Properties

Label 960.2.f
Level $960$
Weight $2$
Character orbit 960.f
Rep. character $\chi_{960}(769,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $11$
Sturm bound $384$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 11 \)
Sturm bound: \(384\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(960, [\chi])\).

Total New Old
Modular forms 216 24 192
Cusp forms 168 24 144
Eisenstein series 48 0 48

Trace form

\( 24 q - 24 q^{9} - 8 q^{25} + 16 q^{41} - 24 q^{49} - 16 q^{61} - 16 q^{65} + 16 q^{69} + 24 q^{81} + 48 q^{85} + 16 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(960, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
960.2.f.a 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 120.2.f.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(i-2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
960.2.f.b 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 120.2.f.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(-i-2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
960.2.f.c 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 60.2.d.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(-2 i-1)q^{5}+4 i q^{7}+\cdots\)
960.2.f.d 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 480.2.f.c \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(-2 i-1)q^{5}+4 i q^{7}+\cdots\)
960.2.f.e 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 480.2.f.c \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(2 i-1)q^{5}+4 i q^{7}-q^{9}+\cdots\)
960.2.f.f 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 60.2.d.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(2 i-1)q^{5}+4 i q^{7}-q^{9}+\cdots\)
960.2.f.g 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 480.2.f.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(-i+2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
960.2.f.h 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 30.2.c.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(i+2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
960.2.f.i 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 30.2.c.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(-i+2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
960.2.f.j 960.f 5.b $2$ $7.666$ \(\Q(\sqrt{-1}) \) None 480.2.f.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(i+2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
960.2.f.k 960.f 5.b $4$ $7.666$ \(\Q(i, \sqrt{5})\) None 480.2.f.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{2}q^{5}+2\beta _{1}q^{7}-q^{9}+2\beta _{3}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(960, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(960, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)