00000i q^{73} +(-4.00000 - 3.00000i) q^{75} +4.00000i q^{77} +1.00000 q^{81} -4.00000i q^{83} +(-2.00000 - 4.00000i) q^{85} +10.0000 q^{89} +12.0000 q^{91} -8.00000i q^{93} +8.00000i q^{97} -2.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 4q^{5} - 2q^{9} + O(q^{10})$$ $$2q + 4q^{5} - 2q^{9} + 4q^{11} - 2q^{15} + 4q^{21} + 6q^{25} + 16q^{31} + 4q^{35} - 12q^{39} + 4q^{41} - 4q^{45} + 6q^{49} - 4q^{51} + 8q^{55} - 20q^{59} - 4q^{61} - 12q^{65} + 8q^{69} - 24q^{71} - 8q^{75} + 2q^{81} - 4q^{85} + 20q^{89} + 24q^{91} - 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/960\mathbb{Z}\right)^\times$$.

 $$n$$ $$511$$ $$577$$ $$641$$ $$901$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000i 0.577350i
$$4$$ 0 0
$$5$$ 2.00000 1.00000i 0.894427 0.447214i
$$6$$ 0 0
$$7$$ 2.00000i 0.755929i 0.925820 + 0.377964i $$0.123376\pi$$
−0.925820 + 0.377964i $$0.876624\pi$$
$$8$$ 0 0
$$9$$ −1.00000 −0.333333
$$10$$ 0 0
$$11$$ 2.00000 0.603023 0.301511 0.953463i $$-0.402509\pi$$
0.301511 + 0.953463i $$0.402509\pi$$
$$12$$ 0 0
$$13$$ 6.00000i 1.66410i −0.554700 0.832050i $$-0.687167\pi$$
0.554700 0.832050i $$-0.312833\pi$$
$$14$$ 0 0
$$15$$ −1.00000 2.00000i −0.258199 0.516398i
$$16$$ 0 0
$$17$$ 2.00000i 0.485071i −0.970143 0.242536i $$-0.922021\pi$$
0.970143 0.242536i $$-0.0779791\pi$$
$$18$$ 0 0
$$19$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$20$$ 0 0
$$21$$ 2.00000 0.436436
$$22$$ 0 0
$$23$$ 4.00000i 0.834058i 0.908893 + 0.417029i $$0.136929\pi$$
−0.908893 + 0.417029i $$0.863071\pi$$
$$24$$ 0 0
$$25$$ 3.00000 4.00000i 0.600000 0.800000i
$$26$$ 0 0
$$27$$ 1.00000i 0.192450i
$$28$$ 0 0
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ 8.00000 1.43684 0.718421 0.695608i $$-0.244865\pi$$
0.718421 + 0.695608i $$0.244865\pi$$
$$32$$ 0 0
$$33$$ 2.00000i 0.348155i
$$34$$ 0 0
$$35$$ 2.00000 + 4.00000i 0.338062 + 0.676123i
$$36$$ 0 0
$$37$$ 2.00000i 0.328798i 0.986394 + 0.164399i $$0.0525685\pi$$
−0.986394 + 0.164399i $$0.947432\pi$$
$$38$$ 0 0
$$39$$ −6.00000 −0.960769
$$40$$ 0 0
$$41$$ 2.00000 0.312348 0.156174 0.987730i $$-0.450084\pi$$
0.156174 + 0.987730i $$0.450084\pi$$
$$42$$ 0 0
$$43$$ 4.00000i 0.609994i −0.952353 0.304997i $$-0.901344\pi$$
0.952353 0.304997i $$-0.0986555\pi$$
$$44$$ 0 0
$$45$$ −2.00000 + 1.00000i −0.298142 + 0.149071i
$$46$$ 0 0
$$47$$ 8.00000i 1.16692i −0.812142 0.583460i $$-0.801699\pi$$
0.812142 0.583460i $$-0.198301\pi$$
$$48$$ 0 0
$$49$$ 3.00000 0.428571
$$50$$ 0 0
$$51$$ −2.00000 −0.280056
$$52$$ 0 0
$$53$$ 6.00000i 0.824163i −0.911147 0.412082i $$-0.864802\pi$$
0.911147 0.412082i $$-0.135198\pi$$
$$54$$ 0 0
$$55$$ 4.00000 2.00000i 0.539360 0.269680i
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −10.0000 −1.30189 −0.650945 0.759125i $$-0.725627\pi$$
−0.650945 + 0.759125i $$0.725627\pi$$
$$60$$ 0 0
$$61$$ −2.00000 −0.256074 −0.128037 0.991769i $$-0.540868\pi$$
−0.128037 + 0.991769i $$0.540868\pi$$
$$62$$ 0 0
$$63$$ 2.00000i 0.251976i
$$64$$ 0 0
$$65$$ −6.00000 12.0000i −0.744208 1.48842i
$$66$$ 0 0
$$67$$ 8.00000i 0.977356i 0.872464 + 0.488678i $$0.162521\pi$$
−0.872464 + 0.488678i $$0.837479\pi$$
$$68$$ 0 0
$$69$$ 4.00000 0.481543
$$70$$ 0 0
$$71$$ −12.0000 −1.42414 −0.712069 0.702109i $$-0.752242\pi$$
−0.712069 + 0.702109i $$0.752242\pi$$
$$72$$ 0 0
$$73$$ 4.00000i 0.468165i −0.972217 0.234082i $$-0.924791\pi$$
