Properties

Label 960.2.a.p
Level $960$
Weight $2$
Character orbit 960.a
Self dual yes
Analytic conductor $7.666$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} + q^{5} + 4q^{7} + q^{9} + O(q^{10}) \) \( q + q^{3} + q^{5} + 4q^{7} + q^{9} - 2q^{13} + q^{15} + 6q^{17} - 4q^{19} + 4q^{21} + q^{25} + q^{27} + 6q^{29} - 8q^{31} + 4q^{35} - 2q^{37} - 2q^{39} - 6q^{41} - 4q^{43} + q^{45} + 9q^{49} + 6q^{51} + 6q^{53} - 4q^{57} + 10q^{61} + 4q^{63} - 2q^{65} - 4q^{67} + 2q^{73} + q^{75} - 8q^{79} + q^{81} + 12q^{83} + 6q^{85} + 6q^{87} + 18q^{89} - 8q^{91} - 8q^{93} - 4q^{95} + 2q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 1.00000 0 4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.2.a.p 1
3.b odd 2 1 2880.2.a.q 1
4.b odd 2 1 960.2.a.e 1
5.b even 2 1 4800.2.a.d 1
5.c odd 4 2 4800.2.f.w 2
8.b even 2 1 240.2.a.b 1
8.d odd 2 1 30.2.a.a 1
12.b even 2 1 2880.2.a.a 1
16.e even 4 2 3840.2.k.f 2
16.f odd 4 2 3840.2.k.y 2
20.d odd 2 1 4800.2.a.cq 1
20.e even 4 2 4800.2.f.p 2
24.f even 2 1 90.2.a.c 1
24.h odd 2 1 720.2.a.j 1
40.e odd 2 1 150.2.a.b 1
40.f even 2 1 1200.2.a.k 1
40.i odd 4 2 1200.2.f.e 2
40.k even 4 2 150.2.c.a 2
56.e even 2 1 1470.2.a.d 1
56.k odd 6 2 1470.2.i.o 2
56.m even 6 2 1470.2.i.q 2
72.l even 6 2 810.2.e.b 2
72.p odd 6 2 810.2.e.l 2
88.g even 2 1 3630.2.a.w 1
104.h odd 2 1 5070.2.a.w 1
104.m even 4 2 5070.2.b.k 2
120.i odd 2 1 3600.2.a.f 1
120.m even 2 1 450.2.a.d 1
120.q odd 4 2 450.2.c.b 2
120.w even 4 2 3600.2.f.i 2
136.e odd 2 1 8670.2.a.g 1
168.e odd 2 1 4410.2.a.z 1
280.n even 2 1 7350.2.a.ct 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.a.a 1 8.d odd 2 1
90.2.a.c 1 24.f even 2 1
150.2.a.b 1 40.e odd 2 1
150.2.c.a 2 40.k even 4 2
240.2.a.b 1 8.b even 2 1
450.2.a.d 1 120.m even 2 1
450.2.c.b 2 120.q odd 4 2
720.2.a.j 1 24.h odd 2 1
810.2.e.b 2 72.l even 6 2
810.2.e.l 2 72.p odd 6 2
960.2.a.e 1 4.b odd 2 1
960.2.a.p 1 1.a even 1 1 trivial
1200.2.a.k 1 40.f even 2 1
1200.2.f.e 2 40.i odd 4 2
1470.2.a.d 1 56.e even 2 1
1470.2.i.o 2 56.k odd 6 2
1470.2.i.q 2 56.m even 6 2
2880.2.a.a 1 12.b even 2 1
2880.2.a.q 1 3.b odd 2 1
3600.2.a.f 1 120.i odd 2 1
3600.2.f.i 2 120.w even 4 2
3630.2.a.w 1 88.g even 2 1
3840.2.k.f 2 16.e even 4 2
3840.2.k.y 2 16.f odd 4 2
4410.2.a.z 1 168.e odd 2 1
4800.2.a.d 1 5.b even 2 1
4800.2.a.cq 1 20.d odd 2 1
4800.2.f.p 2 20.e even 4 2
4800.2.f.w 2 5.c odd 4 2
5070.2.a.w 1 104.h odd 2 1
5070.2.b.k 2 104.m even 4 2
7350.2.a.ct 1 280.n even 2 1
8670.2.a.g 1 136.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(960))\):

\( T_{7} - 4 \)
\( T_{11} \)
\( T_{13} + 2 \)
\( T_{19} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -1 + T \)
$5$ \( -1 + T \)
$7$ \( -4 + T \)
$11$ \( T \)
$13$ \( 2 + T \)
$17$ \( -6 + T \)
$19$ \( 4 + T \)
$23$ \( T \)
$29$ \( -6 + T \)
$31$ \( 8 + T \)
$37$ \( 2 + T \)
$41$ \( 6 + T \)
$43$ \( 4 + T \)
$47$ \( T \)
$53$ \( -6 + T \)
$59$ \( T \)
$61$ \( -10 + T \)
$67$ \( 4 + T \)
$71$ \( T \)
$73$ \( -2 + T \)
$79$ \( 8 + T \)
$83$ \( -12 + T \)
$89$ \( -18 + T \)
$97$ \( -2 + T \)
show more
show less