Properties

Label 96.9
Level 96
Weight 9
Dimension 854
Nonzero newspaces 6
Newform subspaces 10
Sturm bound 4608
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 10 \)
Sturm bound: \(4608\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(96))\).

Total New Old
Modular forms 2112 874 1238
Cusp forms 1984 854 1130
Eisenstein series 128 20 108

Trace form

\( 854 q - 4 q^{3} - 8 q^{4} - 672 q^{5} - 4 q^{6} - 4 q^{7} - 3814 q^{9} - 70008 q^{10} + 39552 q^{11} + 45356 q^{12} - 159912 q^{13} - 291168 q^{14} + 13124 q^{15} + 556752 q^{16} + 309120 q^{17} + 52484 q^{18}+ \cdots - 543516804 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(96))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
96.9.b \(\chi_{96}(79, \cdot)\) 96.9.b.a 16 1
96.9.e \(\chi_{96}(65, \cdot)\) 96.9.e.a 16 1
96.9.e.b 16
96.9.g \(\chi_{96}(31, \cdot)\) 96.9.g.a 8 1
96.9.g.b 8
96.9.h \(\chi_{96}(17, \cdot)\) 96.9.h.a 1 1
96.9.h.b 1
96.9.h.c 28
96.9.i \(\chi_{96}(41, \cdot)\) None 0 2
96.9.l \(\chi_{96}(7, \cdot)\) None 0 2
96.9.m \(\chi_{96}(19, \cdot)\) 96.9.m.a 256 4
96.9.p \(\chi_{96}(5, \cdot)\) 96.9.p.a 504 4

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(96))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(96)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)