Newspace parameters
Level: | \( N \) | \(=\) | \( 96 = 2^{5} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 96.o (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(15.3968467020\) |
Analytic rank: | \(0\) |
Dimension: | \(312\) |
Relative dimension: | \(78\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −5.65577 | − | 0.110924i | −1.66250 | − | 15.4996i | 31.9754 | + | 1.25472i | −43.4566 | − | 18.0003i | 7.68343 | + | 87.8463i | 56.6824 | − | 56.6824i | −180.706 | − | 10.6432i | −237.472 | + | 51.5359i | 243.784 | + | 106.626i |
11.2 | −5.64922 | + | 0.293734i | 15.5875 | + | 0.174756i | 31.8274 | − | 3.31874i | −102.440 | − | 42.4320i | −88.1085 | + | 3.59134i | −65.5079 | + | 65.5079i | −178.825 | + | 28.0971i | 242.939 | + | 5.44800i | 591.170 | + | 209.618i |
11.3 | −5.58086 | − | 0.924104i | 6.74983 | + | 14.0513i | 30.2921 | + | 10.3146i | −19.2402 | − | 7.96957i | −24.6850 | − | 84.6561i | 71.2494 | − | 71.2494i | −159.524 | − | 85.5573i | −151.879 | + | 189.688i | 100.012 | + | 62.2571i |
11.4 | −5.57531 | + | 0.957052i | −15.4283 | − | 2.22908i | 30.1681 | − | 10.6717i | −24.8298 | − | 10.2848i | 88.1506 | − | 2.33781i | 36.1711 | − | 36.1711i | −157.983 | + | 88.3705i | 233.062 | + | 68.7818i | 148.277 | + | 33.5777i |
11.5 | −5.55856 | − | 1.04998i | −2.52416 | + | 15.3827i | 29.7951 | + | 11.6727i | 18.4880 | + | 7.65797i | 30.1822 | − | 82.8555i | −168.744 | + | 168.744i | −153.362 | − | 96.1675i | −230.257 | − | 77.6568i | −94.7257 | − | 61.9791i |
11.6 | −5.55235 | − | 1.08231i | 15.2176 | − | 3.38008i | 29.6572 | + | 12.0187i | 59.8212 | + | 24.7787i | −88.1517 | + | 2.29719i | 157.272 | − | 157.272i | −151.659 | − | 98.8306i | 220.150 | − | 102.873i | −305.330 | − | 202.325i |
11.7 | −5.52072 | + | 1.23357i | 8.52214 | − | 13.0527i | 28.9566 | − | 13.6204i | 43.6201 | + | 18.0681i | −30.9468 | + | 82.5730i | −129.216 | + | 129.216i | −143.059 | + | 110.914i | −97.7463 | − | 222.474i | −263.103 | − | 45.9400i |
11.8 | −5.49139 | − | 1.35816i | −13.2973 | − | 8.13523i | 28.3108 | + | 14.9164i | 88.6591 | + | 36.7238i | 61.9718 | + | 62.7336i | −66.1750 | + | 66.1750i | −135.207 | − | 120.362i | 110.636 | + | 216.353i | −436.985 | − | 322.078i |
11.9 | −5.33954 | + | 1.86796i | −10.2631 | + | 11.7332i | 25.0215 | − | 19.9481i | 64.8477 | + | 26.8608i | 32.8833 | − | 81.8211i | 53.5751 | − | 53.5751i | −96.3409 | + | 153.253i | −32.3363 | − | 240.839i | −396.432 | − | 22.2916i |
11.10 | −5.20306 | + | 2.21994i | 13.2034 | + | 8.28682i | 22.1437 | − | 23.1010i | 51.7868 | + | 21.4508i | −87.0941 | − | 13.8062i | −36.2549 | + | 36.2549i | −63.9324 | + | 169.354i | 105.657 | + | 218.828i | −317.070 | + | 3.35378i |
11.11 | −4.99058 | − | 2.66347i | −10.7907 | + | 11.2499i | 17.8119 | + | 26.5845i | −78.3856 | − | 32.4684i | 83.8158 | − | 27.4027i | 81.6131 | − | 81.6131i | −18.0846 | − | 180.114i | −10.1198 | − | 242.789i | 304.712 | + | 370.814i |