0.972217 0.234082i $$-0.0752085\pi$$
$$74$$ 0 0
$$75$$ −4.00000 3.00000i −0.461880 0.346410i
$$76$$ 0 0
$$77$$ 4.00000i 0.455842i
$$78$$ 0 0
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ 4.00000i 0.439057i −0.975606 0.219529i $$-0.929548\pi$$
0.975606 0.219529i $$-0.0704519\pi$$
$$84$$ 0 0
$$85$$ −2.00000 4.00000i −0.216930 0.433861i
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 10.0000 1.06000 0.529999 0.847998i $$-0.322192\pi$$
0.529999 + 0.847998i $$0.322192\pi$$
$$90$$ 0 0
$$91$$ 12.0000 1.25794
$$92$$ 0 0
$$93$$ 8.00000i 0.829561i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 8.00000i 0.812277i 0.913812 + 0.406138i $$0.133125\pi$$
−0.913812 + 0.406138i $$0.866875\pi$$
$$98$$ 0 0
$$99$$ −2.00000 −0.201008
$$100$$ 0 0
$$101$$ 8.00000 0.796030 0.398015 0.917379i $$-0.369699\pi$$
0.398015 + 0.917379i $$0.369699\pi$$
$$102$$ 0 0
$$103$$ 14.0000i 1.37946i 0.724066 + 0.689730i $$0.242271\pi$$
−0.724066 + 0.689730i $$0.757729\pi$$
$$104$$ 0 0
$$105$$ 4.00000 2.00000i 0.390360 0.195180i
$$106$$ 0 0
$$107$$ 12.0000i 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ 10.0000 0.957826 0.478913 0.877862i $$-0.341031\pi$$
0.478913 + 0.877862i $$0.341031\pi$$
$$110$$ 0 0
$$111$$ 2.00000 0.189832
$$112$$ 0 0
$$113$$ 6.00000i 0.564433i 0.959351 + 0.282216i $$0.0910696\pi$$
−0.959351 + 0.282216i $$0.908930\pi$$
$$114$$ 0 0
$$115$$ 4.00000 + 8.00000i 0.373002 + 0.746004i
$$116$$ 0 0
$$117$$ 6.00000i 0.554700i
$$118$$ 0 0
$$119$$ 4.00000 0.366679
$$120$$ 0 0
$$121$$ −7.00000 −0.636364
$$122$$ 0 0
$$123$$ 2.00000i 0.180334i
$$124$$ 0 0
$$125$$ 2.00000 11.0000i 0.178885 0.983870i
$$126$$ 0 0
$$127$$ 2.00000i 0.177471i 0.996055 + 0.0887357i $$0.0282826\pi$$
−0.996055 + 0.0887357i $$0.971717\pi$$
$$128$$ 0 0
$$129$$ −4.00000 −0.352180
$$130$$ 0 0
$$131$$ −18.0000 −1.57267 −0.786334 0.617802i $$-0.788023\pi$$
−0.786334 + 0.617802i $$0.788023\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 1.00000 + 2.00000i 0.0860663 + 0.172133i
$$136$$ 0 0
$$137$$ 18.0000i 1.53784i 0.639343 + 0.768922i $$0.279207\pi$$
−0.639343 + 0.768922i $$0.720793\pi$$
$$138$$ 0 0
$$139$$ 20.0000 1.69638 0.848189 0.529694i $$-0.177693\pi$$
0.848189 + 0.529694i $$0.177693\pi$$
$$140$$ 0 0
$$141$$ −8.00000 −0.673722
$$142$$ 0 0
$$143$$ 12.0000i 1.00349i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 3.00000i 0.247436i
$$148$$ 0 0
$$149$$ −20.0000 −1.63846 −0.819232 0.573462i $$-0.805600\pi$$
−0.819232 + 0.573462i $$0.805600\pi$$
$$150$$ 0 0
$$151$$ 8.00000 0.651031 0.325515 0.945537i $$-0.394462\pi$$
0.325515 + 0.945537i $$0.394462\pi$$
$$152$$ 0 0
$$153$$ 2.00000i 0.161690i
$$154$$ 0 0
$$155$$ 16.0000 8.00000i 1.28515 0.642575i
$$156$$ 0 0
$$157$$ 22.0000i 1.75579i 0.478852 + 0.877896i $$0.341053\pi$$
−0.478852 + 0.877896i $$0.658947\pi$$
$$158$$ 0 0
$$159$$ −6.00000 −0.475831
$$160$$ 0 0
$$161$$ −8.00000 −0.630488
$$162$$ 0 0
$$163$$ 16.0000i 1.25322i 0.779334 + 0.626608i $$0.215557\pi$$
−0.779334 + 0.626608i $$0.784443\pi$$
$$164$$ 0 0
$$165$$ −2.00000 4.00000i −0.155700 0.311400i
$$166$$ 0 0
$$167$$ 12.0000i 0.928588i 0.885681 + 0.464294i $$0.153692\pi$$
−0.885681 + 0.464294i $$0.846308\pi$$
$$168$$ 0 0
$$169$$ −23.0000 −1.76923
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 14.0000i 1.06440i 0.846619 + 0.532200i $$0.178635\pi$$
−0.846619 + 0.532200i $$0.821365\pi$$
