Properties

Label 96.4.c.a.95.5
Level $96$
Weight $4$
Character 96.95
Analytic conductor $5.664$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [96,4,Mod(95,96)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("96.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(96, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 96.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66418336055\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.26525057735983104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} + 103x^{8} - 260x^{6} + 259x^{4} + 356x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{44}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 95.5
Root \(-0.248859 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 96.95
Dual form 96.4.c.a.95.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.497717 - 5.17226i) q^{3} +18.4532i q^{5} +17.1600i q^{7} +(-26.5046 + 5.14865i) q^{9} +48.1992 q^{11} +33.7471 q^{13} +(95.4449 - 9.18449i) q^{15} +84.4951i q^{17} -28.7135i q^{19} +(88.7562 - 8.54084i) q^{21} -96.4823 q^{23} -215.521 q^{25} +(39.8219 + 134.526i) q^{27} +141.202i q^{29} -51.8673i q^{31} +(-23.9896 - 249.299i) q^{33} -316.658 q^{35} +323.802 q^{37} +(-16.7965 - 174.549i) q^{39} -134.442i q^{41} -114.365i q^{43} +(-95.0091 - 489.094i) q^{45} -247.555 q^{47} +48.5332 q^{49} +(437.031 - 42.0547i) q^{51} -169.592i q^{53} +889.430i q^{55} +(-148.514 + 14.2912i) q^{57} -605.603 q^{59} -343.296 q^{61} +(-88.3509 - 454.819i) q^{63} +622.742i q^{65} -900.357i q^{67} +(48.0209 + 499.031i) q^{69} +331.924 q^{71} +777.525 q^{73} +(107.269 + 1114.73i) q^{75} +827.099i q^{77} -587.661i q^{79} +(675.983 - 272.925i) q^{81} +1463.98 q^{83} -1559.21 q^{85} +(730.332 - 70.2785i) q^{87} -78.6240i q^{89} +579.101i q^{91} +(-268.271 + 25.8152i) q^{93} +529.857 q^{95} -62.0627 q^{97} +(-1277.50 + 248.160i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{9} + 72 q^{13} + 136 q^{21} - 132 q^{25} + 80 q^{33} - 24 q^{37} - 544 q^{45} - 540 q^{49} - 888 q^{57} + 456 q^{61} + 1312 q^{69} + 2424 q^{73} + 2924 q^{81} - 3072 q^{85} - 2360 q^{93} - 2952 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/96\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(37\) \(65\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.497717 5.17226i −0.0957857 0.995402i
\(4\) 0 0
\(5\) 18.4532i 1.65051i 0.564763 + 0.825253i \(0.308968\pi\)
−0.564763 + 0.825253i \(0.691032\pi\)
\(6\) 0 0
\(7\) 17.1600i 0.926555i 0.886213 + 0.463277i \(0.153327\pi\)
−0.886213 + 0.463277i \(0.846673\pi\)
\(8\) 0 0
\(9\) −26.5046 + 5.14865i −0.981650 + 0.190691i
\(10\) 0 0
\(11\) 48.1992 1.32115 0.660573 0.750762i \(-0.270314\pi\)
0.660573 + 0.750762i \(0.270314\pi\)
\(12\) 0 0
\(13\) 33.7471 0.719981 0.359990 0.932956i \(-0.382780\pi\)
0.359990 + 0.932956i \(0.382780\pi\)
\(14\) 0 0
\(15\) 95.4449 9.18449i 1.64292 0.158095i
\(16\) 0 0
\(17\) 84.4951i 1.20547i 0.797940 + 0.602737i \(0.205923\pi\)
−0.797940 + 0.602737i \(0.794077\pi\)
\(18\) 0 0
\(19\) 28.7135i 0.346701i −0.984860 0.173351i \(-0.944541\pi\)
0.984860 0.173351i \(-0.0554594\pi\)
\(20\) 0 0
\(21\) 88.7562 8.54084i 0.922294 0.0887507i
\(22\) 0 0
\(23\) −96.4823 −0.874693 −0.437347 0.899293i \(-0.644082\pi\)
−0.437347 + 0.899293i \(0.644082\pi\)
\(24\) 0 0
\(25\) −215.521 −1.72417
\(26\) 0 0
\(27\) 39.8219 + 134.526i 0.283842 + 0.958871i
\(28\) 0 0
\(29\) 141.202i 0.904155i 0.891979 + 0.452078i \(0.149317\pi\)
−0.891979 + 0.452078i \(0.850683\pi\)
\(30\) 0 0
\(31\) 51.8673i 0.300505i −0.988648 0.150252i \(-0.951991\pi\)
0.988648 0.150252i \(-0.0480086\pi\)
\(32\) 0 0
\(33\) −23.9896 249.299i −0.126547 1.31507i
\(34\) 0 0
\(35\) −316.658 −1.52928
\(36\) 0 0
\(37\) 323.802 1.43872 0.719360 0.694637i \(-0.244435\pi\)
0.719360 + 0.694637i \(0.244435\pi\)
\(38\) 0 0
\(39\) −16.7965 174.549i −0.0689639 0.716670i
\(40\) 0 0
