Properties

Label 960.2.bc.e.367.1
Level $960$
Weight $2$
Character 960.367
Analytic conductor $7.666$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(367,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-8,0,4,0,-16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 367.1
Root \(1.38194 + 0.300388i\) of defining polynomial
Character \(\chi\) \(=\) 960.367
Dual form 960.2.bc.e.463.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-2.21420 - 0.311968i) q^{5} +(1.96597 + 1.96597i) q^{7} -1.00000 q^{9} +(-0.870396 - 0.870396i) q^{11} +5.88276 q^{13} +(0.311968 - 2.21420i) q^{15} +(2.69398 + 2.69398i) q^{17} +(-2.40037 - 2.40037i) q^{19} +(-1.96597 + 1.96597i) q^{21} +(-2.63907 + 2.63907i) q^{23} +(4.80535 + 1.38152i) q^{25} -1.00000i q^{27} +(-7.43646 + 7.43646i) q^{29} +7.72239i q^{31} +(0.870396 - 0.870396i) q^{33} +(-3.73972 - 4.96636i) q^{35} -4.49007 q^{37} +5.88276i q^{39} +4.84873i q^{41} +0.461098 q^{43} +(2.21420 + 0.311968i) q^{45} +(-4.66693 + 4.66693i) q^{47} +0.730041i q^{49} +(-2.69398 + 2.69398i) q^{51} +2.41272i q^{53} +(1.65569 + 2.19876i) q^{55} +(2.40037 - 2.40037i) q^{57} +(6.47458 - 6.47458i) q^{59} +(8.50808 + 8.50808i) q^{61} +(-1.96597 - 1.96597i) q^{63} +(-13.0256 - 1.83523i) q^{65} -6.40870 q^{67} +(-2.63907 - 2.63907i) q^{69} +13.3214 q^{71} +(1.62933 + 1.62933i) q^{73} +(-1.38152 + 4.80535i) q^{75} -3.42234i q^{77} -4.14482 q^{79} +1.00000 q^{81} -0.241277i q^{83} +(-5.12458 - 6.80545i) q^{85} +(-7.43646 - 7.43646i) q^{87} -2.86287 q^{89} +(11.5653 + 11.5653i) q^{91} -7.72239 q^{93} +(4.56605 + 6.06373i) q^{95} +(3.18909 + 3.18909i) q^{97} +(0.870396 + 0.870396i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{5} + 4 q^{7} - 16 q^{9} - 8 q^{13} - 4 q^{15} - 8 q^{17} + 8 q^{19} - 4 q^{21} - 32 q^{25} - 12 q^{29} - 12 q^{35} - 24 q^{37} - 24 q^{43} + 8 q^{45} - 32 q^{47} + 8 q^{51} + 4 q^{55} - 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −2.21420 0.311968i −0.990220 0.139516i
\(6\) 0 0
\(7\) 1.96597 + 1.96597i 0.743065 + 0.743065i 0.973167 0.230101i \(-0.0739058\pi\)
−0.230101 + 0.973167i \(0.573906\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −0.870396 0.870396i −0.262434 0.262434i 0.563608 0.826042i \(-0.309413\pi\)
−0.826042 + 0.563608i \(0.809413\pi\)
\(12\) 0 0
\(13\) 5.88276 1.63158 0.815792 0.578345i \(-0.196301\pi\)
0.815792 + 0.578345i \(0.196301\pi\)
\(14\) 0 0
\(15\) 0.311968 2.21420i 0.0805497 0.571704i
\(16\) 0 0
\(17\) 2.69398 + 2.69398i 0.653387 + 0.653387i 0.953807 0.300420i \(-0.0971268\pi\)
−0.300420 + 0.953807i \(0.597127\pi\)
\(18\) 0 0
\(19\) −2.40037 2.40037i −0.550682 0.550682i 0.375956 0.926638i \(-0.377314\pi\)
−0.926638 + 0.375956i \(0.877314\pi\)
\(20\) 0 0
\(21\) −1.96597 + 1.96597i −0.429009 + 0.429009i
\(22\) 0 0
\(23\) −2.63907 + 2.63907i −0.550284 + 0.550284i −0.926523 0.376239i \(-0.877217\pi\)
0.376239 + 0.926523i \(0.377217\pi\)
\(24\) 0 0
\(25\) 4.80535 + 1.38152i 0.961070 + 0.276303i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −7.43646 + 7.43646i −1.38092 + 1.38092i −0.537919 + 0.842996i \(0.680790\pi\)
−0.842996 + 0.537919i \(0.819210\pi\)
\(30\) 0 0
\(31\) 7.72239i 1.38698i 0.720465 + 0.693491i \(0.243928\pi\)
−0.720465 + 0.693491i \(0.756072\pi\)
\(32\) 0 0
\(33\) 0.870396 0.870396i 0.151516 0.151516i
\(34\) 0 0
\(35\) −3.73972 4.96636i −0.632128 0.839467i
\(36\) 0 0
\(37\) −4.49007 −0.738163 −0.369081 0.929397i \(-0.620328\pi\)
−0.369081 + 0.929397i \(0.620328\pi\)
\(38\) 0 0
\(39\) 5.88276i 0.941996i
\(40\) 0 0
\(41\) 4.84873i 0.757244i 0.925551 + 0.378622i \(0.123602\pi\)
−0.925551 + 0.378622i \(0.876398\pi\)
\(42\) 0 0
\(43\) 0.461098 0.0703168 0.0351584 0.999382i \(-0.488806\pi\)
0.0351584 + 0.999382i \(0.488806\pi\)
\(44\) 0 0
\(45\) 2.21420 + 0.311968i 0.330073 + 0.0465054i
\(46\) 0 0
\(47\) −4.66693 + 4.66693i −0.680742 + 0.680742i −0.960167 0.279425i \(-0.909856\pi\)
0.279425 + 0.960167i \(0.409856\pi\)
\(48\) 0 0
\(49\) 0.730041i 0.104292i
\(50\) 0 0
\(51\) −2.69398 + 2.69398i −0.377233 + 0.377233i
\(52\) 0 0
\(53\) 2.41272i 0.331413i 0.986175 + 0.165706i \(0.0529904\pi\)
−0.986175 + 0.165706i \(0.947010\pi\)
\(54\) 0 0
\(55\) 1.65569 + 2.19876i 0.223254 + 0.296481i
\(56\) 0 0
\(57\) 2.40037 2.40037i 0.317936 0.317936i
\(58\) 0 0
\(59\) 6.47458 6.47458i 0.842919 0.842919i −0.146318 0.989238i \(-0.546742\pi\)
0.989238 + 0.146318i \(0.0467424\pi\)
\(60\) 0 0
\(61\) 8.50808 + 8.50808i 1.08935 + 1.08935i 0.995596 + 0.0937523i \(0.0298862\pi\)
0.0937523 + 0.995596i \(0.470114\pi\)
\(62\) 0 0
\(63\) −1.96597 1.96597i −0.247688 0.247688i
\(64\) 0 0
\(65\) −13.0256 1.83523i −1.61563 0.227632i
\(66\) 0 0
\(67\) −6.40870 −0.782948 −0.391474 0.920189i \(-0.628035\pi\)
−0.391474 + 0.920189i \(0.628035\pi\)
\(68\) 0 0
\(69\) −2.63907 2.63907i −0.317706 0.317706i
\(70\) 0 0
\(71\) 13.3214 1.58096 0.790482 0.612486i \(-0.209830\pi\)
0.790482 + 0.612486i \(0.209830\pi\)
\(72\) 0 0
\(73\) 1.62933 + 1.62933i 0.190699 + 0.190699i 0.795998 0.605299i \(-0.206947\pi\)
−0.605299 + 0.795998i \(0.706947\pi\)
\(74\) 0 0
\(75\) −1.38152 + 4.80535i −0.159524 + 0.554874i
\(76\) 0 0
\(77\) 3.42234i 0.390011i
\(78\) 0 0