$$174$$ 0 0
$$175$$ 8.00000 + 6.00000i 0.604743 + 0.453557i
$$176$$ 0 0
$$177$$ 10.0000i 0.751646i
$$178$$ 0 0
$$179$$ −10.0000 −0.747435 −0.373718 0.927543i $$-0.621917\pi$$
−0.373718 + 0.927543i $$0.621917\pi$$
$$180$$ 0 0
$$181$$ −2.00000 −0.148659 −0.0743294 0.997234i $$-0.523682\pi$$
−0.0743294 + 0.997234i $$0.523682\pi$$
$$182$$ 0 0
$$183$$ 2.00000i 0.147844i
$$184$$ 0 0
$$185$$ 2.00000 + 4.00000i 0.147043 + 0.294086i
$$186$$ 0 0
$$187$$ 4.00000i 0.292509i
$$188$$ 0 0
$$189$$ −2.00000 −0.145479
$$190$$ 0 0
$$191$$ −12.0000 −0.868290 −0.434145 0.900843i $$-0.642949\pi$$
−0.434145 + 0.900843i $$0.642949\pi$$
$$192$$ 0 0
$$193$$ 4.00000i 0.287926i −0.989583 0.143963i $$-0.954015\pi$$
0.989583 0.143963i $$-0.0459847\pi$$
$$194$$ 0 0
$$195$$ −12.0000 + 6.00000i −0.859338 + 0.429669i
$$196$$ 0 0
$$197$$ 22.0000i 1.56744i 0.621117 + 0.783718i $$0.286679\pi$$
−0.621117 + 0.783718i $$0.713321\pi$$
$$198$$ 0 0
$$199$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$200$$ 0 0
$$201$$ 8.00000 0.564276
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 4.00000 2.00000i 0.279372 0.139686i
$$206$$ 0 0
$$207$$ 4.00000i 0.278019i
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 12.0000 0.826114 0.413057 0.910705i $$-0.364461\pi$$
0.413057 + 0.910705i $$0.364461\pi$$
$$212$$ 0 0
$$213$$ 12.0000i 0.822226i
$$214$$ 0 0
$$215$$ −4.00000 8.00000i −0.272798 0.545595i
$$216$$ 0 0
$$217$$ 16.0000i 1.08615i
$$218$$ 0 0
$$219$$ −4.00000 −0.270295
$$220$$ 0 0
$$221$$ −12.0000 −0.807207
$$222$$ 0 0
$$223$$ 26.0000i 1.74109i −0.492090 0.870544i $$-0.663767\pi$$
0.492090 0.870544i $$-0.336233\pi$$
$$224$$ 0 0
$$225$$ −3.00000 + 4.00000i −0.200000 + 0.266667i
$$226$$ 0 0
$$227$$ 28.0000i 1.85843i 0.369546 + 0.929213i $$0.379513\pi$$
−0.369546 + 0.929213i $$0.620487\pi$$
$$228$$ 0 0
$$229$$ −10.0000 −0.660819 −0.330409 0.943838i $$-0.607187\pi$$
−0.330409 + 0.943838i $$0.607187\pi$$
$$230$$ 0 0
$$231$$ 4.00000 0.263181
$$232$$ 0 0
$$233$$ 14.0000i 0.917170i −0.888650 0.458585i $$-0.848356\pi$$
0.888650 0.458585i $$-0.151644\pi$$
$$234$$ 0 0
$$235$$ −8.00000 16.0000i −0.521862 1.04372i
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 20.0000 1.29369 0.646846 0.762620i $$-0.276088\pi$$
0.646846 + 0.762620i $$0.276088\pi$$
$$240$$ 0 0
$$241$$ 22.0000 1.41714 0.708572 0.705638i $$-0.249340\pi$$
0.708572 + 0.705638i $$0.249340\pi$$
$$242$$ 0 0
$$243$$ 1.00000i 0.0641500i
$$244$$ 0 0
$$245$$ 6.00000 3.00000i 0.383326 0.191663i
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ −4.00000 −0.253490
$$250$$ 0 0
$$251$$ −18.0000 −1.13615 −0.568075 0.822977i $$-0.692312\pi$$
−0.568075 + 0.822977i $$0.692312\pi$$
$$252$$ 0 0
$$253$$ 8.00000i 0.502956i
$$254$$ 0 0
$$255$$ −4.00000 + 2.00000i −0.250490 + 0.125245i
$$256$$ 0 0
$$257$$ 18.0000i 1.12281i 0.827541 + 0.561405i $$0.189739\pi$$
−0.827541 + 0.561405i $$0.810261\pi$$
$$258$$ 0 0
$$259$$ −4.00000 −0.248548
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 4.00000i 0.246651i 0.992366 + 0.123325i $$0.0393559\pi$$
−0.992366 + 0.123325i $$0.960644\pi$$
$$264$$ 0 0
$$265$$ −6.00000 12.0000i −0.368577 0.737154i
$$266$$ 0 0
$$267$$ 10.0000i 0.611990i
$$268$$ 0 0
$$269$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$270$$ 0 0
$$271$$ 8.00000 0.485965 0.242983 0.970031i $$-0.421874\pi$$
0.242983 + 0.970031i $$0.421874\pi$$