\(41\) 134.442i 0.512105i −0.966663 0.256052i \(-0.917578\pi\)
0.966663 0.256052i \(-0.0824220\pi\)
\(42\) 0 0
\(43\) 114.365i 0.405594i −0.979221 0.202797i \(-0.934997\pi\)
0.979221 0.202797i \(-0.0650032\pi\)
\(44\) 0 0
\(45\) −95.0091 489.094i −0.314736 1.62022i
\(46\) 0 0
\(47\) −247.555 −0.768288 −0.384144 0.923273i \(-0.625503\pi\)
−0.384144 + 0.923273i \(0.625503\pi\)
\(48\) 0 0
\(49\) 48.5332 0.141496
\(50\) 0 0
\(51\) 437.031 42.0547i 1.19993 0.115467i
\(52\) 0 0
\(53\) 169.592i 0.439533i −0.975553 0.219766i \(-0.929470\pi\)
0.975553 0.219766i \(-0.0705295\pi\)
\(54\) 0 0
\(55\) 889.430i 2.18056i
\(56\) 0 0
\(57\) −148.514 + 14.2912i −0.345107 + 0.0332090i
\(58\) 0 0
\(59\) −605.603 −1.33632 −0.668159 0.744019i \(-0.732917\pi\)
−0.668159 + 0.744019i \(0.732917\pi\)
\(60\) 0 0
\(61\) −343.296 −0.720566 −0.360283 0.932843i \(-0.617320\pi\)
−0.360283 + 0.932843i \(0.617320\pi\)
\(62\) 0 0
\(63\) −88.3509 454.819i −0.176685 0.909553i
\(64\) 0 0
\(65\) 622.742i 1.18833i
\(66\) 0 0
\(67\) 900.357i 1.64173i −0.571120 0.820867i \(-0.693491\pi\)
0.571120 0.820867i \(-0.306509\pi\)
\(68\) 0 0
\(69\) 48.0209 + 499.031i 0.0837831 + 0.870671i
\(70\) 0 0
\(71\) 331.924 0.554819 0.277409 0.960752i \(-0.410524\pi\)
0.277409 + 0.960752i \(0.410524\pi\)
\(72\) 0 0
\(73\) 777.525 1.24661 0.623304 0.781979i \(-0.285790\pi\)
0.623304 + 0.781979i \(0.285790\pi\)
\(74\) 0 0
\(75\) 107.269 + 1114.73i 0.165151 + 1.71624i
\(76\) 0 0
\(77\) 827.099i 1.22411i
\(78\) 0 0
\(79\) 587.661i 0.836924i −0.908234 0.418462i \(-0.862569\pi\)
0.908234 0.418462i \(-0.137431\pi\)
\(80\) 0 0
\(81\) 675.983 272.925i 0.927274 0.374383i
\(82\) 0 0
\(83\) 1463.98 1.93605 0.968027 0.250846i \(-0.0807087\pi\)
0.968027 + 0.250846i \(0.0807087\pi\)
\(84\) 0 0
\(85\) −1559.21 −1.98964
\(86\) 0 0
\(87\) 730.332 70.2785i 0.899998 0.0866051i
\(88\) 0 0
\(89\) 78.6240i 0.0936419i −0.998903 0.0468210i \(-0.985091\pi\)
0.998903 0.0468210i \(-0.0149090\pi\)
\(90\) 0 0
\(91\) 579.101i 0.667102i
\(92\) 0 0
\(93\) −268.271 + 25.8152i −0.299123 + 0.0287840i
\(94\) 0 0
\(95\) 529.857 0.572233
\(96\) 0 0
\(97\) −62.0627 −0.0649640 −0.0324820 0.999472i \(-0.510341\pi\)
−0.0324820 + 0.999472i \(0.510341\pi\)
\(98\) 0 0
\(99\) −1277.50 + 248.160i −1.29690 + 0.251930i
\(100\) 0 0
\(101\) 789.157i 0.777466i −0.921351 0.388733i \(-0.872913\pi\)
0.921351 0.388733i \(-0.127087\pi\)
\(102\) 0 0
\(103\) 1329.46i 1.27180i 0.771771 + 0.635901i \(0.219371\pi\)
−0.771771 + 0.635901i \(0.780629\pi\)
\(104\) 0 0
\(105\) 157.606 + 1637.84i 0.146484 + 1.52225i
\(106\) 0 0
\(107\) 908.920 0.821202 0.410601 0.911815i \(-0.365319\pi\)
0.410601 + 0.911815i \(0.365319\pi\)
\(108\) 0 0
\(109\) 1201.93 1.05619 0.528094 0.849186i \(-0.322907\pi\)
0.528094 + 0.849186i \(0.322907\pi\)
\(110\) 0 0
\(111\) −161.162 1674.79i −0.137809 1.43211i
\(112\) 0 0
\(113\) 547.390i 0.455700i −0.973696 0.227850i \(-0.926830\pi\)
0.973696 0.227850i \(-0.0731696\pi\)
\(114\) 0 0
\(115\) 1780.41i 1.44369i
\(116\) 0 0
\(117\) −894.451 + 173.752i −0.706769 + 0.137294i
\(118\) 0 0
\(119\) −1449.94 −1.11694
\(120\) 0 0
\(121\) 992.160 0.745425
\(122\) 0 0
\(123\) −695.369 + 66.9140i −0.509750 + 0.0490523i
\(124\) 0 0
\(125\) 1670.41i 1.19525i
\(126\) 0 0
\(127\) 733.919i 0.512793i 0.966572 + 0.256397i \(0.0825354\pi\)
−0.966572 + 0.256397i \(0.917465\pi\)
\(128\) 0 0
\(129\) −591.528 + 56.9216i −0.403730 + 0.0388502i
\(130\) 0 0
\(131\) −1715.61 −1.14422 −0.572112 0.820176i \(-0.693876\pi\)
−0.572112 + 0.820176i \(0.693876\pi\)
\(132\) 0 0
\(133\) 492.725 0.321238
\(134\) 0 0
\(135\) −2482.44 + 734.843i −1.58262 + 0.468483i
\(136\) 0 0
\(137\) 2256.63i 1.40728i −0.710558 0.703639i \(-0.751557\pi\)
0.710558 0.703639i \(-0.248443\pi\)
\(138\) 0 0
\(139\) 824.963i 0.503399i 0.967805 + 0.251699i \(0.0809894\pi\)
−0.967805 + 0.251699i \(0.919011\pi\)
\(140\) 0 0