\(79\) −4.14482 −0.466328 −0.233164 0.972437i \(-0.574908\pi\)
−0.233164 + 0.972437i \(0.574908\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.241277i 0.0264836i −0.999912 0.0132418i \(-0.995785\pi\)
0.999912 0.0132418i \(-0.00421511\pi\)
\(84\) 0 0
\(85\) −5.12458 6.80545i −0.555839 0.738155i
\(86\) 0 0
\(87\) −7.43646 7.43646i −0.797272 0.797272i
\(88\) 0 0
\(89\) −2.86287 −0.303464 −0.151732 0.988422i \(-0.548485\pi\)
−0.151732 + 0.988422i \(0.548485\pi\)
\(90\) 0 0
\(91\) 11.5653 + 11.5653i 1.21237 + 1.21237i
\(92\) 0 0
\(93\) −7.72239 −0.800775
\(94\) 0 0
\(95\) 4.56605 + 6.06373i 0.468467 + 0.622125i
\(96\) 0 0
\(97\) 3.18909 + 3.18909i 0.323803 + 0.323803i 0.850224 0.526421i \(-0.176466\pi\)
−0.526421 + 0.850224i \(0.676466\pi\)
\(98\) 0 0
\(99\) 0.870396 + 0.870396i 0.0874781 + 0.0874781i
\(100\) 0 0
\(101\) 6.90372 6.90372i 0.686946 0.686946i −0.274610 0.961556i \(-0.588549\pi\)
0.961556 + 0.274610i \(0.0885487\pi\)
\(102\) 0 0
\(103\) −4.09832 + 4.09832i −0.403819 + 0.403819i −0.879577 0.475757i \(-0.842174\pi\)
0.475757 + 0.879577i \(0.342174\pi\)
\(104\) 0 0
\(105\) 4.96636 3.73972i 0.484667 0.364959i
\(106\) 0 0
\(107\) 10.0579i 0.972333i −0.873866 0.486166i \(-0.838395\pi\)
0.873866 0.486166i \(-0.161605\pi\)
\(108\) 0 0
\(109\) −11.2123 + 11.2123i −1.07394 + 1.07394i −0.0769025 + 0.997039i \(0.524503\pi\)
−0.997039 + 0.0769025i \(0.975497\pi\)
\(110\) 0 0
\(111\) 4.49007i 0.426178i
\(112\) 0 0
\(113\) −0.420404 + 0.420404i −0.0395483 + 0.0395483i −0.726604 0.687056i \(-0.758903\pi\)
0.687056 + 0.726604i \(0.258903\pi\)
\(114\) 0 0
\(115\) 6.66672 5.02012i 0.621675 0.468128i
\(116\) 0 0
\(117\) −5.88276 −0.543861
\(118\) 0 0
\(119\) 10.5926i 0.971018i
\(120\) 0 0
\(121\) 9.48482i 0.862257i
\(122\) 0 0
\(123\) −4.84873 −0.437195
\(124\) 0 0
\(125\) −10.2090 4.55807i −0.913122 0.407686i
\(126\) 0 0
\(127\) 12.1223 12.1223i 1.07568 1.07568i 0.0787895 0.996891i \(-0.474894\pi\)
0.996891 0.0787895i \(-0.0251055\pi\)
\(128\) 0 0
\(129\) 0.461098i 0.0405974i
\(130\) 0 0
\(131\) −9.02309 + 9.02309i −0.788351 + 0.788351i −0.981224 0.192873i \(-0.938220\pi\)
0.192873 + 0.981224i \(0.438220\pi\)
\(132\) 0 0
\(133\) 9.43808i 0.818385i
\(134\) 0 0
\(135\) −0.311968 + 2.21420i −0.0268499 + 0.190568i
\(136\) 0 0
\(137\) 8.12950 8.12950i 0.694550 0.694550i −0.268679 0.963230i \(-0.586587\pi\)
0.963230 + 0.268679i \(0.0865872\pi\)
\(138\) 0 0
\(139\) 2.98593 2.98593i 0.253263 0.253263i −0.569044 0.822307i \(-0.692687\pi\)
0.822307 + 0.569044i \(0.192687\pi\)
\(140\) 0 0
\(141\) −4.66693 4.66693i −0.393027 0.393027i
\(142\) 0 0
\(143\) −5.12033 5.12033i −0.428184 0.428184i
\(144\) 0 0
\(145\) 18.7857 14.1459i 1.56007 1.17475i
\(146\) 0 0
\(147\) −0.730041 −0.0602128
\(148\) 0 0
\(149\) 0.994977 + 0.994977i 0.0815117 + 0.0815117i 0.746687 0.665175i \(-0.231643\pi\)
−0.665175 + 0.746687i \(0.731643\pi\)
\(150\) 0 0
\(151\) 18.1365 1.47592 0.737962 0.674842i \(-0.235788\pi\)
0.737962 + 0.674842i \(0.235788\pi\)
\(152\) 0 0
\(153\) −2.69398 2.69398i −0.217796 0.217796i
\(154\) 0 0
\(155\) 2.40914 17.0989i 0.193506 1.37342i
\(156\) 0 0
\(157\) 10.3489i 0.825932i −0.910746 0.412966i \(-0.864493\pi\)
0.910746 0.412966i \(-0.135507\pi\)
\(158\) 0 0
\(159\) −2.41272 −0.191341
\(160\) 0 0
\(161\) −10.3766 −0.817793
\(162\) 0 0
\(163\) 13.2079i 1.03453i 0.855827 + 0.517263i \(0.173049\pi\)
−0.855827 + 0.517263i \(0.826951\pi\)
\(164\) 0 0
\(165\) −2.19876 + 1.65569i −0.171174 + 0.128896i
\(166\) 0 0
\(167\) −0.0169530 0.0169530i −0.00131186 0.00131186i 0.706451 0.707762i \(-0.250295\pi\)
−0.707762 + 0.706451i \(0.750295\pi\)
\(168\) 0 0
\(169\) 21.6069 1.66207
\(170\) 0 0
\(171\) 2.40037 + 2.40037i 0.183561 + 0.183561i
\(172\) 0 0
\(173\) 3.43931 0.261486 0.130743 0.991416i \(-0.458264\pi\)
0.130743 + 0.991416i \(0.458264\pi\)
\(174\) 0 0
\(175\) 6.73114 + 12.1632i 0.508827 + 0.919449i
\(176\) 0 0
\(177\) 6.47458 + 6.47458i 0.486660 + 0.486660i
\(178\) 0 0
\(179\) 0.816756 + 0.816756i 0.0610472 + 0.0610472i 0.736971 0.675924i \(-0.236255\pi\)
−0.675924 + 0.736971i \(0.736255\pi\)
\(180\) 0 0
\(181\) −15.2070 + 15.2070i −1.13032 + 1.13032i −0.140201 + 0.990123i \(0.544775\pi\)
−0.990123 + 0.140201i \(0.955225\pi\)
\(182\) 0 0
\(183\) −8.50808 + 8.50808i −0.628935 + 0.628935i
\(184\) 0 0
\(185\) 9.94190 + 1.40076i 0.730943 + 0.102986i
\(186\) 0 0
\(187\) 4.68966i 0.342942i
\(188\) 0 0
\(189\) 1.96597 1.96597i 0.143003 0.143003i
\(190\) 0 0
\(191\) 0.536269i 0.0388031i −0.999812 0.0194015i \(-0.993824\pi\)
0.999812 0.0194015i \(-0.00617609\pi\)
\(192\) 0 0
\(193\) −7.70962 + 7.70962i −0.554951 + 0.554951i −0.927866 0.372915i \(-0.878358\pi\)
0.372915 + 0.927866i \(0.378358\pi\)
\(194\) 0 0
\(195\) 1.83523 13.0256i 0.131424 0.932783i
\(196\) 0 0
\(197\) 19.6564 1.40046 0.700231 0.713916i \(-0.253080\pi\)
0.700231 + 0.713916i \(0.253080\pi\)
\(198\) 0 0
\(199\) 9.32963i 0.661360i −0.943743 0.330680i \(-0.892722\pi\)
0.943743 0.330680i \(-0.107278\pi\)
\(200\) 0 0
\(201\) 6.40870i 0.452035i
\(202\) 0 0
\(203\) −29.2396 −2.05222
\(204\) 0 0
\(205\) 1.51265 10.7361i 0.105648 0.749838i
\(206\) 0 0
\(207\) 2.63907 2.63907i 0.183428 0.183428i