$$272$$ 0 0
$$273$$ 12.0000i 0.726273i
$$274$$ 0 0
$$275$$ 6.00000 8.00000i 0.361814 0.482418i
$$276$$ 0 0
$$277$$ 2.00000i 0.120168i 0.998193 + 0.0600842i $$0.0191369\pi$$
−0.998193 + 0.0600842i $$0.980863\pi$$
$$278$$ 0 0
$$279$$ −8.00000 −0.478947
$$280$$ 0 0
$$281$$ −18.0000 −1.07379 −0.536895 0.843649i $$-0.680403\pi$$
−0.536895 + 0.843649i $$0.680403\pi$$
$$282$$ 0 0
$$283$$ 16.0000i 0.951101i 0.879688 + 0.475551i $$0.157751\pi$$
−0.879688 + 0.475551i $$0.842249\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 4.00000i 0.236113i
$$288$$ 0 0
$$289$$ 13.0000 0.764706
$$290$$ 0 0
$$291$$ 8.00000 0.468968
$$292$$ 0 0
$$293$$ 6.00000i 0.350524i −0.984522 0.175262i $$-0.943923\pi$$
0.984522 0.175262i $$-0.0560772\pi$$
$$294$$ 0 0
$$295$$ −20.0000 + 10.0000i −1.16445 + 0.582223i
$$296$$ 0 0
$$297$$ 2.00000i 0.116052i
$$298$$ 0 0
$$299$$ 24.0000 1.38796
$$300$$ 0 0
$$301$$ 8.00000 0.461112
$$302$$ 0 0
$$303$$ 8.00000i 0.459588i
$$304$$ 0 0
$$305$$ −4.00000 + 2.00000i −0.229039 + 0.114520i
$$306$$ 0 0
$$307$$ 12.0000i 0.684876i −0.939540 0.342438i $$-0.888747\pi$$
0.939540 0.342438i $$-0.111253\pi$$
$$308$$ 0 0
$$309$$ 14.0000 0.796432
$$310$$ 0 0
$$311$$ −12.0000 −0.680458 −0.340229 0.940343i $$-0.610505\pi$$
−0.340229 + 0.940343i $$0.610505\pi$$
$$312$$ 0 0
$$313$$ 4.00000i 0.226093i −0.993590 0.113047i $$-0.963939\pi$$
0.993590 0.113047i $$-0.0360610\pi$$
$$314$$ 0 0
$$315$$ −2.00000 4.00000i −0.112687 0.225374i
$$316$$ 0 0
$$317$$ 2.00000i 0.112331i 0.998421 + 0.0561656i $$0.0178875\pi$$
−0.998421 + 0.0561656i $$0.982113\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ −12.0000 −0.669775
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ −24.0000 18.0000i −1.33128 0.998460i
$$326$$ 0 0
$$327$$ 10.0000i 0.553001i
$$328$$ 0 0
$$329$$ 16.0000 0.882109
$$330$$ 0 0
$$331$$ −8.00000 −0.439720 −0.219860 0.975531i $$-0.570560\pi$$
−0.219860 + 0.975531i $$0.570560\pi$$
$$332$$ 0 0
$$333$$ 2.00000i 0.109599i
$$334$$ 0 0
$$335$$ 8.00000 + 16.0000i 0.437087 + 0.874173i
$$336$$ 0 0
$$337$$ 28.0000i 1.52526i 0.646837 + 0.762629i $$0.276092\pi$$
−0.646837 + 0.762629i $$0.723908\pi$$
$$338$$ 0 0
$$339$$ 6.00000 0.325875
$$340$$ 0 0
$$341$$ 16.0000 0.866449
$$342$$ 0 0
$$343$$ 20.0000i 1.07990i
$$344$$ 0 0
$$345$$ 8.00000 4.00000i 0.430706 0.215353i
$$346$$ 0 0
$$347$$ 12.0000i 0.644194i −0.946707 0.322097i $$-0.895612\pi$$
0.946707 0.322097i $$-0.104388\pi$$
$$348$$ 0 0
$$349$$ 10.0000 0.535288 0.267644 0.963518i $$-0.413755\pi$$
0.267644 + 0.963518i $$0.413755\pi$$
$$350$$ 0 0
$$351$$ 6.00000 0.320256
$$352$$ 0 0
$$353$$ 14.0000i 0.745145i −0.928003 0.372572i $$-0.878476\pi$$
0.928003 0.372572i $$-0.121524\pi$$
$$354$$ 0 0
$$355$$ −24.0000 + 12.0000i −1.27379 + 0.636894i
$$356$$ 0 0
$$357$$ 4.00000i 0.211702i
$$358$$ 0 0
$$359$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$360$$ 0 0
$$361$$ −19.0000 −1.00000
$$362$$ 0 0
$$363$$ 7.00000i 0.367405i
$$364$$ 0 0
$$365$$ −4.00000 8.00000i −0.209370 0.418739i
$$366$$ 0 0
$$367$$ 2.00000i 0.104399i 0.998637 + 0.0521996i $$0.0166232\pi$$
−0.998637 + 0.0521996i $$0.983377\pi$$
$$368$$ 0 0
$$369$$ −2.00000 −0.104116
$$370$$ 0 0
$$371$$ 12.0000 0.623009
$$372$$ 0 0
$$373$$ 6.00000i 0.310668i −0.987862 0.155334i $$-0.950355\pi$$
0.987862 0.155334i $$-0.0496454\pi$$
$$374$$ 0 0
$$375$$ −11.0000 2.00000i −0.568038 0.103280i
