Defining parameters
Level: | \( N \) | \(=\) | \( 96 = 2^{5} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 96.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(96, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 6 | 50 |
Cusp forms | 40 | 6 | 34 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(96, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
96.4.d.a | $6$ | $5.664$ | 6.0.8248384.1 | None | \(0\) | \(0\) | \(0\) | \(-28\) | \(q+\beta _{2}q^{3}+(-\beta _{2}+\beta _{3})q^{5}+(-5+\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(96, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(96, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)