\(208\) 0 0
\(209\) 4.17854i 0.289036i
\(210\) 0 0
\(211\) 7.58277 7.58277i 0.522019 0.522019i −0.396162 0.918181i \(-0.629658\pi\)
0.918181 + 0.396162i \(0.129658\pi\)
\(212\) 0 0
\(213\) 13.3214i 0.912769i
\(214\) 0 0
\(215\) −1.02096 0.143848i −0.0696291 0.00981033i
\(216\) 0 0
\(217\) −15.1820 + 15.1820i −1.03062 + 1.03062i
\(218\) 0 0
\(219\) −1.62933 + 1.62933i −0.110100 + 0.110100i
\(220\) 0 0
\(221\) 15.8481 + 15.8481i 1.06606 + 1.06606i
\(222\) 0 0
\(223\) −8.76331 8.76331i −0.586835 0.586835i 0.349938 0.936773i \(-0.386203\pi\)
−0.936773 + 0.349938i \(0.886203\pi\)
\(224\) 0 0
\(225\) −4.80535 1.38152i −0.320357 0.0921011i
\(226\) 0 0
\(227\) 25.0028 1.65949 0.829746 0.558141i \(-0.188485\pi\)
0.829746 + 0.558141i \(0.188485\pi\)
\(228\) 0 0
\(229\) 7.89911 + 7.89911i 0.521988 + 0.521988i 0.918171 0.396183i \(-0.129666\pi\)
−0.396183 + 0.918171i \(0.629666\pi\)
\(230\) 0 0
\(231\) 3.42234 0.225173
\(232\) 0 0
\(233\) −7.91066 7.91066i −0.518245 0.518245i 0.398795 0.917040i \(-0.369428\pi\)
−0.917040 + 0.398795i \(0.869428\pi\)
\(234\) 0 0
\(235\) 11.7895 8.87759i 0.769059 0.579110i
\(236\) 0 0
\(237\) 4.14482i 0.269235i
\(238\) 0 0
\(239\) −11.4515 −0.740735 −0.370368 0.928885i \(-0.620768\pi\)
−0.370368 + 0.928885i \(0.620768\pi\)
\(240\) 0 0
\(241\) 20.9793 1.35139 0.675697 0.737180i \(-0.263843\pi\)
0.675697 + 0.737180i \(0.263843\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0.227749 1.61646i 0.0145504 0.103272i
\(246\) 0 0
\(247\) −14.1208 14.1208i −0.898484 0.898484i
\(248\) 0 0
\(249\) 0.241277 0.0152903
\(250\) 0 0
\(251\) −15.6566 15.6566i −0.988233 0.988233i 0.0116985 0.999932i \(-0.496276\pi\)
−0.999932 + 0.0116985i \(0.996276\pi\)
\(252\) 0 0
\(253\) 4.59407 0.288826
\(254\) 0 0
\(255\) 6.80545 5.12458i 0.426174 0.320914i
\(256\) 0 0
\(257\) −8.44246 8.44246i −0.526626 0.526626i 0.392939 0.919565i \(-0.371459\pi\)
−0.919565 + 0.392939i \(0.871459\pi\)
\(258\) 0 0
\(259\) −8.82732 8.82732i −0.548503 0.548503i
\(260\) 0 0
\(261\) 7.43646 7.43646i 0.460305 0.460305i
\(262\) 0 0
\(263\) 10.4796 10.4796i 0.646200 0.646200i −0.305872 0.952073i \(-0.598948\pi\)
0.952073 + 0.305872i \(0.0989480\pi\)
\(264\) 0 0
\(265\) 0.752691 5.34225i 0.0462375 0.328172i
\(266\) 0 0
\(267\) 2.86287i 0.175205i
\(268\) 0 0
\(269\) 5.49337 5.49337i 0.334937 0.334937i −0.519521 0.854458i \(-0.673890\pi\)
0.854458 + 0.519521i \(0.173890\pi\)
\(270\) 0 0
\(271\) 29.9569i 1.81975i −0.414883 0.909875i \(-0.636178\pi\)
0.414883 0.909875i \(-0.363822\pi\)
\(272\) 0 0
\(273\) −11.5653 + 11.5653i −0.699964 + 0.699964i
\(274\) 0 0
\(275\) −2.98009 5.38502i −0.179706 0.324729i
\(276\) 0 0
\(277\) −7.29980 −0.438602 −0.219301 0.975657i \(-0.570378\pi\)
−0.219301 + 0.975657i \(0.570378\pi\)
\(278\) 0 0
\(279\) 7.72239i 0.462328i
\(280\) 0 0
\(281\) 9.84488i 0.587296i 0.955914 + 0.293648i \(0.0948694\pi\)
−0.955914 + 0.293648i \(0.905131\pi\)
\(282\) 0 0
\(283\) −2.84482 −0.169107 −0.0845535 0.996419i \(-0.526946\pi\)
−0.0845535 + 0.996419i \(0.526946\pi\)
\(284\) 0 0
\(285\) −6.06373 + 4.56605i −0.359184 + 0.270470i
\(286\) 0 0
\(287\) −9.53244 + 9.53244i −0.562682 + 0.562682i
\(288\) 0 0
\(289\) 2.48490i 0.146171i
\(290\) 0 0
\(291\) −3.18909 + 3.18909i −0.186948 + 0.186948i
\(292\) 0 0
\(293\) 27.6123i 1.61313i −0.591149 0.806563i \(-0.701325\pi\)
0.591149 0.806563i \(-0.298675\pi\)
\(294\) 0 0
\(295\) −16.3559 + 12.3162i −0.952276 + 0.717074i
\(296\) 0 0
\(297\) −0.870396 + 0.870396i −0.0505055 + 0.0505055i
\(298\) 0 0
\(299\) −15.5250 + 15.5250i −0.897834 + 0.897834i
\(300\) 0 0
\(301\) 0.906503 + 0.906503i 0.0522500 + 0.0522500i
\(302\) 0 0
\(303\) 6.90372 + 6.90372i 0.396608 + 0.396608i
\(304\) 0 0
\(305\) −16.1843 21.4928i −0.926712 1.23068i
\(306\) 0 0
\(307\) 23.7612 1.35612 0.678061 0.735006i \(-0.262820\pi\)
0.678061 + 0.735006i \(0.262820\pi\)
\(308\) 0 0
\(309\) −4.09832 4.09832i −0.233145 0.233145i
\(310\) 0 0
\(311\) −12.2337 −0.693707 −0.346854 0.937919i \(-0.612750\pi\)
−0.346854 + 0.937919i \(0.612750\pi\)
\(312\) 0 0
\(313\) −10.9229 10.9229i −0.617400 0.617400i 0.327464 0.944864i \(-0.393806\pi\)
−0.944864 + 0.327464i \(0.893806\pi\)
\(314\) 0 0
\(315\) 3.73972 + 4.96636i 0.210709 + 0.279822i
\(316\) 0 0
\(317\) 21.5403i 1.20982i −0.796293 0.604911i \(-0.793209\pi\)
0.796293 0.604911i \(-0.206791\pi\)
\(318\) 0 0
\(319\) 12.9453 0.724799
\(320\) 0 0
\(321\) 10.0579 0.561377
\(322\) 0 0
\(323\) 12.9331i 0.719617i
\(324\) 0 0
\(325\) 28.2687 + 8.12713i 1.56807 + 0.450812i
\(326\) 0 0
\(327\) −11.2123 11.2123i −0.620040 0.620040i
\(328\) 0 0
\(329\) −18.3501 −1.01167
\(330\) 0 0
\(331\) 21.2143 + 21.2143i 1.16604 + 1.16604i 0.983129 + 0.182914i \(0.0585530\pi\)
0.182914 + 0.983129i \(0.441447\pi\)
\(332\) 0 0
\(333\) 4.49007 0.246054
\(334\) 0 0
\(335\) 14.1901 + 1.99931i 0.775290 + 0.109234i
\(336\) 0 0
\(337\) 1.41673 + 1.41673i 0.0771744 + 0.0771744i 0.744640 0.667466i \(-0.232621\pi\)
−0.667466 + 0.744640i \(0.732621\pi\)
\(338\) 0 0
\(339\) −0.420404 0.420404i −0.0228332 0.0228332i
\(340\) 0 0
\(341\) 6.72154 6.72154i 0.363992 0.363992i
\(342\) 0 0
\(343\) 12.3265 12.3265i 0.665570 0.665570i
\(344\) 0 0