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −20.0000 −1.02733 −0.513665 0.857991i $$-0.671713\pi$$
−0.513665 + 0.857991i $$0.671713\pi$$
$$380$$ 0 0
$$381$$ 2.00000 0.102463
$$382$$ 0 0
$$383$$ 16.0000i 0.817562i −0.912633 0.408781i $$-0.865954\pi$$
0.912633 0.408781i $$-0.134046\pi$$
$$384$$ 0 0
$$385$$ 4.00000 + 8.00000i 0.203859 + 0.407718i
$$386$$ 0 0
$$387$$ 4.00000i 0.203331i
$$388$$ 0 0
$$389$$ 20.0000 1.01404 0.507020 0.861934i $$-0.330747\pi$$
0.507020 + 0.861934i $$0.330747\pi$$
$$390$$ 0 0
$$391$$ 8.00000 0.404577
$$392$$ 0 0
$$393$$ 18.0000i 0.907980i
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 2.00000i 0.100377i 0.998740 + 0.0501886i $$0.0159822\pi$$
−0.998740 + 0.0501886i $$0.984018\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 22.0000 1.09863 0.549314 0.835616i $$-0.314889\pi$$
0.549314 + 0.835616i $$0.314889\pi$$
$$402$$ 0 0
$$403$$ 48.0000i 2.39105i
$$404$$ 0 0
$$405$$ 2.00000 1.00000i 0.0993808 0.0496904i
$$406$$ 0 0
$$407$$ 4.00000i 0.198273i
$$408$$ 0 0
$$409$$ 10.0000 0.494468 0.247234 0.968956i $$-0.420478\pi$$
0.247234 + 0.968956i $$0.420478\pi$$
$$410$$ 0 0
$$411$$ 18.0000 0.887875
$$412$$ 0 0
$$413$$ 20.0000i 0.984136i
$$414$$ 0 0
$$415$$ −4.00000 8.00000i −0.196352 0.392705i
$$416$$ 0 0
$$417$$ 20.0000i 0.979404i
$$418$$ 0 0
$$419$$ 10.0000 0.488532 0.244266 0.969708i $$-0.421453\pi$$
0.244266 + 0.969708i $$0.421453\pi$$
$$420$$ 0 0
$$421$$ −22.0000 −1.07221 −0.536107 0.844150i $$-0.680106\pi$$
−0.536107 + 0.844150i $$0.680106\pi$$
$$422$$ 0 0
$$423$$ 8.00000i 0.388973i
$$424$$ 0 0
$$425$$ −8.00000 6.00000i −0.388057 0.291043i
$$426$$ 0 0
$$427$$ 4.00000i 0.193574i
$$428$$ 0 0
$$429$$ −12.0000 −0.579365
$$430$$ 0 0
$$431$$ −32.0000 −1.54139 −0.770693 0.637207i $$-0.780090\pi$$
−0.770693 + 0.637207i $$0.780090\pi$$
$$432$$ 0 0
$$433$$ 4.00000i 0.192228i −0.995370 0.0961139i $$-0.969359\pi$$
0.995370 0.0961139i $$-0.0306413\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ −3.00000 −0.142857
$$442$$ 0 0
$$443$$ 36.0000i 1.71041i 0.518289 + 0.855206i $$0.326569\pi$$
−0.518289 + 0.855206i $$0.673431\pi$$
$$444$$ 0 0
$$445$$ 20.0000 10.0000i 0.948091 0.474045i
$$446$$ 0 0
$$447$$ 20.0000i 0.945968i
$$448$$ 0 0
$$449$$ −30.0000 −1.41579 −0.707894 0.706319i $$-0.750354\pi$$
−0.707894 + 0.706319i $$0.750354\pi$$
$$450$$ 0 0
$$451$$ 4.00000 0.188353
$$452$$ 0 0
$$453$$ 8.00000i 0.375873i
$$454$$ 0 0
$$455$$ 24.0000 12.0000i 1.12514 0.562569i
$$456$$ 0 0
$$457$$ 32.0000i 1.49690i −0.663193 0.748448i $$-0.730799\pi$$
0.663193 0.748448i $$-0.269201\pi$$
$$458$$ 0 0
$$459$$ 2.00000 0.0933520
$$460$$ 0 0
$$461$$ −12.0000 −0.558896 −0.279448 0.960161i $$-0.590151\pi$$
−0.279448 + 0.960161i $$0.590151\pi$$
$$462$$ 0 0
$$463$$ 6.00000i 0.278844i −0.990233 0.139422i $$-0.955476\pi$$
0.990233 0.139422i $$-0.0445244\pi$$
$$464$$ 0 0
$$465$$ −8.00000 16.0000i −0.370991 0.741982i
$$466$$ 0 0
$$467$$ 12.0000i 0.555294i −0.960683 0.277647i $$-0.910445\pi$$
0.960683 0.277647i $$-0.0895545\pi$$
$$468$$ 0 0
$$469$$ −16.0000 −0.738811
$$470$$ 0 0
$$471$$ 22.0000 1.01371
$$472$$ 0 0
$$473$$ 8.00000i 0.367840i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 6.00000i 0.274721i
$$478$$ 0 0
$$479$$ 20.0000 0.913823 0.456912 0.889512i $$-0.348956\pi$$
0.456912 + 0.889512i $$0.348956\pi$$
$$480$$ 0 0
$$481$$ 12.0000 0.547153
