Defining parameters
Level: | \( N \) | = | \( 96 = 2^{5} \cdot 3 \) |
Weight: | \( k \) | = | \( 9 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(4608\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(96))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2112 | 874 | 1238 |
Cusp forms | 1984 | 854 | 1130 |
Eisenstein series | 128 | 20 | 108 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(96))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(96))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(96)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)