\(345\) 5.02012 + 6.66672i 0.270274 + 0.358924i
\(346\) 0 0
\(347\) 6.70115i 0.359736i 0.983691 + 0.179868i \(0.0575671\pi\)
−0.983691 + 0.179868i \(0.942433\pi\)
\(348\) 0 0
\(349\) −7.28479 + 7.28479i −0.389946 + 0.389946i −0.874668 0.484722i \(-0.838921\pi\)
0.484722 + 0.874668i \(0.338921\pi\)
\(350\) 0 0
\(351\) 5.88276i 0.313999i
\(352\) 0 0
\(353\) 1.08305 1.08305i 0.0576448 0.0576448i −0.677697 0.735342i \(-0.737022\pi\)
0.735342 + 0.677697i \(0.237022\pi\)
\(354\) 0 0
\(355\) −29.4963 4.15585i −1.56550 0.220570i
\(356\) 0 0
\(357\) −10.5926 −0.560618
\(358\) 0 0
\(359\) 35.6985i 1.88409i 0.335483 + 0.942046i \(0.391101\pi\)
−0.335483 + 0.942046i \(0.608899\pi\)
\(360\) 0 0
\(361\) 7.47647i 0.393499i
\(362\) 0 0
\(363\) 9.48482 0.497824
\(364\) 0 0
\(365\) −3.09936 4.11596i −0.162228 0.215439i
\(366\) 0 0
\(367\) −15.5759 + 15.5759i −0.813056 + 0.813056i −0.985091 0.172035i \(-0.944966\pi\)
0.172035 + 0.985091i \(0.444966\pi\)
\(368\) 0 0
\(369\) 4.84873i 0.252415i
\(370\) 0 0
\(371\) −4.74333 + 4.74333i −0.246261 + 0.246261i
\(372\) 0 0
\(373\) 6.11186i 0.316460i 0.987402 + 0.158230i \(0.0505788\pi\)
−0.987402 + 0.158230i \(0.949421\pi\)
\(374\) 0 0
\(375\) 4.55807 10.2090i 0.235378 0.527191i
\(376\) 0 0
\(377\) −43.7469 + 43.7469i −2.25308 + 2.25308i
\(378\) 0 0
\(379\) −25.5981 + 25.5981i −1.31488 + 1.31488i −0.397116 + 0.917768i \(0.629989\pi\)
−0.917768 + 0.397116i \(0.870011\pi\)
\(380\) 0 0
\(381\) 12.1223 + 12.1223i 0.621045 + 0.621045i
\(382\) 0 0
\(383\) 2.46156 + 2.46156i 0.125780 + 0.125780i 0.767194 0.641415i \(-0.221652\pi\)
−0.641415 + 0.767194i \(0.721652\pi\)
\(384\) 0 0
\(385\) −1.06766 + 7.57773i −0.0544129 + 0.386197i
\(386\) 0 0
\(387\) −0.461098 −0.0234389
\(388\) 0 0
\(389\) 23.1160 + 23.1160i 1.17203 + 1.17203i 0.981726 + 0.190302i \(0.0609468\pi\)
0.190302 + 0.981726i \(0.439053\pi\)
\(390\) 0 0
\(391\) −14.2192 −0.719096
\(392\) 0 0
\(393\) −9.02309 9.02309i −0.455155 0.455155i
\(394\) 0 0
\(395\) 9.17745 + 1.29305i 0.461768 + 0.0650603i
\(396\) 0 0
\(397\) 29.1851i 1.46476i −0.680897 0.732379i \(-0.738410\pi\)
0.680897 0.732379i \(-0.261590\pi\)
\(398\) 0 0
\(399\) 9.43808 0.472495
\(400\) 0 0
\(401\) 1.70478 0.0851329 0.0425664 0.999094i \(-0.486447\pi\)
0.0425664 + 0.999094i \(0.486447\pi\)
\(402\) 0 0
\(403\) 45.4290i 2.26298i
\(404\) 0 0
\(405\) −2.21420 0.311968i −0.110024 0.0155018i
\(406\) 0 0
\(407\) 3.90814 + 3.90814i 0.193719 + 0.193719i
\(408\) 0 0
\(409\) −7.11999 −0.352061 −0.176030 0.984385i \(-0.556326\pi\)
−0.176030 + 0.984385i \(0.556326\pi\)
\(410\) 0 0
\(411\) 8.12950 + 8.12950i 0.400999 + 0.400999i
\(412\) 0 0
\(413\) 25.4576 1.25269
\(414\) 0 0
\(415\) −0.0752705 + 0.534235i −0.00369488 + 0.0262245i
\(416\) 0 0
\(417\) 2.98593 + 2.98593i 0.146222 + 0.146222i
\(418\) 0 0
\(419\) 15.1825 + 15.1825i 0.741713 + 0.741713i 0.972908 0.231194i \(-0.0742633\pi\)
−0.231194 + 0.972908i \(0.574263\pi\)
\(420\) 0 0
\(421\) −8.92932 + 8.92932i −0.435188 + 0.435188i −0.890389 0.455201i \(-0.849568\pi\)
0.455201 + 0.890389i \(0.349568\pi\)
\(422\) 0 0
\(423\) 4.66693 4.66693i 0.226914 0.226914i
\(424\) 0 0
\(425\) 9.22376 + 16.6673i 0.447418 + 0.808484i
\(426\) 0 0
\(427\) 33.4532i 1.61891i
\(428\) 0 0
\(429\) 5.12033 5.12033i 0.247212 0.247212i
\(430\) 0 0
\(431\) 23.7988i 1.14635i 0.819434 + 0.573173i \(0.194288\pi\)
−0.819434 + 0.573173i \(0.805712\pi\)
\(432\) 0 0
\(433\) −18.7878 + 18.7878i −0.902886 + 0.902886i −0.995685 0.0927987i \(-0.970419\pi\)
0.0927987 + 0.995685i \(0.470419\pi\)
\(434\) 0 0
\(435\) 14.1459 + 18.7857i 0.678242 + 0.900707i
\(436\) 0 0
\(437\) 12.6695 0.606062
\(438\) 0 0
\(439\) 29.1333i 1.39046i −0.718789 0.695229i \(-0.755303\pi\)
0.718789 0.695229i \(-0.244697\pi\)
\(440\) 0 0
\(441\) 0.730041i 0.0347639i
\(442\) 0 0
\(443\) 38.7016 1.83877 0.919384 0.393360i \(-0.128687\pi\)
0.919384 + 0.393360i \(0.128687\pi\)
\(444\) 0 0
\(445\) 6.33897 + 0.893124i 0.300496 + 0.0423381i
\(446\) 0 0
\(447\) −0.994977 + 0.994977i −0.0470608 + 0.0470608i
\(448\) 0 0
\(449\) 9.96141i 0.470108i −0.971982 0.235054i \(-0.924473\pi\)
0.971982 0.235054i \(-0.0755267\pi\)
\(450\) 0 0
\(451\) 4.22031 4.22031i 0.198727 0.198727i
\(452\) 0 0
\(453\) 18.1365i 0.852126i
\(454\) 0 0
\(455\) −21.9999 29.2159i −1.03137 1.36966i
\(456\) 0 0
\(457\) 1.77907 1.77907i 0.0832213 0.0832213i −0.664271 0.747492i \(-0.731258\pi\)
0.747492 + 0.664271i \(0.231258\pi\)
\(458\) 0 0
\(459\) 2.69398 2.69398i 0.125744 0.125744i
\(460\) 0 0
\(461\) −8.51698 8.51698i −0.396675 0.396675i 0.480383 0.877059i \(-0.340498\pi\)
−0.877059 + 0.480383i \(0.840498\pi\)
\(462\) 0 0
\(463\) −0.964355 0.964355i −0.0448174 0.0448174i 0.684343 0.729160i \(-0.260089\pi\)
−0.729160 + 0.684343i \(0.760089\pi\)
\(464\) 0 0
\(465\) 17.0989 + 2.40914i 0.792943 + 0.111721i
\(466\) 0 0
\(467\) −4.65741 −0.215519 −0.107760 0.994177i \(-0.534368\pi\)
−0.107760 + 0.994177i \(0.534368\pi\)
\(468\) 0 0
\(469\) −12.5993 12.5993i −0.581781 0.581781i
\(470\) 0 0
\(471\) 10.3489 0.476852
\(472\) 0 0
\(473\) −0.401338 0.401338i −0.0184535 0.0184535i
\(474\) 0 0
\(475\) −8.21846 14.8508i −0.377089 0.681399i
\(476\) 0 0