\(141\) 123.212 + 1280.42i 0.0735911 + 0.764756i
\(142\) 0 0
\(143\) 1626.58 0.951199
\(144\) 0 0
\(145\) −2605.63 −1.49231
\(146\) 0 0
\(147\) −24.1558 251.026i −0.0135533 0.140846i
\(148\) 0 0
\(149\) 192.210i 0.105681i −0.998603 0.0528404i \(-0.983173\pi\)
0.998603 0.0528404i \(-0.0168275\pi\)
\(150\) 0 0
\(151\) 611.358i 0.329481i 0.986337 + 0.164740i \(0.0526786\pi\)
−0.986337 + 0.164740i \(0.947321\pi\)
\(152\) 0 0
\(153\) −435.035 2239.50i −0.229873 1.18335i
\(154\) 0 0
\(155\) 957.119 0.495985
\(156\) 0 0
\(157\) 1387.68 0.705405 0.352703 0.935735i \(-0.385263\pi\)
0.352703 + 0.935735i \(0.385263\pi\)
\(158\) 0 0
\(159\) −877.173 + 84.4088i −0.437512 + 0.0421010i
\(160\) 0 0
\(161\) 1655.64i 0.810451i
\(162\) 0 0
\(163\) 2156.96i 1.03648i −0.855235 0.518240i \(-0.826587\pi\)
0.855235 0.518240i \(-0.173413\pi\)
\(164\) 0 0
\(165\) 4600.36 442.685i 2.17053 0.208866i
\(166\) 0 0
\(167\) 2252.75 1.04385 0.521924 0.852992i \(-0.325214\pi\)
0.521924 + 0.852992i \(0.325214\pi\)
\(168\) 0 0
\(169\) −1058.14 −0.481628
\(170\) 0 0
\(171\) 147.836 + 761.038i 0.0661127 + 0.340340i
\(172\) 0 0
\(173\) 868.408i 0.381640i −0.981625 0.190820i \(-0.938885\pi\)
0.981625 0.190820i \(-0.0611148\pi\)
\(174\) 0 0
\(175\) 3698.36i 1.59754i
\(176\) 0 0
\(177\) 301.419 + 3132.33i 0.128000 + 1.33017i
\(178\) 0 0
\(179\) −201.084 −0.0839650 −0.0419825 0.999118i \(-0.513367\pi\)
−0.0419825 + 0.999118i \(0.513367\pi\)
\(180\) 0 0
\(181\) −960.433 −0.394411 −0.197206 0.980362i \(-0.563187\pi\)
−0.197206 + 0.980362i \(0.563187\pi\)
\(182\) 0 0
\(183\) 170.864 + 1775.62i 0.0690199 + 0.717253i
\(184\) 0 0
\(185\) 5975.19i 2.37462i
\(186\) 0 0
\(187\) 4072.59i 1.59261i
\(188\) 0 0
\(189\) −2308.47 + 683.345i −0.888447 + 0.262995i
\(190\) 0 0
\(191\) −1113.13 −0.421694 −0.210847 0.977519i \(-0.567622\pi\)
−0.210847 + 0.977519i \(0.567622\pi\)
\(192\) 0 0
\(193\) −812.451 −0.303013 −0.151507 0.988456i \(-0.548412\pi\)
−0.151507 + 0.988456i \(0.548412\pi\)
\(194\) 0 0
\(195\) 3220.98 309.949i 1.18287 0.113825i
\(196\) 0 0
\(197\) 3762.51i 1.36075i 0.732864 + 0.680375i \(0.238183\pi\)
−0.732864 + 0.680375i \(0.761817\pi\)
\(198\) 0 0
\(199\) 1406.90i 0.501169i −0.968095 0.250585i \(-0.919377\pi\)
0.968095 0.250585i \(-0.0806228\pi\)
\(200\) 0 0
\(201\) −4656.88 + 448.123i −1.63419 + 0.157255i
\(202\) 0 0
\(203\) −2423.03 −0.837749
\(204\) 0 0
\(205\) 2480.89 0.845232
\(206\) 0 0
\(207\) 2557.22 496.753i 0.858643 0.166796i
\(208\) 0 0
\(209\) 1383.97i 0.458043i
\(210\) 0 0
\(211\) 3714.03i 1.21177i 0.795551 + 0.605886i \(0.207181\pi\)
−0.795551 + 0.605886i \(0.792819\pi\)
\(212\) 0 0
\(213\) −165.204 1716.80i −0.0531437 0.552267i
\(214\) 0 0
\(215\) 2110.41 0.669436
\(216\) 0 0
\(217\) 890.045 0.278434
\(218\) 0 0
\(219\) −386.988 4021.56i −0.119407 1.24088i
\(220\) 0 0
\(221\) 2851.46i 0.867919i
\(222\) 0 0
\(223\) 3020.76i 0.907107i 0.891229 + 0.453553i \(0.149844\pi\)
−0.891229 + 0.453553i \(0.850156\pi\)
\(224\) 0 0
\(225\) 5712.30 1109.64i 1.69253 0.328783i
\(226\) 0 0
\(227\) 5598.67 1.63699 0.818495 0.574514i \(-0.194809\pi\)
0.818495 + 0.574514i \(0.194809\pi\)
\(228\) 0 0
\(229\) 690.341 0.199210 0.0996048 0.995027i \(-0.468242\pi\)
0.0996048 + 0.995027i \(0.468242\pi\)
\(230\) 0 0
\(231\) 4277.97 411.662i 1.21848 0.117253i
\(232\) 0 0
\(233\) 1398.79i 0.393295i −0.980474 0.196648i \(-0.936995\pi\)
0.980474 0.196648i \(-0.0630055\pi\)
\(234\) 0 0
\(235\) 4568.18i 1.26807i
\(236\) 0 0
\(237\) −3039.54 + 292.489i −0.833076 + 0.0801654i
\(238\) 0 0
\(239\) −6871.75 −1.85982 −0.929909 0.367789i \(-0.880115\pi\)
−0.929909 + 0.367789i \(0.880115\pi\)
\(240\) 0 0
\(241\) 2400.00 0.641484 0.320742 0.947167i \(-0.396068\pi\)
0.320742 + 0.947167i \(0.396068\pi\)
\(242\) 0 0
\(243\) −1748.09 3360.52i −0.461481 0.887150i
\(244\) 0 0
\(245\) 895.594i 0.233541i
\(246\) 0 0
\(247\) 968.996i 0.249618i
