# Properties

 Label 960.2.f.d Level $960$ Weight $2$ Character orbit 960.f Analytic conductor $7.666$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$960 = 2^{6} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 960.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.66563859404$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 480) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -i q^{3} + ( -1 - 2 i ) q^{5} + 4 i q^{7} - q^{9} +O(q^{10})$$ $$q -i q^{3} + ( -1 - 2 i ) q^{5} + 4 i q^{7} - q^{9} + 4 i q^{13} + ( -2 + i ) q^{15} + 8 q^{19} + 4 q^{21} + 4 i q^{23} + ( -3 + 4 i ) q^{25} + i q^{27} -6 q^{29} + 8 q^{31} + ( 8 - 4 i ) q^{35} + 4 i q^{37} + 4 q^{39} + 6 q^{41} -4 i q^{43} + ( 1 + 2 i ) q^{45} + 4 i q^{47} -9 q^{49} -12 i q^{53} -8 i q^{57} + 6 q^{61} -4 i q^{63} + ( 8 - 4 i ) q^{65} + 12 i q^{67} + 4 q^{69} + 16 q^{71} + ( 4 + 3 i ) q^{75} -8 q^{79} + q^{81} + 12 i q^{83} + 6 i q^{87} + 10 q^{89} -16 q^{91} -8 i q^{93} + ( -8 - 16 i ) q^{95} + 8 i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{5} - 2 q^{9} + O(q^{10})$$ $$2 q - 2 q^{5} - 2 q^{9} - 4 q^{15} + 16 q^{19} + 8 q^{21} - 6 q^{25} - 12 q^{29} + 16 q^{31} + 16 q^{35} + 8 q^{39} + 12 q^{41} + 2 q^{45} - 18 q^{49} + 12 q^{61} + 16 q^{65} + 8 q^{69} + 32 q^{71} + 8 q^{75} - 16 q^{79} + 2 q^{81} + 20 q^{89} - 32 q^{91} - 16 q^{95} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/960\mathbb{Z}\right)^\times$$.

 $$n$$ $$511$$ $$577$$ $$641$$ $$901$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
769.1
 1.00000i − 1.00000i
0 1.00000i 0 −1.00000 2.00000i 0 4.00000i 0 −1.00000 0
769.2 0 1.00000i 0 −1.00000 + 2.00000i 0 4.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.2.f.d 2
3.b odd 2 1 2880.2.f.o 2
4.b odd 2 1 960.2.f.e 2
5.b even 2 1 inner 960.2.f.d 2
5.c odd 4 1 4800.2.a.e 1
5.c odd 4 1 4800.2.a.cp 1
8.b even 2 1 480.2.f.c 2
8.d odd 2 1 480.2.f.d yes 2
12.b even 2 1 2880.2.f.m 2
15.d odd 2 1 2880.2.f.o 2
16.e even 4 1 3840.2.d.p 2
16.e even 4 1 3840.2.d.q 2
16.f odd 4 1 3840.2.d.a 2
16.f odd 4 1 3840.2.d.bf 2
20.d odd 2 1 960.2.f.e 2
20.e even 4 1 4800.2.a.c 1
20.e even 4 1 4800.2.a.cr 1
24.f even 2 1 1440.2.f.d 2
24.h odd 2 1 1440.2.f.b 2
40.e odd 2 1 480.2.f.d yes 2
40.f even 2 1 480.2.f.c 2
40.i odd 4 1 2400.2.a.p 1
40.i odd 4 1 2400.2.a.s 1
40.k even 4 1 2400.2.a.o 1
40.k even 4 1 2400.2.a.t 1
60.h even 2 1 2880.2.f.m 2
80.k odd 4 1 3840.2.d.a 2
80.k odd 4 1 3840.2.d.bf 2
80.q even 4 1 3840.2.d.p 2
80.q even 4 1 3840.2.d.q 2
120.i odd 2 1 1440.2.f.b 2
120.m even 2 1 1440.2.f.d 2
120.q odd 4 1 7200.2.a.c 1
120.q odd 4 1 7200.2.a.by 1
120.w even 4 1 7200.2.a.a 1
120.w even 4 1 7200.2.a.ca 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.2.f.c 2 8.b even 2 1
480.2.f.c 2 40.f even 2 1
480.2.f.d yes 2 8.d odd 2 1
480.2.f.d yes 2 40.e odd 2 1
960.2.f.d 2 1.a even 1 1 trivial
960.2.f.d 2 5.b even 2 1 inner
960.2.f.e 2 4.b odd 2 1
960.2.f.e 2 20.d odd 2 1
1440.2.f.b 2 24.h odd 2 1
1440.2.f.b 2 120.i odd 2 1
1440.2.f.d 2 24.f even 2 1
1440.2.f.d 2 120.m even 2 1
2400.2.a.o 1 40.k even 4 1
2400.2.a.p 1 40.i odd 4 1
2400.2.a.s 1 40.i odd 4 1
2400.2.a.t 1 40.k even 4 1
2880.2.f.m 2 12.b even 2 1
2880.2.f.m 2 60.h even 2 1
2880.2.f.o 2 3.b odd 2 1
2880.2.f.o 2 15.d odd 2 1
3840.2.d.a 2 16.f odd 4 1
3840.2.d.a 2 80.k odd 4 1
3840.2.d.p 2 16.e even 4 1
3840.2.d.p 2 80.q even 4 1
3840.2.d.q 2 16.e even 4 1
3840.2.d.q 2 80.q even 4 1
3840.2.d.bf 2 16.f odd 4 1
3840.2.d.bf 2 80.k odd 4 1
4800.2.a.c 1 20.e even 4 1
4800.2.a.e 1 5.c odd 4 1
4800.2.a.cp 1 5.c odd 4 1
4800.2.a.cr 1 20.e even 4 1
7200.2.a.a 1 120.w even 4 1
7200.2.a.c 1 120.q odd 4 1
7200.2.a.by 1 120.q odd 4 1
7200.2.a.ca 1 120.w even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(960, [\chi])$$:

 $$T_{7}^{2} + 16$$ $$T_{11}$$ $$T_{13}^{2} + 16$$ $$T_{19} - 8$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$5 + 2 T + T^{2}$$
$7$ $$16 + T^{2}$$
$11$ $$T^{2}$$
$13$ $$16 + T^{2}$$
$17$ $$T^{2}$$
$19$ $$( -8 + T )^{2}$$
$23$ $$16 + T^{2}$$
$29$ $$( 6 + T )^{2}$$
$31$ $$( -8 + T )^{2}$$
$37$ $$16 + T^{2}$$
$41$ $$( -6 + T )^{2}$$
$43$ $$16 + T^{2}$$
$47$ $$16 + T^{2}$$
$53$ $$144 + T^{2}$$
$59$ $$T^{2}$$
$61$ $$( -6 + T )^{2}$$
$67$ $$144 + T^{2}$$
$71$ $$( -16 + T )^{2}$$
$73$ $$T^{2}$$
$79$ $$( 8 + T )^{2}$$
$83$ $$144 + T^{2}$$
$89$ $$( -10 + T )^{2}$$
$97$ $$64 + T^{2}$$