11.12 | −4.89295 | + | 2.83885i | −10.4113 | + | 11.6019i | 15.8819 | − | 27.7807i | −73.2819 | − | 30.3544i | 18.0059 | − | 86.3237i | −129.352 | + | 129.352i | 1.15577 | + | 181.016i | −26.2092 | − | 241.582i | 444.736 | − | 59.5138i |
11.13 | −4.87450 | − | 2.87041i | 13.4885 | − | 7.81407i | 15.5214 | + | 27.9836i | 8.96462 | + | 3.71327i | −88.1794 | − | 0.627978i | −89.1993 | + | 89.1993i | 4.66538 | − | 180.959i | 120.881 | − | 210.801i | −33.0394 | − | 43.8325i |
11.14 | −4.75091 | − | 3.07064i | −13.9105 | + | 7.03543i | 13.1424 | + | 29.1767i | 24.4184 | + | 10.1144i | 87.6910 | + | 9.28947i | 33.8384 | − | 33.8384i | 27.1528 | − | 178.971i | 144.005 | − | 195.733i | −84.9520 | − | 123.033i |
11.15 | −4.71337 | − | 3.12797i | −0.892396 | − | 15.5629i | 12.4317 | + | 29.4865i | 13.0568 | + | 5.40829i | −44.4740 | + | 76.1450i | 30.1232 | − | 30.1232i | 33.6378 | − | 177.867i | −241.407 | + | 27.7765i | −44.6244 | − | 66.3324i |
11.16 | −4.47443 | + | 3.46114i | 10.4026 | − | 11.6097i | 8.04102 | − | 30.9732i | −27.7552 | − | 11.4966i | −6.36272 | + | 87.9518i | 67.8781 | − | 67.8781i | 71.2238 | + | 166.419i | −26.5722 | − | 241.543i | 163.980 | − | 44.6241i |
11.17 | −4.47401 | + | 3.46168i | 1.30422 | + | 15.5338i | 8.03359 | − | 30.9752i | −47.4329 | − | 19.6473i | −59.6081 | − | 64.9836i | 130.212 | − | 130.212i | 71.2836 | + | 166.393i | −239.598 | + | 40.5191i | 280.228 | − | 76.2948i |
11.18 | −4.36540 | − | 3.59767i | −12.1487 | − | 9.76779i | 6.11347 | + | 31.4106i | −79.7682 | − | 33.0411i | 17.8925 | + | 86.3473i | −126.145 | + | 126.145i | 86.3174 | − | 159.114i | 52.1804 | + | 237.331i | 229.349 | + | 431.217i |
11.19 | −4.33770 | + | 3.63103i | −6.67206 | − | 14.0884i | 5.63129 | − | 31.5006i | 81.5741 | + | 33.7891i | 80.0968 | + | 36.8849i | 162.825 | − | 162.825i | 89.9527 | + | 157.088i | −153.967 | + | 187.998i | −476.533 | + | 149.631i |
11.20 | −4.31982 | + | 3.65229i | −9.11643 | − | 12.6448i | 5.32161 | − | 31.5544i | −5.13521 | − | 2.12707i | 85.5637 | + | 21.3273i | −137.882 | + | 137.882i | 92.2574 | + | 155.745i | −76.7813 | + | 230.551i | 29.9518 | − | 9.56668i |
See next 80 embeddings (of 312 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
32.h | odd | 8 | 1 | inner |
96.o | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 96.6.o.a | ✓ | 312 |
3.b | odd | 2 | 1 | inner | 96.6.o.a | ✓ | 312 |
32.h | odd | 8 | 1 | inner | 96.6.o.a | ✓ | 312 |
96.o | even | 8 | 1 | inner | 96.6.o.a | ✓ | 312 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
96.6.o.a | ✓ | 312 | 1.a | even | 1 | 1 | trivial |
96.6.o.a | ✓ | 312 | 3.b | odd | 2 | 1 | inner |
96.6.o.a | ✓ | 312 | 32.h | odd | 8 | 1 | inner |
96.6.o.a | ✓ | 312 | 96.o | even | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(96, [\chi])\).