\(248\) 0 0
\(249\) −728.647 7572.08i −0.185446 1.92715i
\(250\) 0 0
\(251\) 196.846 0.0495011 0.0247506 0.999694i \(-0.492121\pi\)
0.0247506 + 0.999694i \(0.492121\pi\)
\(252\) 0 0
\(253\) −4650.37 −1.15560
\(254\) 0 0
\(255\) 776.044 + 8064.62i 0.190579 + 1.98050i
\(256\) 0 0
\(257\) 5652.50i 1.37196i 0.727621 + 0.685979i \(0.240626\pi\)
−0.727621 + 0.685979i \(0.759374\pi\)
\(258\) 0 0
\(259\) 5556.45i 1.33305i
\(260\) 0 0
\(261\) −726.998 3742.49i −0.172414 0.887564i
\(262\) 0 0
\(263\) −6241.47 −1.46337 −0.731684 0.681644i \(-0.761265\pi\)
−0.731684 + 0.681644i \(0.761265\pi\)
\(264\) 0 0
\(265\) 3129.52 0.725452
\(266\) 0 0
\(267\) −406.664 + 39.1325i −0.0932114 + 0.00896956i
\(268\) 0 0
\(269\) 7035.30i 1.59461i −0.603578 0.797304i \(-0.706259\pi\)
0.603578 0.797304i \(-0.293741\pi\)
\(270\) 0 0
\(271\) 4877.01i 1.09320i −0.837394 0.546600i \(-0.815922\pi\)
0.837394 0.546600i \(-0.184078\pi\)
\(272\) 0 0
\(273\) 2995.26 288.228i 0.664034 0.0638988i
\(274\) 0 0
\(275\) −10388.0 −2.27788
\(276\) 0 0
\(277\) −5872.49 −1.27380 −0.636902 0.770944i \(-0.719785\pi\)
−0.636902 + 0.770944i \(0.719785\pi\)
\(278\) 0 0
\(279\) 267.046 + 1374.72i 0.0573034 + 0.294990i
\(280\) 0 0
\(281\) 1669.01i 0.354324i 0.984182 + 0.177162i \(0.0566916\pi\)
−0.984182 + 0.177162i \(0.943308\pi\)
\(282\) 0 0
\(283\) 1247.63i 0.262063i −0.991378 0.131032i \(-0.958171\pi\)
0.991378 0.131032i \(-0.0418289\pi\)
\(284\) 0 0
\(285\) −263.719 2740.56i −0.0548117 0.569602i
\(286\) 0 0
\(287\) 2307.03 0.474493
\(288\) 0 0
\(289\) −2226.42 −0.453169
\(290\) 0 0
\(291\) 30.8897 + 321.004i 0.00622262 + 0.0646653i
\(292\) 0 0
\(293\) 1450.34i 0.289180i 0.989492 + 0.144590i \(0.0461863\pi\)
−0.989492 + 0.144590i \(0.953814\pi\)
\(294\) 0 0
\(295\) 11175.3i 2.20560i
\(296\) 0 0
\(297\) 1919.38 + 6484.04i 0.374996 + 1.26681i
\(298\) 0 0
\(299\) −3255.99 −0.629762
\(300\) 0 0
\(301\) 1962.51 0.375805
\(302\) 0 0
\(303\) −4081.72 + 392.777i −0.773891 + 0.0744701i
\(304\) 0 0
\(305\) 6334.91i 1.18930i
\(306\) 0 0
\(307\) 4347.28i 0.808184i 0.914718 + 0.404092i \(0.132412\pi\)
−0.914718 + 0.404092i \(0.867588\pi\)
\(308\) 0 0
\(309\) 6876.31 661.695i 1.26595 0.121820i
\(310\) 0 0
\(311\) −4944.21 −0.901480 −0.450740 0.892655i \(-0.648840\pi\)
−0.450740 + 0.892655i \(0.648840\pi\)
\(312\) 0 0
\(313\) 9110.42 1.64521 0.822606 0.568612i \(-0.192520\pi\)
0.822606 + 0.568612i \(0.192520\pi\)
\(314\) 0 0
\(315\) 8392.88 1630.36i 1.50122 0.291620i
\(316\) 0 0
\(317\) 3103.06i 0.549796i 0.961473 + 0.274898i \(0.0886440\pi\)
−0.961473 + 0.274898i \(0.911356\pi\)
\(318\) 0 0
\(319\) 6805.81i 1.19452i
\(320\) 0 0
\(321\) −452.385 4701.17i −0.0786594 0.817426i
\(322\) 0 0
\(323\) 2426.15 0.417940
\(324\) 0 0
\(325\) −7273.21 −1.24137
\(326\) 0 0
\(327\) −598.224 6216.72i −0.101168 1.05133i
\(328\) 0 0
\(329\) 4248.05i 0.711861i
\(330\) 0 0
\(331\) 1431.07i 0.237639i 0.992916 + 0.118819i \(0.0379110\pi\)
−0.992916 + 0.118819i \(0.962089\pi\)
\(332\) 0 0
\(333\) −8582.22 + 1667.14i −1.41232 + 0.274351i
\(334\) 0 0
\(335\) 16614.5 2.70969
\(336\) 0 0
\(337\) −6355.77 −1.02736 −0.513681 0.857981i \(-0.671718\pi\)
−0.513681 + 0.857981i \(0.671718\pi\)
\(338\) 0 0
\(339\) −2831.24 + 272.445i −0.453605 + 0.0436496i
\(340\) 0 0
\(341\) 2499.96i 0.397010i
\(342\) 0 0
\(343\) 6718.72i 1.05766i
\(344\) 0 0
\(345\) −9208.74 + 886.140i −1.43705 + 0.138285i
\(346\) 0 0
\(347\) 3904.41 0.604034 0.302017 0.953303i \(-0.402340\pi\)
0.302017 + 0.953303i \(0.402340\pi\)
\(348\) 0 0
\(349\) 11087.5 1.70058 0.850289 0.526317i \(-0.176427\pi\)
0.850289 + 0.526317i \(0.176427\pi\)
\(350\) 0 0
\(351\) 1343.87 + 4539.85i 0.204361 + 0.690369i
\(352\) 0 0
\(353\) 4998.69i 0.753692i 0.926276 + 0.376846i \(0.122991\pi\)
−0.926276 + 0.376846i \(0.877009\pi\)
\(354\) 0 0
\(355\) 6125.06i 0.915732i
\(356\) 0 0
\(357\) 721.659 + 7499.46i 0.106987 + 1.11180i