\(477\) 2.41272i 0.110471i
\(478\) 0 0
\(479\) 22.6790 1.03623 0.518114 0.855311i \(-0.326634\pi\)
0.518114 + 0.855311i \(0.326634\pi\)
\(480\) 0 0
\(481\) −26.4140 −1.20437
\(482\) 0 0
\(483\) 10.3766i 0.472153i
\(484\) 0 0
\(485\) −6.06639 8.05618i −0.275461 0.365812i
\(486\) 0 0
\(487\) −4.16034 4.16034i −0.188523 0.188523i 0.606534 0.795057i \(-0.292559\pi\)
−0.795057 + 0.606534i \(0.792559\pi\)
\(488\) 0 0
\(489\) −13.2079 −0.597283
\(490\) 0 0
\(491\) −0.218295 0.218295i −0.00985151 0.00985151i 0.702164 0.712015i \(-0.252217\pi\)
−0.712015 + 0.702164i \(0.752217\pi\)
\(492\) 0 0
\(493\) −40.0674 −1.80455
\(494\) 0 0
\(495\) −1.65569 2.19876i −0.0744179 0.0988271i
\(496\) 0 0
\(497\) 26.1895 + 26.1895i 1.17476 + 1.17476i
\(498\) 0 0
\(499\) −14.9638 14.9638i −0.669871 0.669871i 0.287815 0.957686i \(-0.407071\pi\)
−0.957686 + 0.287815i \(0.907071\pi\)
\(500\) 0 0
\(501\) 0.0169530 0.0169530i 0.000757405 0.000757405i
\(502\) 0 0
\(503\) 20.3166 20.3166i 0.905872 0.905872i −0.0900637 0.995936i \(-0.528707\pi\)
0.995936 + 0.0900637i \(0.0287071\pi\)
\(504\) 0 0
\(505\) −17.4399 + 13.1325i −0.776067 + 0.584387i
\(506\) 0 0
\(507\) 21.6069i 0.959595i
\(508\) 0 0
\(509\) −18.0574 + 18.0574i −0.800381 + 0.800381i −0.983155 0.182774i \(-0.941492\pi\)
0.182774 + 0.983155i \(0.441492\pi\)
\(510\) 0 0
\(511\) 6.40641i 0.283403i
\(512\) 0 0
\(513\) −2.40037 + 2.40037i −0.105979 + 0.105979i
\(514\) 0 0
\(515\) 10.3530 7.79595i 0.456209 0.343531i
\(516\) 0 0
\(517\) 8.12416 0.357300
\(518\) 0 0
\(519\) 3.43931i 0.150969i
\(520\) 0 0
\(521\) 3.75389i 0.164461i −0.996613 0.0822305i \(-0.973796\pi\)
0.996613 0.0822305i \(-0.0262044\pi\)
\(522\) 0 0
\(523\) −30.3429 −1.32680 −0.663402 0.748263i \(-0.730888\pi\)
−0.663402 + 0.748263i \(0.730888\pi\)
\(524\) 0 0
\(525\) −12.1632 + 6.73114i −0.530844 + 0.293771i
\(526\) 0 0
\(527\) −20.8040 + 20.8040i −0.906237 + 0.906237i
\(528\) 0 0
\(529\) 9.07065i 0.394376i
\(530\) 0 0
\(531\) −6.47458 + 6.47458i −0.280973 + 0.280973i
\(532\) 0 0
\(533\) 28.5239i 1.23551i
\(534\) 0 0
\(535\) −3.13773 + 22.2702i −0.135656 + 0.962823i
\(536\) 0 0
\(537\) −0.816756 + 0.816756i −0.0352456 + 0.0352456i
\(538\) 0 0
\(539\) 0.635425 0.635425i 0.0273697 0.0273697i
\(540\) 0 0
\(541\) 25.0252 + 25.0252i 1.07592 + 1.07592i 0.996871 + 0.0790451i \(0.0251871\pi\)
0.0790451 + 0.996871i \(0.474813\pi\)
\(542\) 0 0
\(543\) −15.2070 15.2070i −0.652593 0.652593i
\(544\) 0 0
\(545\) 28.3241 21.3283i 1.21327 0.913606i
\(546\) 0 0
\(547\) 31.6172 1.35185 0.675927 0.736969i \(-0.263744\pi\)
0.675927 + 0.736969i \(0.263744\pi\)
\(548\) 0 0
\(549\) −8.50808 8.50808i −0.363116 0.363116i
\(550\) 0 0
\(551\) 35.7005 1.52089
\(552\) 0 0
\(553\) −8.14857 8.14857i −0.346512 0.346512i
\(554\) 0 0
\(555\) −1.40076 + 9.94190i −0.0594588 + 0.422010i
\(556\) 0 0
\(557\) 5.06043i 0.214418i −0.994237 0.107209i \(-0.965809\pi\)
0.994237 0.107209i \(-0.0341913\pi\)
\(558\) 0 0
\(559\) 2.71253 0.114728
\(560\) 0 0
\(561\) 4.68966 0.197998
\(562\) 0 0
\(563\) 10.2694i 0.432804i −0.976304 0.216402i \(-0.930568\pi\)
0.976304 0.216402i \(-0.0694321\pi\)
\(564\) 0 0
\(565\) 1.06201 0.799706i 0.0446791 0.0336439i
\(566\) 0 0
\(567\) 1.96597 + 1.96597i 0.0825628 + 0.0825628i
\(568\) 0 0
\(569\) 30.5352 1.28010 0.640052 0.768332i \(-0.278913\pi\)
0.640052 + 0.768332i \(0.278913\pi\)
\(570\) 0 0
\(571\) −15.6507 15.6507i −0.654962 0.654962i 0.299222 0.954184i \(-0.403273\pi\)
−0.954184 + 0.299222i \(0.903273\pi\)
\(572\) 0 0
\(573\) 0.536269 0.0224030
\(574\) 0 0
\(575\) −16.3276 + 9.03573i −0.680906 + 0.376816i
\(576\) 0 0
\(577\) −24.2221 24.2221i −1.00838 1.00838i −0.999965 0.00841548i \(-0.997321\pi\)
−0.00841548 0.999965i \(-0.502679\pi\)
\(578\) 0 0
\(579\) −7.70962 7.70962i −0.320401 0.320401i
\(580\) 0 0
\(581\) 0.474342 0.474342i 0.0196790 0.0196790i
\(582\) 0 0
\(583\) 2.10002 2.10002i 0.0869741 0.0869741i
\(584\) 0 0
\(585\) 13.0256 + 1.83523i 0.538542 + 0.0758775i
\(586\) 0 0
\(587\) 4.75989i 0.196461i 0.995164 + 0.0982307i \(0.0313183\pi\)
−0.995164 + 0.0982307i \(0.968682\pi\)
\(588\) 0 0
\(589\) 18.5366 18.5366i 0.763786 0.763786i
\(590\) 0 0
\(591\) 19.6564i 0.808557i
\(592\) 0 0
\(593\) 4.52357 4.52357i 0.185761 0.185761i −0.608100 0.793861i \(-0.708068\pi\)
0.793861 + 0.608100i \(0.208068\pi\)
\(594\) 0 0
\(595\) 3.30454 23.4540i 0.135473 0.961522i
\(596\) 0 0
\(597\) 9.32963 0.381836
\(598\) 0 0
\(599\) 4.69105i 0.191671i 0.995397 + 0.0958356i \(0.0305523\pi\)
−0.995397 + 0.0958356i \(0.969448\pi\)
\(600\) 0 0
\(601\) 2.24346i 0.0915126i −0.998953 0.0457563i \(-0.985430\pi\)
0.998953 0.0457563i \(-0.0145698\pi\)
\(602\) 0 0
\(603\) 6.40870 0.260983
\(604\) 0 0
\(605\) −2.95896 + 21.0013i −0.120299 + 0.853824i
\(606\) 0 0
\(607\) −20.2716 + 20.2716i −0.822800 + 0.822800i −0.986509 0.163709i \(-0.947654\pi\)
0.163709 + 0.986509i \(0.447654\pi\)
\(608\) 0 0
\(609\) 29.2396i 1.18485i
\(610\) 0 0
\(611\) −27.4545 + 27.4545i −1.11069 + 1.11069i
\(612\) 0 0
\(613\) 10.2599i 0.414392i 0.978299 + 0.207196i \(0.0664338\pi\)
−0.978299 + 0.207196i \(0.933566\pi\)
\(614\) 0 0
\(615\) 10.7361 + 1.51265i 0.432919 + 0.0609958i
\(616\) 0 0
