Properties

Label 960.2.f.a
Level $960$
Weight $2$
Character orbit 960.f
Analytic conductor $7.666$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -i q^{3} + ( -2 + i ) q^{5} + 2 i q^{7} - q^{9} +O(q^{10})\) \( q -i q^{3} + ( -2 + i ) q^{5} + 2 i q^{7} - q^{9} -2 q^{11} -2 i q^{13} + ( 1 + 2 i ) q^{15} -6 i q^{17} + 8 q^{19} + 2 q^{21} -4 i q^{23} + ( 3 - 4 i ) q^{25} + i q^{27} + 8 q^{29} + 2 i q^{33} + ( -2 - 4 i ) q^{35} -10 i q^{37} -2 q^{39} + 2 q^{41} + 12 i q^{43} + ( 2 - i ) q^{45} + 3 q^{49} -6 q^{51} -10 i q^{53} + ( 4 - 2 i ) q^{55} -8 i q^{57} -6 q^{59} -2 q^{61} -2 i q^{63} + ( 2 + 4 i ) q^{65} -8 i q^{67} -4 q^{69} -4 q^{71} + 4 i q^{73} + ( -4 - 3 i ) q^{75} -4 i q^{77} + 8 q^{79} + q^{81} -4 i q^{83} + ( 6 + 12 i ) q^{85} -8 i q^{87} -6 q^{89} + 4 q^{91} + ( -16 + 8 i ) q^{95} -8 i q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 2q - 4q^{5} - 2q^{9} - 4q^{11} + 2q^{15} + 16q^{19} + 4q^{21} + 6q^{25} + 16q^{29} - 4q^{35} - 4q^{39} + 4q^{41} + 4q^{45} + 6q^{49} - 12q^{51} + 8q^{55} - 12q^{59} - 4q^{61} + 4q^{65} - 8q^{69} - 8q^{71} - 8q^{75} + 16q^{79} + 2q^{81} + 12q^{85} - 12q^{89} + 8q^{91} - 32q^{95} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
769.1
1.00000i
1.00000i
0 1.00000i 0 −2.00000 + 1.00000i 0 2.00000i 0 −1.00000 0
769.2 0 1.00000i 0 −2.00000 1.00000i 0 2.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.2.f.a 2
3.b odd 2 1 2880.2.f.t 2
4.b odd 2 1 960.2.f.b 2
5.b even 2 1 inner 960.2.f.a 2
5.c odd 4 1 4800.2.a.k 1
5.c odd 4 1 4800.2.a.ch 1
8.b even 2 1 120.2.f.a 2
8.d odd 2 1 240.2.f.c 2
12.b even 2 1 2880.2.f.r 2
15.d odd 2 1 2880.2.f.t 2
16.e even 4 1 3840.2.d.d 2
16.e even 4 1 3840.2.d.ba 2
16.f odd 4 1 3840.2.d.m 2
16.f odd 4 1 3840.2.d.v 2
20.d odd 2 1 960.2.f.b 2
20.e even 4 1 4800.2.a.n 1
20.e even 4 1 4800.2.a.ci 1
24.f even 2 1 720.2.f.b 2
24.h odd 2 1 360.2.f.a 2
40.e odd 2 1 240.2.f.c 2
40.f even 2 1 120.2.f.a 2
40.i odd 4 1 600.2.a.d 1
40.i odd 4 1 600.2.a.g 1
40.k even 4 1 1200.2.a.h 1
40.k even 4 1 1200.2.a.l 1
60.h even 2 1 2880.2.f.r 2
80.k odd 4 1 3840.2.d.m 2
80.k odd 4 1 3840.2.d.v 2
80.q even 4 1 3840.2.d.d 2
80.q even 4 1 3840.2.d.ba 2
120.i odd 2 1 360.2.f.a 2
120.m even 2 1 720.2.f.b 2
120.q odd 4 1 3600.2.a.n 1
120.q odd 4 1 3600.2.a.bi 1
120.w even 4 1 1800.2.a.g 1
120.w even 4 1 1800.2.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.f.a 2 8.b even 2 1
120.2.f.a 2 40.f even 2 1
240.2.f.c 2 8.d odd 2 1
240.2.f.c 2 40.e odd 2 1
360.2.f.a 2 24.h odd 2 1
360.2.f.a 2 120.i odd 2 1
600.2.a.d 1 40.i odd 4 1
600.2.a.g 1 40.i odd 4 1
720.2.f.b 2 24.f even 2 1
720.2.f.b 2 120.m even 2 1
960.2.f.a 2 1.a even 1 1 trivial
960.2.f.a 2 5.b even 2 1 inner
960.2.f.b 2 4.b odd 2 1
960.2.f.b 2 20.d odd 2 1
1200.2.a.h 1 40.k even 4 1
1200.2.a.l 1 40.k even 4 1
1800.2.a.g 1 120.w even 4 1
1800.2.a.q 1 120.w even 4 1
2880.2.f.r 2 12.b even 2 1
2880.2.f.r 2 60.h even 2 1
2880.2.f.t 2 3.b odd 2 1
2880.2.f.t 2 15.d odd 2 1
3600.2.a.n 1 120.q odd 4 1
3600.2.a.bi 1 120.q odd 4 1
3840.2.d.d 2 16.e even 4 1
3840.2.d.d 2 80.q even 4 1
3840.2.d.m 2 16.f odd 4 1
3840.2.d.m 2 80.k odd 4 1
3840.2.d.v 2 16.f odd 4 1
3840.2.d.v 2 80.k odd 4 1
3840.2.d.ba 2 16.e even 4 1
3840.2.d.ba 2 80.q even 4 1
4800.2.a.k 1 5.c odd 4 1
4800.2.a.n 1 20.e even 4 1
4800.2.a.ch 1 5.c odd 4 1
4800.2.a.ci 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(960, [\chi])\):

\( T_{7}^{2} + 4 \)
\( T_{11} + 2 \)
\( T_{13}^{2} + 4 \)
\( T_{19} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( 5 + 4 T + T^{2} \)
$7$ \( 4 + T^{2} \)
$11$ \( ( 2 + T )^{2} \)
$13$ \( 4 + T^{2} \)
$17$ \( 36 + T^{2} \)
$19$ \( ( -8 + T )^{2} \)
$23$ \( 16 + T^{2} \)
$29$ \( ( -8 + T )^{2} \)
$31$ \( T^{2} \)
$37$ \( 100 + T^{2} \)
$41$ \( ( -2 + T )^{2} \)
$43$ \( 144 + T^{2} \)
$47$ \( T^{2} \)
$53$ \( 100 + T^{2} \)
$59$ \( ( 6 + T )^{2} \)
$61$ \( ( 2 + T )^{2} \)
$67$ \( 64 + T^{2} \)
$71$ \( ( 4 + T )^{2} \)
$73$ \( 16 + T^{2} \)
$79$ \( ( -8 + T )^{2} \)
$83$ \( 16 + T^{2} \)
$89$ \( ( 6 + T )^{2} \)
$97$ \( 64 + T^{2} \)
show more
show less