\(358\) 0 0
\(359\) 7166.46 1.05357 0.526784 0.849999i \(-0.323398\pi\)
0.526784 + 0.849999i \(0.323398\pi\)
\(360\) 0 0
\(361\) 6034.54 0.879798
\(362\) 0 0
\(363\) −493.815 5131.71i −0.0714010 0.741997i
\(364\) 0 0
\(365\) 14347.8i 2.05754i
\(366\) 0 0
\(367\) 3698.63i 0.526068i −0.964787 0.263034i \(-0.915277\pi\)
0.964787 0.263034i \(-0.0847231\pi\)
\(368\) 0 0
\(369\) 692.194 + 3563.32i 0.0976536 + 0.502708i
\(370\) 0 0
\(371\) 2910.20 0.407251
\(372\) 0 0
\(373\) 2625.39 0.364444 0.182222 0.983257i \(-0.441671\pi\)
0.182222 + 0.983257i \(0.441671\pi\)
\(374\) 0 0
\(375\) −8639.81 + 831.393i −1.18975 + 0.114488i
\(376\) 0 0
\(377\) 4765.14i 0.650974i
\(378\) 0 0
\(379\) 11506.8i 1.55954i −0.626068 0.779769i \(-0.715337\pi\)
0.626068 0.779769i \(-0.284663\pi\)
\(380\) 0 0
\(381\) 3796.02 365.284i 0.510436 0.0491183i
\(382\) 0 0
\(383\) −11012.1 −1.46917 −0.734584 0.678517i \(-0.762623\pi\)
−0.734584 + 0.678517i \(0.762623\pi\)
\(384\) 0 0
\(385\) −15262.7 −2.02041
\(386\) 0 0
\(387\) 588.827 + 3031.20i 0.0773430 + 0.398152i
\(388\) 0 0
\(389\) 14545.0i 1.89579i −0.318586 0.947894i \(-0.603208\pi\)
0.318586 0.947894i \(-0.396792\pi\)
\(390\) 0 0
\(391\) 8152.28i 1.05442i
\(392\) 0 0
\(393\) 853.887 + 8873.56i 0.109600 + 1.13896i
\(394\) 0 0
\(395\) 10844.2 1.38135
\(396\) 0 0
\(397\) 14650.2 1.85207 0.926033 0.377443i \(-0.123197\pi\)
0.926033 + 0.377443i \(0.123197\pi\)
\(398\) 0 0
\(399\) −245.237 2548.50i −0.0307700 0.319761i
\(400\) 0 0
\(401\) 7703.28i 0.959311i 0.877457 + 0.479655i \(0.159238\pi\)
−0.877457 + 0.479655i \(0.840762\pi\)
\(402\) 0 0
\(403\) 1750.37i 0.216357i
\(404\) 0 0
\(405\) 5036.35 + 12474.1i 0.617921 + 1.53047i
\(406\) 0 0
\(407\) 15607.0 1.90076
\(408\) 0 0
\(409\) −12422.4 −1.50182 −0.750912 0.660402i \(-0.770386\pi\)
−0.750912 + 0.660402i \(0.770386\pi\)
\(410\) 0 0
\(411\) −11671.9 + 1123.16i −1.40081 + 0.134797i
\(412\) 0 0
\(413\) 10392.2i 1.23817i
\(414\) 0 0
\(415\) 27015.1i 3.19547i
\(416\) 0 0
\(417\) 4266.92 410.598i 0.501084 0.0482184i
\(418\) 0 0
\(419\) 973.166 0.113466 0.0567330 0.998389i \(-0.481932\pi\)
0.0567330 + 0.998389i \(0.481932\pi\)
\(420\) 0 0
\(421\) −12537.3 −1.45138 −0.725688 0.688024i \(-0.758478\pi\)
−0.725688 + 0.688024i \(0.758478\pi\)
\(422\) 0 0
\(423\) 6561.33 1274.57i 0.754190 0.146505i
\(424\) 0 0
\(425\) 18210.5i 2.07845i
\(426\) 0 0
\(427\) 5890.97i 0.667644i
\(428\) 0 0
\(429\) −809.577 8413.10i −0.0911113 0.946825i
\(430\) 0 0
\(431\) −10628.1 −1.18779 −0.593895 0.804543i \(-0.702410\pi\)
−0.593895 + 0.804543i \(0.702410\pi\)
\(432\) 0 0
\(433\) 132.773 0.0147360 0.00736799 0.999973i \(-0.497655\pi\)
0.00736799 + 0.999973i \(0.497655\pi\)
\(434\) 0 0
\(435\) 1296.87 + 13477.0i 0.142942 + 1.48545i
\(436\) 0 0
\(437\) 2770.34i 0.303257i
\(438\) 0 0
\(439\) 8526.83i 0.927024i −0.886091 0.463512i \(-0.846589\pi\)
0.886091 0.463512i \(-0.153411\pi\)
\(440\) 0 0
\(441\) −1286.35 + 249.880i −0.138900 + 0.0269820i
\(442\) 0 0
\(443\) −7107.83 −0.762309 −0.381155 0.924511i \(-0.624473\pi\)
−0.381155 + 0.924511i \(0.624473\pi\)
\(444\) 0 0
\(445\) 1450.87 0.154557
\(446\) 0 0
\(447\) −994.160 + 95.6662i −0.105195 + 0.0101227i
\(448\) 0 0
\(449\) 16844.5i 1.77047i −0.465140 0.885237i \(-0.653996\pi\)
0.465140 0.885237i \(-0.346004\pi\)
\(450\) 0 0
\(451\) 6479.99i 0.676565i
\(452\) 0 0
\(453\) 3162.10 304.283i 0.327966 0.0315596i
\(454\) 0 0
\(455\) −10686.3 −1.10106
\(456\) 0 0
\(457\) 1380.82 0.141339 0.0706695 0.997500i \(-0.477486\pi\)
0.0706695 + 0.997500i \(0.477486\pi\)
\(458\) 0 0
\(459\) −11366.8 + 3364.76i −1.15589 + 0.342164i
\(460\) 0 0
\(461\) 525.661i 0.0531073i 0.999647 + 0.0265536i \(0.00845328\pi\)
−0.999647 + 0.0265536i \(0.991547\pi\)
\(462\) 0 0
\(463\) 16412.0i 1.64737i −0.567051 0.823683i \(-0.691916\pi\)
0.567051 0.823683i \(-0.308084\pi\)
\(464\) 0 0