\(617\) 16.5590 16.5590i 0.666640 0.666640i −0.290297 0.956937i \(-0.593754\pi\)
0.956937 + 0.290297i \(0.0937539\pi\)
\(618\) 0 0
\(619\) 14.3984 14.3984i 0.578720 0.578720i −0.355831 0.934550i \(-0.615802\pi\)
0.934550 + 0.355831i \(0.115802\pi\)
\(620\) 0 0
\(621\) 2.63907 + 2.63907i 0.105902 + 0.105902i
\(622\) 0 0
\(623\) −5.62831 5.62831i −0.225493 0.225493i
\(624\) 0 0
\(625\) 21.1828 + 13.2773i 0.847313 + 0.531094i
\(626\) 0 0
\(627\) −4.17854 −0.166875
\(628\) 0 0
\(629\) −12.0962 12.0962i −0.482306 0.482306i
\(630\) 0 0
\(631\) −14.9606 −0.595571 −0.297785 0.954633i \(-0.596248\pi\)
−0.297785 + 0.954633i \(0.596248\pi\)
\(632\) 0 0
\(633\) 7.58277 + 7.58277i 0.301388 + 0.301388i
\(634\) 0 0
\(635\) −30.6230 + 23.0594i −1.21524 + 0.915086i
\(636\) 0 0
\(637\) 4.29466i 0.170161i
\(638\) 0 0
\(639\) −13.3214 −0.526988
\(640\) 0 0
\(641\) −36.0219 −1.42278 −0.711390 0.702797i \(-0.751934\pi\)
−0.711390 + 0.702797i \(0.751934\pi\)
\(642\) 0 0
\(643\) 5.24582i 0.206875i 0.994636 + 0.103437i \(0.0329842\pi\)
−0.994636 + 0.103437i \(0.967016\pi\)
\(644\) 0 0
\(645\) 0.143848 1.02096i 0.00566400 0.0402004i
\(646\) 0 0
\(647\) −28.2923 28.2923i −1.11229 1.11229i −0.992841 0.119445i \(-0.961888\pi\)
−0.119445 0.992841i \(-0.538112\pi\)
\(648\) 0 0
\(649\) −11.2709 −0.442422
\(650\) 0 0
\(651\) −15.1820 15.1820i −0.595028 0.595028i
\(652\) 0 0
\(653\) 9.14647 0.357929 0.178965 0.983856i \(-0.442725\pi\)
0.178965 + 0.983856i \(0.442725\pi\)
\(654\) 0 0
\(655\) 22.7938 17.1640i 0.890629 0.670653i
\(656\) 0 0
\(657\) −1.62933 1.62933i −0.0635662 0.0635662i
\(658\) 0 0
\(659\) 13.0731 + 13.0731i 0.509256 + 0.509256i 0.914298 0.405042i \(-0.132743\pi\)
−0.405042 + 0.914298i \(0.632743\pi\)
\(660\) 0 0
\(661\) 10.8969 10.8969i 0.423839 0.423839i −0.462684 0.886523i \(-0.653114\pi\)
0.886523 + 0.462684i \(0.153114\pi\)
\(662\) 0 0
\(663\) −15.8481 + 15.8481i −0.615488 + 0.615488i
\(664\) 0 0
\(665\) −2.94437 + 20.8978i −0.114178 + 0.810381i
\(666\) 0 0
\(667\) 39.2506i 1.51979i
\(668\) 0 0
\(669\) 8.76331 8.76331i 0.338809 0.338809i
\(670\) 0 0
\(671\) 14.8108i 0.571764i
\(672\) 0 0
\(673\) 13.7432 13.7432i 0.529762 0.529762i −0.390740 0.920501i \(-0.627781\pi\)
0.920501 + 0.390740i \(0.127781\pi\)
\(674\) 0 0
\(675\) 1.38152 4.80535i 0.0531746 0.184958i
\(676\) 0 0
\(677\) 10.5396 0.405070 0.202535 0.979275i \(-0.435082\pi\)
0.202535 + 0.979275i \(0.435082\pi\)
\(678\) 0 0
\(679\) 12.5393i 0.481214i
\(680\) 0 0
\(681\) 25.0028i 0.958108i
\(682\) 0 0
\(683\) 36.3666 1.39153 0.695765 0.718270i \(-0.255066\pi\)
0.695765 + 0.718270i \(0.255066\pi\)
\(684\) 0 0
\(685\) −20.5365 + 15.4642i −0.784658 + 0.590856i
\(686\) 0 0
\(687\) −7.89911 + 7.89911i −0.301370 + 0.301370i
\(688\) 0 0
\(689\) 14.1935i 0.540728i
\(690\) 0 0
\(691\) −7.71130 + 7.71130i −0.293352 + 0.293352i −0.838403 0.545051i \(-0.816510\pi\)
0.545051 + 0.838403i \(0.316510\pi\)
\(692\) 0 0
\(693\) 3.42234i 0.130004i
\(694\) 0 0
\(695\) −7.54295 + 5.67992i −0.286120 + 0.215452i
\(696\) 0 0
\(697\) −13.0624 + 13.0624i −0.494774 + 0.494774i
\(698\) 0 0
\(699\) 7.91066 7.91066i 0.299209 0.299209i
\(700\) 0 0
\(701\) 8.27188 + 8.27188i 0.312425 + 0.312425i 0.845848 0.533424i \(-0.179095\pi\)
−0.533424 + 0.845848i \(0.679095\pi\)
\(702\) 0 0
\(703\) 10.7778 + 10.7778i 0.406493 + 0.406493i
\(704\) 0 0
\(705\) 8.87759 + 11.7895i 0.334349 + 0.444016i
\(706\) 0 0
\(707\) 27.1450 1.02089
\(708\) 0 0
\(709\) −24.1462 24.1462i −0.906828 0.906828i 0.0891868 0.996015i \(-0.471573\pi\)
−0.996015 + 0.0891868i \(0.971573\pi\)
\(710\) 0 0
\(711\) 4.14482 0.155443
\(712\) 0 0
\(713\) −20.3799 20.3799i −0.763234 0.763234i
\(714\) 0 0
\(715\) 9.74005 + 12.9348i 0.364257 + 0.483734i
\(716\) 0 0
\(717\) 11.4515i 0.427664i
\(718\) 0 0
\(719\) −5.46091 −0.203658 −0.101829 0.994802i \(-0.532469\pi\)
−0.101829 + 0.994802i \(0.532469\pi\)
\(720\) 0 0
\(721\) −16.1143 −0.600128
\(722\) 0 0
\(723\) 20.9793i 0.780227i
\(724\) 0 0
\(725\) −46.0084 + 25.4612i −1.70871 + 0.945606i
\(726\) 0 0
\(727\) 0.818679 + 0.818679i 0.0303631 + 0.0303631i 0.722125 0.691762i \(-0.243165\pi\)
−0.691762 + 0.722125i \(0.743165\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 1.24219 + 1.24219i 0.0459441 + 0.0459441i
\(732\) 0 0
\(733\) −3.99744 −0.147649 −0.0738245 0.997271i \(-0.523520\pi\)
−0.0738245 + 0.997271i \(0.523520\pi\)
\(734\) 0 0
\(735\) 1.61646 + 0.227749i 0.0596239 + 0.00840066i
\(736\) 0 0
\(737\) 5.57811 + 5.57811i 0.205472 + 0.205472i
\(738\) 0 0
\(739\) 22.1967 + 22.1967i 0.816517 + 0.816517i 0.985602 0.169084i \(-0.0540811\pi\)
−0.169084 + 0.985602i \(0.554081\pi\)
\(740\) 0 0
\(741\) 14.1208 14.1208i 0.518740 0.518740i
\(742\) 0 0
\(743\) 29.4601 29.4601i 1.08078 1.08078i 0.0843481 0.996436i \(-0.473119\pi\)
0.996436 0.0843481i \(-0.0268808\pi\)
\(744\) 0 0
\(745\) −1.89268 2.51348i −0.0693423 0.0920867i
\(746\) 0 0
\(747\) 0.241277i 0.00882785i
\(748\) 0 0
\(749\) 19.7735 19.7735i 0.722506 0.722506i
\(750\) 0 0
\(751\) 33.6280i 1.22710i −0.789654 0.613552i \(-0.789740\pi\)
0.789654 0.613552i \(-0.210260\pi\)
\(752\) 0 0
\(753\) 15.6566 15.6566i 0.570557 0.570557i
\(754\) 0 0