$$482$$ 0 0
$$483$$ 8.00000i 0.364013i
$$484$$ 0 0
$$485$$ 8.00000 + 16.0000i 0.363261 + 0.726523i
$$486$$ 0 0
$$487$$ 18.0000i 0.815658i −0.913058 0.407829i $$-0.866286\pi$$
0.913058 0.407829i $$-0.133714\pi$$
$$488$$ 0 0
$$489$$ 16.0000 0.723545
$$490$$ 0 0
$$491$$ −18.0000 −0.812329 −0.406164 0.913800i $$-0.633134\pi$$
−0.406164 + 0.913800i $$0.633134\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ −4.00000 + 2.00000i −0.179787 + 0.0898933i
$$496$$ 0 0
$$497$$ 24.0000i 1.07655i
$$498$$ 0 0
$$499$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$500$$ 0 0
$$501$$ 12.0000 0.536120
$$502$$ 0 0
$$503$$ 24.0000i 1.07011i 0.844818 + 0.535054i $$0.179709\pi$$
−0.844818 + 0.535054i $$0.820291\pi$$
$$504$$ 0 0
$$505$$ 16.0000 8.00000i 0.711991 0.355995i
$$506$$ 0 0
$$507$$ 23.0000i 1.02147i
$$508$$ 0 0
$$509$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$510$$ 0 0
$$511$$ 8.00000 0.353899
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 14.0000 + 28.0000i 0.616914 + 1.23383i
$$516$$ 0 0
$$517$$ 16.0000i 0.703679i
$$518$$ 0 0
$$519$$ 14.0000 0.614532
$$520$$ 0 0
$$521$$ 22.0000 0.963837 0.481919 0.876216i $$-0.339940\pi$$
0.481919 + 0.876216i $$0.339940\pi$$
$$522$$ 0 0
$$523$$ 16.0000i 0.699631i 0.936819 + 0.349816i $$0.113756\pi$$
−0.936819 + 0.349816i $$0.886244\pi$$
$$524$$ 0 0
$$525$$ 6.00000 8.00000i 0.261861 0.349149i
$$526$$ 0 0
$$527$$ 16.0000i 0.696971i
$$528$$ 0 0
$$529$$ 7.00000 0.304348
$$530$$ 0 0
$$531$$ 10.0000 0.433963
$$532$$ 0 0
$$533$$ 12.0000i 0.519778i
$$534$$ 0 0
$$535$$ −12.0000 24.0000i −0.518805 1.03761i
$$536$$ 0 0
$$537$$ 10.0000i 0.431532i
$$538$$ 0 0
$$539$$ 6.00000 0.258438
$$540$$ 0 0
$$541$$ 38.0000 1.63375 0.816874 0.576816i $$-0.195705\pi$$
0.816874 + 0.576816i $$0.195705\pi$$
$$542$$ 0 0
$$543$$ 2.00000i 0.0858282i
$$544$$ 0 0
$$545$$ 20.0000 10.0000i 0.856706 0.428353i
$$546$$ 0 0
$$547$$ 28.0000i 1.19719i 0.801050 + 0.598597i $$0.204275\pi$$
−0.801050 + 0.598597i $$0.795725\pi$$
$$548$$ 0 0
$$549$$ 2.00000 0.0853579
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 4.00000 2.00000i 0.169791 0.0848953i
$$556$$ 0 0
$$557$$ 18.0000i 0.762684i −0.924434 0.381342i $$-0.875462\pi$$
0.924434 0.381342i $$-0.124538\pi$$
$$558$$ 0 0
$$559$$ −24.0000 −1.01509
$$560$$ 0 0
$$561$$ −4.00000 −0.168880
$$562$$ 0 0
$$563$$ 44.0000i 1.85438i −0.374593 0.927189i $$-0.622217\pi$$
0.374593 0.927189i $$-0.377783\pi$$
$$564$$ 0 0
$$565$$ 6.00000 + 12.0000i 0.252422 + 0.504844i
$$566$$ 0 0
$$567$$ 2.00000i 0.0839921i
$$568$$ 0 0
$$569$$ 10.0000 0.419222 0.209611 0.977785i $$-0.432780\pi$$
0.209611 + 0.977785i $$0.432780\pi$$
$$570$$ 0 0
$$571$$ −8.00000 −0.334790 −0.167395 0.985890i $$-0.553535\pi$$
−0.167395 + 0.985890i $$0.553535\pi$$
$$572$$ 0 0
$$573$$ 12.0000i 0.501307i
$$574$$ 0 0
$$575$$ 16.0000 + 12.0000i 0.667246 + 0.500435i
$$576$$ 0 0
$$577$$ 32.0000i 1.33218i −0.745873 0.666089i $$-0.767967\pi$$
0.745873 0.666089i $$-0.232033\pi$$
$$578$$ 0 0
$$579$$ −4.00000 −0.166234
$$580$$ 0 0
$$581$$ 8.00000 0.331896
$$582$$ 0 0
$$583$$ 12.0000i 0.496989i
$$584$$ 0 0
$$585$$ 6.00000 + 12.0000i 0.248069 + 0.496139i
$$586$$ 0 0
$$587$$ 12.0000i 0.495293i −0.968850 0.247647i $$-0.920343\pi$$
0.968850 0.247647i $$-0.0796572\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 22.0000 0.904959
$$592$$ 0 0