\(465\) −476.374 4950.47i −0.0475083 0.493704i
\(466\) 0 0
\(467\) 15400.9 1.52606 0.763029 0.646365i \(-0.223711\pi\)
0.763029 + 0.646365i \(0.223711\pi\)
\(468\) 0 0
\(469\) 15450.2 1.52116
\(470\) 0 0
\(471\) −690.670 7177.42i −0.0675678 0.702162i
\(472\) 0 0
\(473\) 5512.32i 0.535849i
\(474\) 0 0
\(475\) 6188.37i 0.597773i
\(476\) 0 0
\(477\) 873.169 + 4494.96i 0.0838148 + 0.431467i
\(478\) 0 0
\(479\) −649.281 −0.0619340 −0.0309670 0.999520i \(-0.509859\pi\)
−0.0309670 + 0.999520i \(0.509859\pi\)
\(480\) 0 0
\(481\) 10927.4 1.03585
\(482\) 0 0
\(483\) −8563.40 + 824.040i −0.806725 + 0.0776297i
\(484\) 0 0
\(485\) 1145.26i 0.107224i
\(486\) 0 0
\(487\) 14196.5i 1.32096i 0.750845 + 0.660479i \(0.229647\pi\)
−0.750845 + 0.660479i \(0.770353\pi\)
\(488\) 0 0
\(489\) −11156.4 + 1073.56i −1.03172 + 0.0992801i
\(490\) 0 0
\(491\) −5333.43 −0.490212 −0.245106 0.969496i \(-0.578823\pi\)
−0.245106 + 0.969496i \(0.578823\pi\)
\(492\) 0 0
\(493\) −11930.9 −1.08994
\(494\) 0 0
\(495\) −4579.36 23573.9i −0.415812 2.14055i
\(496\) 0 0
\(497\) 5695.82i 0.514070i
\(498\) 0 0
\(499\) 1129.82i 0.101358i −0.998715 0.0506789i \(-0.983861\pi\)
0.998715 0.0506789i \(-0.0161385\pi\)
\(500\) 0 0
\(501\) −1121.23 11651.8i −0.0999858 1.03905i
\(502\) 0 0
\(503\) 318.246 0.0282105 0.0141053 0.999901i \(-0.495510\pi\)
0.0141053 + 0.999901i \(0.495510\pi\)
\(504\) 0 0
\(505\) 14562.5 1.28321
\(506\) 0 0
\(507\) 526.653 + 5472.96i 0.0461331 + 0.479413i
\(508\) 0 0
\(509\) 1454.04i 0.126619i 0.997994 + 0.0633094i \(0.0201655\pi\)
−0.997994 + 0.0633094i \(0.979834\pi\)
\(510\) 0 0
\(511\) 13342.4i 1.15505i
\(512\) 0 0
\(513\) 3862.71 1143.43i 0.332442 0.0984084i
\(514\) 0 0
\(515\) −24532.8 −2.09912
\(516\) 0 0
\(517\) −11931.9 −1.01502
\(518\) 0 0
\(519\) −4491.63 + 432.221i −0.379886 + 0.0365557i
\(520\) 0 0
\(521\) 17140.8i 1.44137i 0.693263 + 0.720685i \(0.256173\pi\)
−0.693263 + 0.720685i \(0.743827\pi\)
\(522\) 0 0
\(523\) 854.626i 0.0714535i 0.999362 + 0.0357268i \(0.0113746\pi\)
−0.999362 + 0.0357268i \(0.988625\pi\)
\(524\) 0 0
\(525\) −19128.9 + 1840.74i −1.59019 + 0.153021i
\(526\) 0 0
\(527\) 4382.53 0.362251
\(528\) 0 0
\(529\) −2858.17 −0.234912
\(530\) 0 0
\(531\) 16051.2 3118.03i 1.31180 0.254823i
\(532\) 0 0
\(533\) 4537.02i 0.368706i
\(534\) 0 0
\(535\) 16772.5i 1.35540i
\(536\) 0 0
\(537\) 100.083 + 1040.06i 0.00804265 + 0.0835789i
\(538\) 0 0
\(539\) 2339.26 0.186937
\(540\) 0 0
\(541\) −15044.4 −1.19558 −0.597792 0.801651i \(-0.703955\pi\)
−0.597792 + 0.801651i \(0.703955\pi\)
\(542\) 0 0
\(543\) 478.024 + 4967.61i 0.0377790 + 0.392598i
\(544\) 0 0
\(545\) 22179.6i 1.74324i
\(546\) 0 0
\(547\) 15376.9i 1.20195i −0.799266 0.600977i \(-0.794778\pi\)
0.799266 0.600977i \(-0.205222\pi\)
\(548\) 0 0
\(549\) 9098.90 1767.51i 0.707344 0.137405i
\(550\) 0 0
\(551\) 4054.39 0.313472
\(552\) 0 0
\(553\) 10084.3 0.775456
\(554\) 0 0
\(555\) 30905.2 2973.95i 2.36370 0.227455i
\(556\) 0 0
\(557\) 8917.47i 0.678358i −0.940722 0.339179i \(-0.889851\pi\)
0.940722 0.339179i \(-0.110149\pi\)
\(558\) 0 0
\(559\) 3859.50i 0.292020i
\(560\) 0 0
\(561\) 21064.5 2027.00i 1.58528 0.152549i
\(562\) 0 0
\(563\) 4528.00 0.338957 0.169478 0.985534i \(-0.445792\pi\)
0.169478 + 0.985534i \(0.445792\pi\)
\(564\) 0 0
\(565\) 10101.1 0.752136
\(566\) 0 0
\(567\) 4683.40 + 11599.9i 0.346886 + 0.859170i
\(568\) 0 0
\(569\) 2855.22i 0.210364i −0.994453 0.105182i \(-0.966457\pi\)
0.994453 0.105182i \(-0.0335425\pi\)
\(570\) 0 0
\(571\) 6198.54i 0.454292i −0.973861 0.227146i \(-0.927061\pi\)
0.973861 0.227146i \(-0.0729395\pi\)
\(572\) 0 0
\(573\) 554.026 + 5757.42i 0.0403922 + 0.419755i
\(574\) 0 0
\(575\) 20794.0 1.50812
\(576\) 0 0
\(577\) 1201.48 0.0866870 0.0433435 0.999060i \(-0.486199\pi\)
0.0433435 + 0.999060i \(0.486199\pi\)
\(578\) 0 0
\(579\) 404.371 + 4202.21i 0.0290243 + 0.301620i
\(580\) 0 0