\(755\) −40.1577 5.65799i −1.46149 0.205915i
\(756\) 0 0
\(757\) −22.0813 −0.802560 −0.401280 0.915955i \(-0.631435\pi\)
−0.401280 + 0.915955i \(0.631435\pi\)
\(758\) 0 0
\(759\) 4.59407i 0.166754i
\(760\) 0 0
\(761\) 0.186655i 0.00676626i −0.999994 0.00338313i \(-0.998923\pi\)
0.999994 0.00338313i \(-0.00107689\pi\)
\(762\) 0 0
\(763\) −44.0859 −1.59602
\(764\) 0 0
\(765\) 5.12458 + 6.80545i 0.185280 + 0.246052i
\(766\) 0 0
\(767\) 38.0884 38.0884i 1.37529 1.37529i
\(768\) 0 0
\(769\) 2.52000i 0.0908734i −0.998967 0.0454367i \(-0.985532\pi\)
0.998967 0.0454367i \(-0.0144679\pi\)
\(770\) 0 0
\(771\) 8.44246 8.44246i 0.304048 0.304048i
\(772\) 0 0
\(773\) 3.95359i 0.142201i −0.997469 0.0711003i \(-0.977349\pi\)
0.997469 0.0711003i \(-0.0226511\pi\)
\(774\) 0 0
\(775\) −10.6686 + 37.1088i −0.383228 + 1.33299i
\(776\) 0 0
\(777\) 8.82732 8.82732i 0.316678 0.316678i
\(778\) 0 0
\(779\) 11.6387 11.6387i 0.417001 0.417001i
\(780\) 0 0
\(781\) −11.5949 11.5949i −0.414899 0.414899i
\(782\) 0 0
\(783\) 7.43646 + 7.43646i 0.265757 + 0.265757i
\(784\) 0 0
\(785\) −3.22852 + 22.9145i −0.115231 + 0.817855i
\(786\) 0 0
\(787\) −25.3395 −0.903255 −0.451628 0.892207i \(-0.649156\pi\)
−0.451628 + 0.892207i \(0.649156\pi\)
\(788\) 0 0
\(789\) 10.4796 + 10.4796i 0.373084 + 0.373084i
\(790\) 0 0
\(791\) −1.65300 −0.0587739
\(792\) 0 0
\(793\) 50.0510 + 50.0510i 1.77736 + 1.77736i
\(794\) 0 0
\(795\) 5.34225 + 0.752691i 0.189470 + 0.0266952i
\(796\) 0 0
\(797\) 40.2492i 1.42570i 0.701317 + 0.712849i \(0.252596\pi\)
−0.701317 + 0.712849i \(0.747404\pi\)
\(798\) 0 0
\(799\) −25.1453 −0.889576
\(800\) 0 0
\(801\) 2.86287 0.101155
\(802\) 0 0
\(803\) 2.83632i 0.100092i
\(804\) 0 0
\(805\) 22.9759 + 3.23717i 0.809795 + 0.114095i
\(806\) 0 0
\(807\) 5.49337 + 5.49337i 0.193376 + 0.193376i
\(808\) 0 0
\(809\) −10.5847 −0.372137 −0.186069 0.982537i \(-0.559575\pi\)
−0.186069 + 0.982537i \(0.559575\pi\)
\(810\) 0 0
\(811\) −14.0997 14.0997i −0.495109 0.495109i 0.414803 0.909911i \(-0.363851\pi\)
−0.909911 + 0.414803i \(0.863851\pi\)
\(812\) 0 0
\(813\) 29.9569 1.05063
\(814\) 0 0
\(815\) 4.12045 29.2450i 0.144333 1.02441i
\(816\) 0 0
\(817\) −1.10681 1.10681i −0.0387222 0.0387222i
\(818\) 0 0
\(819\) −11.5653 11.5653i −0.404125 0.404125i
\(820\) 0 0
\(821\) 11.4283 11.4283i 0.398851 0.398851i −0.478977 0.877828i \(-0.658992\pi\)
0.877828 + 0.478977i \(0.158992\pi\)
\(822\) 0 0
\(823\) −10.9724 + 10.9724i −0.382475 + 0.382475i −0.871993 0.489518i \(-0.837173\pi\)
0.489518 + 0.871993i \(0.337173\pi\)
\(824\) 0 0
\(825\) 5.38502 2.98009i 0.187482 0.103753i
\(826\) 0 0
\(827\) 24.8187i 0.863032i 0.902105 + 0.431516i \(0.142021\pi\)
−0.902105 + 0.431516i \(0.857979\pi\)
\(828\) 0 0
\(829\) −7.79087 + 7.79087i −0.270588 + 0.270588i −0.829337 0.558749i \(-0.811282\pi\)
0.558749 + 0.829337i \(0.311282\pi\)
\(830\) 0 0
\(831\) 7.29980i 0.253227i
\(832\) 0 0
\(833\) −1.96672 + 1.96672i −0.0681428 + 0.0681428i
\(834\) 0 0
\(835\) 0.0322485 + 0.0428261i 0.00111601 + 0.00148206i
\(836\) 0 0
\(837\) 7.72239 0.266925
\(838\) 0 0
\(839\) 12.7895i 0.441542i 0.975326 + 0.220771i \(0.0708573\pi\)
−0.975326 + 0.220771i \(0.929143\pi\)
\(840\) 0 0
\(841\) 81.6018i 2.81386i
\(842\) 0 0
\(843\) −9.84488 −0.339076
\(844\) 0 0
\(845\) −47.8419 6.74065i −1.64581 0.231885i
\(846\) 0 0
\(847\) 18.6468 18.6468i 0.640713 0.640713i
\(848\) 0 0
\(849\) 2.84482i 0.0976340i
\(850\) 0 0
\(851\) 11.8496 11.8496i 0.406199 0.406199i
\(852\) 0 0
\(853\) 5.84193i 0.200024i −0.994986 0.100012i \(-0.968112\pi\)
0.994986 0.100012i \(-0.0318881\pi\)
\(854\) 0 0
\(855\) −4.56605 6.06373i −0.156156 0.207375i
\(856\) 0 0
\(857\) 26.9251 26.9251i 0.919745 0.919745i −0.0772652 0.997011i \(-0.524619\pi\)
0.997011 + 0.0772652i \(0.0246188\pi\)
\(858\) 0 0
\(859\) 2.05019 2.05019i 0.0699516 0.0699516i −0.671265 0.741217i \(-0.734249\pi\)
0.741217 + 0.671265i \(0.234249\pi\)
\(860\) 0 0
\(861\) −9.53244 9.53244i −0.324865 0.324865i
\(862\) 0 0
\(863\) −18.1091 18.1091i −0.616443 0.616443i 0.328175 0.944617i \(-0.393567\pi\)
−0.944617 + 0.328175i \(0.893567\pi\)
\(864\) 0 0
\(865\) −7.61532 1.07295i −0.258929 0.0364815i
\(866\) 0 0
\(867\) 2.48490 0.0843916
\(868\) 0 0
\(869\) 3.60763 + 3.60763i 0.122381 + 0.122381i
\(870\) 0 0
\(871\) −37.7009 −1.27745
\(872\) 0 0
\(873\) −3.18909 3.18909i −0.107934 0.107934i
\(874\) 0 0
\(875\) −11.1096 29.0316i −0.375572 0.981446i
\(876\) 0 0
\(877\) 47.2518i 1.59558i −0.602934 0.797791i \(-0.706002\pi\)
0.602934 0.797791i \(-0.293998\pi\)
\(878\) 0 0
\(879\) 27.6123 0.931338
\(880\) 0 0
\(881\) 11.4431 0.385527 0.192763 0.981245i \(-0.438255\pi\)
0.192763 + 0.981245i \(0.438255\pi\)
\(882\) 0 0
\(883\) 46.1246i 1.55222i −0.630599 0.776109i \(-0.717191\pi\)
0.630599 0.776109i \(-0.282809\pi\)
\(884\) 0 0
\(885\) −12.3162 16.3559i −0.414003 0.549797i
\(886\) 0 0
\(887\) 25.0305 + 25.0305i 0.840441 + 0.840441i 0.988916 0.148475i \(-0.0474365\pi\)
−0.148475 + 0.988916i \(0.547436\pi\)
\(888\) 0 0
\(889\) 47.6641 1.59860
\(890\) 0 0
\(891\) −0.870396 0.870396i −0.0291594 0.0291594i
\(892\) 0 0
\(893\) 22.4047 0.749745
\(894\) 0 0
\(895\) −1.55366 2.06326i −0.0519331 0.0689672i