$$593$$ 6.00000i 0.246390i 0.992382 + 0.123195i $$0.0393141\pi$$
−0.992382 + 0.123195i $$0.960686\pi$$
$$594$$ 0 0
$$595$$ 8.00000 4.00000i 0.327968 0.163984i
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ 2.00000 0.0815817 0.0407909 0.999168i $$-0.487012\pi$$
0.0407909 + 0.999168i $$0.487012\pi$$
$$602$$ 0 0
$$603$$ 8.00000i 0.325785i
$$604$$ 0 0
$$605$$ −14.0000 + 7.00000i −0.569181 + 0.284590i
$$606$$ 0 0
$$607$$ 22.0000i 0.892952i 0.894795 + 0.446476i $$0.147321\pi$$
−0.894795 + 0.446476i $$0.852679\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −48.0000 −1.94187
$$612$$ 0 0
$$613$$ 26.0000i 1.05013i −0.851062 0.525065i $$-0.824041\pi$$
0.851062 0.525065i $$-0.175959\pi$$
$$614$$ 0 0
$$615$$ −2.00000 4.00000i −0.0806478 0.161296i
$$616$$ 0 0
$$617$$ 2.00000i 0.0805170i −0.999189 0.0402585i $$-0.987182\pi$$
0.999189 0.0402585i $$-0.0128181\pi$$
$$618$$ 0 0
$$619$$ −20.0000 −0.803868 −0.401934 0.915669i $$-0.631662\pi$$
−0.401934 + 0.915669i $$0.631662\pi$$
$$620$$ 0 0
$$621$$ −4.00000 −0.160514
$$622$$ 0 0
$$623$$ 20.0000i 0.801283i
$$624$$ 0 0
$$625$$ −7.00000 24.0000i −0.280000 0.960000i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 4.00000 0.159490
$$630$$ 0 0
$$631$$ −32.0000 −1.27390 −0.636950 0.770905i $$-0.719804\pi$$
−0.636950 + 0.770905i $$0.719804\pi$$
$$632$$ 0 0
$$633$$ 12.0000i 0.476957i
$$634$$ 0 0
$$635$$ 2.00000 + 4.00000i 0.0793676 + 0.158735i
$$636$$ 0 0
$$637$$ 18.0000i 0.713186i
$$638$$ 0 0
$$639$$ 12.0000 0.474713
$$640$$ 0 0
$$641$$ 2.00000 0.0789953 0.0394976 0.999220i $$-0.487424\pi$$
0.0394976 + 0.999220i $$0.487424\pi$$
$$642$$ 0 0
$$643$$ 24.0000i 0.946468i −0.880937 0.473234i $$-0.843087\pi$$
0.880937 0.473234i $$-0.156913\pi$$
$$644$$ 0 0
$$645$$ −8.00000 + 4.00000i −0.315000 + 0.157500i
$$646$$ 0 0
$$647$$ 48.0000i 1.88707i −0.331266 0.943537i $$-0.607476\pi$$
0.331266 0.943537i $$-0.392524\pi$$
$$648$$ 0 0
$$649$$ −20.0000 −0.785069
$$650$$ 0 0
$$651$$ 16.0000 0.627089
$$652$$ 0 0
$$653$$ 26.0000i 1.01746i −0.860927 0.508729i $$-0.830115\pi$$
0.860927 0.508729i $$-0.169885\pi$$
$$654$$ 0 0
$$655$$ −36.0000 + 18.0000i −1.40664 + 0.703318i
$$656$$ 0 0
$$657$$ 4.00000i 0.156055i
$$658$$ 0 0
$$659$$ 50.0000 1.94772 0.973862 0.227142i $$-0.0729380\pi$$
0.973862 + 0.227142i $$0.0729380\pi$$
$$660$$ 0 0
$$661$$ −2.00000 −0.0777910 −0.0388955 0.999243i $$-0.512384\pi$$
−0.0388955 + 0.999243i $$0.512384\pi$$
$$662$$ 0 0
$$663$$ 12.0000i 0.466041i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ −26.0000 −1.00522
$$670$$ 0 0
$$671$$ −4.00000 −0.154418
$$672$$ 0 0
$$673$$ 36.0000i 1.38770i 0.720121 + 0.693849i $$0.244086\pi$$
−0.720121 + 0.693849i $$0.755914\pi$$
$$674$$ 0 0
$$675$$ 4.00000 + 3.00000i 0.153960 + 0.115470i
$$676$$ 0 0
$$677$$ 2.00000i 0.0768662i 0.999261 + 0.0384331i $$0.0122367\pi$$
−0.999261 + 0.0384331i $$0.987763\pi$$
$$678$$ 0 0
$$679$$ −16.0000 −0.614024
$$680$$ 0 0
$$681$$ 28.0000 1.07296
$$682$$ 0 0
$$683$$ 4.00000i 0.153056i −0.997067 0.0765279i $$-0.975617\pi$$
0.997067 0.0765279i $$-0.0243834\pi$$
$$684$$ 0 0
$$685$$ 18.0000 + 36.0000i 0.687745 + 1.37549i
$$686$$ 0 0
$$687$$ 10.0000i 0.381524i
$$688$$ 0 0
$$689$$ −36.0000 −1.37149
$$690$$ 0 0
$$691$$ −8.00000 −0.304334 −0.152167 0.988355i $$-0.548625\pi$$
−0.152167 + 0.988355i $$0.548625\pi$$
$$692$$ 0 0
$$693$$ 4.00000i 0.151947i
$$694$$ 0 0