\(581\) 25121.9i 1.79386i
\(582\) 0 0
\(583\) 8174.19i 0.580687i
\(584\) 0 0
\(585\) −3206.28 16505.5i −0.226604 1.16653i
\(586\) 0 0
\(587\) 5963.60 0.419326 0.209663 0.977774i \(-0.432763\pi\)
0.209663 + 0.977774i \(0.432763\pi\)
\(588\) 0 0
\(589\) −1489.29 −0.104185
\(590\) 0 0
\(591\) 19460.7 1872.67i 1.35449 0.130341i
\(592\) 0 0
\(593\) 14566.1i 1.00870i −0.863500 0.504348i \(-0.831733\pi\)
0.863500 0.504348i \(-0.168267\pi\)
\(594\) 0 0
\(595\) 26756.0i 1.84351i
\(596\) 0 0
\(597\) −7276.86 + 700.239i −0.498865 + 0.0480048i
\(598\) 0 0
\(599\) −21015.8 −1.43353 −0.716763 0.697317i \(-0.754377\pi\)
−0.716763 + 0.697317i \(0.754377\pi\)
\(600\) 0 0
\(601\) −4904.60 −0.332883 −0.166442 0.986051i \(-0.553228\pi\)
−0.166442 + 0.986051i \(0.553228\pi\)
\(602\) 0 0
\(603\) 4635.62 + 23863.6i 0.313063 + 1.61161i
\(604\) 0 0
\(605\) 18308.6i 1.23033i
\(606\) 0 0
\(607\) 3014.03i 0.201541i −0.994910 0.100771i \(-0.967869\pi\)
0.994910 0.100771i \(-0.0321309\pi\)
\(608\) 0 0
\(609\) 1205.98 + 12532.5i 0.0802444 + 0.833897i
\(610\) 0 0
\(611\) −8354.24 −0.553153
\(612\) 0 0
\(613\) −20267.4 −1.33539 −0.667695 0.744435i \(-0.732719\pi\)
−0.667695 + 0.744435i \(0.732719\pi\)
\(614\) 0 0
\(615\) −1234.78 12831.8i −0.0809612 0.841346i
\(616\) 0 0
\(617\) 20155.9i 1.31515i 0.753389 + 0.657575i \(0.228418\pi\)
−0.753389 + 0.657575i \(0.771582\pi\)
\(618\) 0 0
\(619\) 24145.1i 1.56781i 0.620882 + 0.783904i \(0.286775\pi\)
−0.620882 + 0.783904i \(0.713225\pi\)
\(620\) 0 0
\(621\) −3842.11 12979.4i −0.248275 0.838718i
\(622\) 0 0
\(623\) 1349.19 0.0867644
\(624\) 0 0
\(625\) 3884.31 0.248596
\(626\) 0 0
\(627\) −7158.24 + 688.824i −0.455937 + 0.0438740i
\(628\) 0 0
\(629\) 27359.7i 1.73434i
\(630\) 0 0
\(631\) 23860.5i 1.50534i 0.658397 + 0.752671i \(0.271235\pi\)
−0.658397 + 0.752671i \(0.728765\pi\)
\(632\) 0 0
\(633\) 19209.9 1848.53i 1.20620 0.116071i
\(634\) 0 0
\(635\) −13543.2 −0.846369
\(636\) 0 0
\(637\) 1637.85 0.101875
\(638\) 0 0
\(639\) −8797.49 + 1708.96i −0.544638 + 0.105799i
\(640\) 0 0
\(641\) 2767.39i 0.170523i −0.996359 0.0852616i \(-0.972827\pi\)
0.996359 0.0852616i \(-0.0271726\pi\)
\(642\) 0 0
\(643\) 19313.5i 1.18453i 0.805744 + 0.592263i \(0.201765\pi\)
−0.805744 + 0.592263i \(0.798235\pi\)
\(644\) 0 0
\(645\) −1050.39 10915.6i −0.0641224 0.666358i
\(646\) 0 0
\(647\) −4268.41 −0.259364 −0.129682 0.991556i \(-0.541396\pi\)
−0.129682 + 0.991556i \(0.541396\pi\)
\(648\) 0 0
\(649\) −29189.5 −1.76547
\(650\) 0 0
\(651\) −442.990 4603.54i −0.0266700 0.277154i
\(652\) 0 0
\(653\) 13550.4i 0.812048i −0.913862 0.406024i \(-0.866915\pi\)
0.913862 0.406024i \(-0.133085\pi\)
\(654\) 0 0
\(655\) 31658.5i 1.88855i
\(656\) 0 0
\(657\) −20608.0 + 4003.20i −1.22373 + 0.237717i
\(658\) 0 0
\(659\) 6645.62 0.392833 0.196416 0.980521i \(-0.437070\pi\)
0.196416 + 0.980521i \(0.437070\pi\)
\(660\) 0 0
\(661\) 2133.53 0.125544 0.0627719 0.998028i \(-0.480006\pi\)
0.0627719 + 0.998028i \(0.480006\pi\)
\(662\) 0 0
\(663\) 14748.5 1419.22i 0.863928 0.0831342i
\(664\) 0 0
\(665\) 9092.36i 0.530205i
\(666\) 0 0
\(667\) 13623.5i 0.790858i
\(668\) 0 0
\(669\) 15624.1 1503.48i 0.902936 0.0868879i
\(670\) 0 0
\(671\) −16546.6 −0.951972
\(672\) 0 0
\(673\) 18933.9 1.08447 0.542235 0.840227i \(-0.317578\pi\)
0.542235 + 0.840227i \(0.317578\pi\)
\(674\) 0 0
\(675\) −8582.48 28993.2i −0.489392 1.65326i
\(676\) 0 0
\(677\) 22893.2i 1.29964i −0.760088 0.649820i \(-0.774844\pi\)
0.760088 0.649820i \(-0.225156\pi\)
\(678\) 0 0
\(679\) 1065.00i 0.0601927i
\(680\) 0 0
\(681\) −2786.55 28957.8i −0.156800 1.62946i
\(682\) 0 0
\(683\) −11506.4 −0.644625 −0.322313 0.946633i \(-0.604460\pi\)
−0.322313 + 0.946633i \(0.604460\pi\)
\(684\) 0 0
\(685\) 41642.1 2.32272
\(686\) 0 0
\(687\) −343.594 3570.62i −0.0190814 0.198294i
\(688\) 0 0
\(689\) 5723.23i 0.316455i
\(690\) 0 0