\(896\) 0 0
\(897\) −15.5250 15.5250i −0.518365 0.518365i
\(898\) 0 0
\(899\) −57.4272 57.4272i −1.91531 1.91531i
\(900\) 0 0
\(901\) −6.49984 + 6.49984i −0.216541 + 0.216541i
\(902\) 0 0
\(903\) −0.906503 + 0.906503i −0.0301665 + 0.0301665i
\(904\) 0 0
\(905\) 38.4153 28.9271i 1.27697 0.961571i
\(906\) 0 0
\(907\) 25.0169i 0.830671i −0.909668 0.415336i \(-0.863664\pi\)
0.909668 0.415336i \(-0.136336\pi\)
\(908\) 0 0
\(909\) −6.90372 + 6.90372i −0.228982 + 0.228982i
\(910\) 0 0
\(911\) 5.76809i 0.191105i 0.995424 + 0.0955527i \(0.0304618\pi\)
−0.995424 + 0.0955527i \(0.969538\pi\)
\(912\) 0 0
\(913\) −0.210006 + 0.210006i −0.00695019 + 0.00695019i
\(914\) 0 0
\(915\) 21.4928 16.1843i 0.710531 0.535038i
\(916\) 0 0
\(917\) −35.4782 −1.17159
\(918\) 0 0
\(919\) 0.398221i 0.0131361i 0.999978 + 0.00656804i \(0.00209069\pi\)
−0.999978 + 0.00656804i \(0.997909\pi\)
\(920\) 0 0
\(921\) 23.7612i 0.782958i
\(922\) 0 0
\(923\) 78.3668 2.57947
\(924\) 0 0
\(925\) −21.5764 6.20310i −0.709426 0.203957i
\(926\) 0 0
\(927\) 4.09832 4.09832i 0.134606 0.134606i
\(928\) 0 0
\(929\) 4.71373i 0.154653i 0.997006 + 0.0773263i \(0.0246383\pi\)
−0.997006 + 0.0773263i \(0.975362\pi\)
\(930\) 0 0
\(931\) 1.75237 1.75237i 0.0574315 0.0574315i
\(932\) 0 0
\(933\) 12.2337i 0.400512i
\(934\) 0 0
\(935\) −1.46302 + 10.3839i −0.0478460 + 0.339588i
\(936\) 0 0
\(937\) 7.20557 7.20557i 0.235396 0.235396i −0.579545 0.814940i \(-0.696770\pi\)
0.814940 + 0.579545i \(0.196770\pi\)
\(938\) 0 0
\(939\) 10.9229 10.9229i 0.356456 0.356456i
\(940\) 0 0
\(941\) −36.0800 36.0800i −1.17617 1.17617i −0.980711 0.195464i \(-0.937379\pi\)
−0.195464 0.980711i \(-0.562621\pi\)
\(942\) 0 0
\(943\) −12.7961 12.7961i −0.416699 0.416699i
\(944\) 0 0
\(945\) −4.96636 + 3.73972i −0.161556 + 0.121653i
\(946\) 0 0
\(947\) 27.2599 0.885828 0.442914 0.896564i \(-0.353945\pi\)
0.442914 + 0.896564i \(0.353945\pi\)
\(948\) 0 0
\(949\) 9.58495 + 9.58495i 0.311141 + 0.311141i
\(950\) 0 0
\(951\) 21.5403 0.698491
\(952\) 0 0
\(953\) −17.4014 17.4014i −0.563687 0.563687i 0.366666 0.930353i \(-0.380499\pi\)
−0.930353 + 0.366666i \(0.880499\pi\)
\(954\) 0 0
\(955\) −0.167299 + 1.18741i −0.00541365 + 0.0384236i
\(956\) 0 0
\(957\) 12.9453i 0.418463i
\(958\) 0 0
\(959\) 31.9646 1.03219
\(960\) 0 0
\(961\) −28.6353 −0.923721
\(962\) 0 0
\(963\) 10.0579i 0.324111i
\(964\) 0 0
\(965\) 19.4758 14.6655i 0.626948 0.472099i
\(966\) 0 0
\(967\) 28.3082 + 28.3082i 0.910331 + 0.910331i 0.996298 0.0859674i \(-0.0273981\pi\)
−0.0859674 + 0.996298i \(0.527398\pi\)
\(968\) 0 0
\(969\) 12.9331 0.415471
\(970\) 0 0
\(971\) −25.2474 25.2474i −0.810229 0.810229i 0.174439 0.984668i \(-0.444189\pi\)
−0.984668 + 0.174439i \(0.944189\pi\)
\(972\) 0 0
\(973\) 11.7405 0.376382
\(974\) 0 0
\(975\) −8.12713 + 28.2687i −0.260277 + 0.905324i
\(976\) 0 0
\(977\) 15.1184 + 15.1184i 0.483680 + 0.483680i 0.906305 0.422625i \(-0.138891\pi\)
−0.422625 + 0.906305i \(0.638891\pi\)
\(978\) 0 0
\(979\) 2.49183 + 2.49183i 0.0796393 + 0.0796393i
\(980\) 0 0
\(981\) 11.2123 11.2123i 0.357980 0.357980i
\(982\) 0 0
\(983\) −29.6618 + 29.6618i −0.946063 + 0.946063i −0.998618 0.0525548i \(-0.983264\pi\)
0.0525548 + 0.998618i \(0.483264\pi\)
\(984\) 0 0
\(985\) −43.5232 6.13217i −1.38677 0.195387i
\(986\) 0 0
\(987\) 18.3501i 0.584089i
\(988\) 0 0
\(989\) −1.21687 + 1.21687i −0.0386942 + 0.0386942i
\(990\) 0 0
\(991\) 35.7662i 1.13615i 0.822977 + 0.568075i \(0.192312\pi\)
−0.822977 + 0.568075i \(0.807688\pi\)
\(992\) 0 0
\(993\) −21.2143 + 21.2143i −0.673215 + 0.673215i
\(994\) 0 0
\(995\) −2.91054 + 20.6577i −0.0922704 + 0.654892i
\(996\) 0 0
\(997\) 53.1029 1.68178 0.840892 0.541203i \(-0.182031\pi\)
0.840892 + 0.541203i \(0.182031\pi\)
\(998\) 0 0
\(999\) 4.49007i 0.142059i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.bc.e.367.1 16
4.3 odd 2 240.2.bc.e.67.6 yes 16
5.3 odd 4 960.2.y.e.943.5 16
8.3 odd 2 1920.2.bc.i.607.8 16
8.5 even 2 1920.2.bc.j.607.8 16
12.11 even 2 720.2.bd.f.307.3 16
16.3 odd 4 1920.2.y.j.1567.4 16
16.5 even 4 240.2.y.e.187.2 yes 16
16.11 odd 4 960.2.y.e.847.5 16
16.13 even 4 1920.2.y.i.1567.4 16
20.3 even 4 240.2.y.e.163.2 16
40.3 even 4 1920.2.y.i.223.4 16
40.13 odd 4 1920.2.y.j.223.4 16
48.5 odd 4 720.2.z.f.667.7 16
60.23 odd 4 720.2.z.f.163.7 16
80.3 even 4 1920.2.bc.j.1183.8 16
80.13 odd 4 1920.2.bc.i.1183.8 16
80.43 even 4 inner 960.2.bc.e.463.1 16
80.53 odd 4 240.2.bc.e.43.6 yes 16
240.53 even 4 720.2.bd.f.523.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.2 16 20.3 even 4
240.2.y.e.187.2 yes 16 16.5 even 4
240.2.bc.e.43.6 yes 16 80.53 odd 4
240.2.bc.e.67.6 yes 16 4.3 odd 2
720.2.z.f.163.7 16 60.23 odd 4
720.2.z.f.667.7 16 48.5 odd 4
720.2.bd.f.307.3 16 12.11 even 2
720.2.bd.f.523.3 16 240.53 even 4
960.2.y.e.847.5 16 16.11 odd 4
960.2.y.e.943.5 16 5.3 odd 4
960.2.bc.e.367.1 16 1.1 even 1 trivial
960.2.bc.e.463.1 16 80.43 even 4 inner
1920.2.y.i.223.4 16 40.3 even 4
1920.2.y.i.1567.4 16 16.13 even 4
1920.2.y.j.223.4 16 40.13 odd 4
1920.2.y.j.1567.4 16 16.3 odd 4
1920.2.bc.i.607.8 16 8.3 odd 2
1920.2.bc.i.1183.8 16 80.13 odd 4
1920.2.bc.j.607.8 16 8.5 even 2
1920.2.bc.j.1183.8 16 80.3 even 4