$$695$$ 40.0000 20.0000i 1.51729 0.758643i
$$696$$ 0 0
$$697$$ 4.00000i 0.151511i
$$698$$ 0 0
$$699$$ −14.0000 −0.529529
$$700$$ 0 0
$$701$$ −32.0000 −1.20862 −0.604312 0.796748i $$-0.706552\pi$$
−0.604312 + 0.796748i $$0.706552\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ −16.0000 + 8.00000i −0.602595 + 0.301297i
$$706$$ 0 0
$$707$$ 16.0000i 0.601742i
$$708$$ 0 0
$$709$$ 30.0000 1.12667 0.563337 0.826227i $$-0.309517\pi$$
0.563337 + 0.826227i $$0.309517\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 32.0000i 1.19841i
$$714$$ 0 0
$$715$$ −12.0000 24.0000i −0.448775 0.897549i
$$716$$ 0 0
$$717$$ 20.0000i 0.746914i
$$718$$ 0 0
$$719$$ −40.0000 −1.49175 −0.745874 0.666087i $$-0.767968\pi$$
−0.745874 + 0.666087i $$0.767968\pi$$
$$720$$ 0 0
$$721$$ −28.0000 −1.04277
$$722$$ 0 0
$$723$$ 22.0000i 0.818189i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 18.0000i 0.667583i −0.942647 0.333792i $$-0.891672\pi$$
0.942647 0.333792i $$-0.108328\pi$$
$$728$$ 0 0
$$729$$ −1.00000 −0.0370370
$$730$$ 0 0
$$731$$ −8.00000 −0.295891
$$732$$ 0 0
$$733$$ 14.0000i 0.517102i 0.965998 + 0.258551i $$0.0832450\pi$$
−0.965998 + 0.258551i $$0.916755\pi$$
$$734$$ 0 0
$$735$$ −3.00000 6.00000i −0.110657 0.221313i
$$736$$ 0 0
$$737$$ 16.0000i 0.589368i
$$738$$ 0 0
$$739$$ −40.0000 −1.47142 −0.735712 0.677295i $$-0.763152\pi$$
−0.735712 + 0.677295i $$0.763152\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 24.0000i 0.880475i 0.897881 + 0.440237i $$0.145106\pi$$
−0.897881 + 0.440237i $$0.854894\pi$$
$$744$$ 0 0
$$745$$ −40.0000 + 20.0000i −1.46549 + 0.732743i
$$746$$ 0 0
$$747$$ 4.00000i 0.146352i
$$748$$ 0 0
$$749$$ 24.0000 0.876941
$$750$$ 0 0
$$751$$ −32.0000 −1.16770 −0.583848 0.811863i $$-0.698454\pi$$
−0.583848 + 0.811863i $$0.698454\pi$$
$$752$$ 0 0
$$753$$ 18.0000i 0.655956i
$$754$$ 0 0
$$755$$ 16.0000 8.00000i 0.582300 0.291150i
$$756$$ 0 0
$$757$$ 2.00000i 0.0726912i 0.999339 + 0.0363456i $$0.0115717\pi$$
−0.999339 + 0.0363456i $$0.988428\pi$$
$$758$$ 0 0
$$759$$ 8.00000 0.290382
$$760$$ 0 0
$$761$$ −18.0000 −0.652499 −0.326250 0.945284i $$-0.605785\pi$$
−0.326250 + 0.945284i $$0.605785\pi$$
$$762$$ 0 0
$$763$$ 20.0000i 0.724049i
$$764$$ 0 0
$$765$$ 2.00000 + 4.00000i 0.0723102 + 0.144620i
$$766$$ 0 0
$$767$$ 60.0000i 2.16647i
$$768$$ 0 0
$$769$$ 30.0000 1.08183 0.540914 0.841078i $$-0.318079\pi$$
0.540914 + 0.841078i $$0.318079\pi$$
$$770$$ 0 0
$$771$$ 18.0000 0.648254
$$772$$ 0 0
$$773$$ 54.0000i 1.94225i 0.238581 + 0.971123i $$0.423318\pi$$
−0.238581 + 0.971123i $$0.576682\pi$$
$$774$$ 0 0
$$775$$ 24.0000 32.0000i 0.862105 1.14947i
$$776$$ 0 0
$$777$$ 4.00000i 0.143499i
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ −24.0000 −0.858788
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 22.0000 + 44.0000i 0.785214 + 1.57043i
$$786$$ 0 0
$$787$$ 32.0000i 1.14068i −0.821410 0.570338i $$-0.806812\pi$$
0.821410 0.570338i $$-0.193188\pi$$
$$788$$ 0 0
$$789$$ 4.00000 0.142404
$$790$$ 0 0
$$791$$ −12.0000 −0.426671
$$792$$ 0 0
$$793$$ 12.0000i 0.426132i
$$794$$ 0 0
$$795$$ −12.0000 + 6.00000i −0.425596 + 0.212798i
$$796$$ 0 0
$$797$$ 2.00000i 0.0708436i 0.999372 + 0.0354218i $$0.0112775\pi$$
−0.999372 + 0.0354218i $$0.988723\pi$$
$$798$$ 0 0
$$799$$ −16.0000 −0.566039
$$800$$ 0 0
$$801$$ −10.0000 −0.353333
$$802$$ 0 0
$$803$$ 8.00000i 0.282314i
$$804$$ 0