\(691\) 16969.7i 0.934235i 0.884195 + 0.467117i \(0.154707\pi\)
−0.884195 + 0.467117i \(0.845293\pi\)
\(692\) 0 0
\(693\) −4258.44 21921.9i −0.233427 1.20165i
\(694\) 0 0
\(695\) −15223.2 −0.830863
\(696\) 0 0
\(697\) 11359.7 0.617329
\(698\) 0 0
\(699\) −7234.91 + 696.202i −0.391487 + 0.0376721i
\(700\) 0 0
\(701\) 18959.8i 1.02154i −0.859717 0.510771i \(-0.829360\pi\)
0.859717 0.510771i \(-0.170640\pi\)
\(702\) 0 0
\(703\) 9297.48i 0.498807i
\(704\) 0 0
\(705\) −23627.8 + 2273.66i −1.26223 + 0.121463i
\(706\) 0 0
\(707\) 13542.0 0.720364
\(708\) 0 0
\(709\) 29888.7 1.58321 0.791604 0.611034i \(-0.209246\pi\)
0.791604 + 0.611034i \(0.209246\pi\)
\(710\) 0 0
\(711\) 3025.66 + 15575.7i 0.159594 + 0.821567i
\(712\) 0 0
\(713\) 5004.27i 0.262849i
\(714\) 0 0
\(715\) 30015.6i 1.56996i
\(716\) 0 0
\(717\) 3420.19 + 35542.5i 0.178144 + 1.85127i
\(718\) 0 0
\(719\) −17686.8 −0.917393 −0.458696 0.888593i \(-0.651683\pi\)
−0.458696 + 0.888593i \(0.651683\pi\)
\(720\) 0 0
\(721\) −22813.6 −1.17839
\(722\) 0 0
\(723\) −1194.52 12413.4i −0.0614450 0.638535i
\(724\) 0 0
\(725\) 30432.0i 1.55892i
\(726\) 0 0
\(727\) 14109.5i 0.719796i 0.932992 + 0.359898i \(0.117189\pi\)
−0.932992 + 0.359898i \(0.882811\pi\)
\(728\) 0 0
\(729\) −16511.4 + 10714.2i −0.838868 + 0.544336i
\(730\) 0 0
\(731\) 9663.32 0.488934
\(732\) 0 0
\(733\) −23217.2 −1.16992 −0.584958 0.811064i \(-0.698889\pi\)
−0.584958 + 0.811064i \(0.698889\pi\)
\(734\) 0 0
\(735\) 4632.25 445.753i 0.232467 0.0223698i
\(736\) 0 0
\(737\) 43396.5i 2.16897i
\(738\) 0 0
\(739\) 30548.3i 1.52062i −0.649560 0.760311i \(-0.725047\pi\)
0.649560 0.760311i \(-0.274953\pi\)
\(740\) 0 0
\(741\) −5011.90 + 482.286i −0.248471 + 0.0239099i
\(742\) 0 0
\(743\) 25859.5 1.27684 0.638420 0.769688i \(-0.279588\pi\)
0.638420 + 0.769688i \(0.279588\pi\)
\(744\) 0 0
\(745\) 3546.89 0.174427
\(746\) 0 0
\(747\) −38802.1 + 7537.51i −1.90053 + 0.369187i
\(748\) 0 0
\(749\) 15597.1i 0.760888i
\(750\) 0 0
\(751\) 16289.9i 0.791516i −0.918355 0.395758i \(-0.870482\pi\)
0.918355 0.395758i \(-0.129518\pi\)
\(752\) 0 0
\(753\) −97.9734 1018.14i −0.00474150 0.0492735i
\(754\) 0 0
\(755\) −11281.5 −0.543810
\(756\) 0 0
\(757\) −25624.7 −1.23031 −0.615155 0.788406i \(-0.710906\pi\)
−0.615155 + 0.788406i \(0.710906\pi\)
\(758\) 0 0
\(759\) 2314.57 + 24052.9i 0.110690 + 1.15028i
\(760\) 0 0
\(761\) 28456.4i 1.35551i −0.735287 0.677756i \(-0.762953\pi\)
0.735287 0.677756i \(-0.237047\pi\)
\(762\) 0 0
\(763\) 20625.2i 0.978616i
\(764\) 0 0
\(765\) 41326.1 8027.80i 1.95313 0.379406i
\(766\) 0 0
\(767\) −20437.3 −0.962123
\(768\) 0 0
\(769\) −26858.7 −1.25949 −0.629747 0.776800i \(-0.716842\pi\)
−0.629747 + 0.776800i \(0.716842\pi\)
\(770\) 0 0
\(771\) 29236.2 2813.35i 1.36565 0.131414i
\(772\) 0 0
\(773\) 33227.3i 1.54606i 0.634369 + 0.773030i \(0.281260\pi\)
−0.634369 + 0.773030i \(0.718740\pi\)
\(774\) 0 0
\(775\) 11178.5i 0.518121i
\(776\) 0 0
\(777\) 28739.4 2765.54i 1.32692 0.127688i
\(778\) 0 0
\(779\) −3860.30 −0.177547
\(780\) 0 0
\(781\) 15998.5 0.732996
\(782\) 0 0
\(783\) −18995.3 + 5622.92i −0.866968 + 0.256637i
\(784\) 0 0
\(785\) 25607.1i 1.16428i
\(786\) 0 0
\(787\) 13493.5i 0.611171i −0.952165 0.305586i \(-0.901148\pi\)
0.952165 0.305586i \(-0.0988522\pi\)
\(788\) 0 0
\(789\) 3106.49 + 32282.5i 0.140170 + 1.45664i
\(790\) 0 0
\(791\) 9393.23 0.422231
\(792\) 0 0
\(793\) −11585.2 −0.518794
\(794\) 0 0
\(795\) −1557.61 16186.7i −0.0694879 0.722116i
\(796\) 0 0
\(797\) 4559.97i 0.202663i −0.994853 0.101331i \(-0.967690\pi\)
0.994853 0.101331i \(-0.0323103\pi\)
\(798\) 0 0
\(799\) 20917.2i 0.926152i
\(800\) 0 0
\(801\) 404.807 + 2083.90i 0.0178566 + 0.0919236i
\(802\) 0 0
\(803\) 37476.1 1.64695
\(804\) 0 0
\(805\) 30551.9 1.33765
\(806\) 0 0
\(807\) −36388.4 + 3501.59i −1.58728 + 0.152741i
\(808\) 0 0
\(809\) 26274.6i 1.14186i 0.820998 + 0.570931i \(0.193418\pi\)
−0.820998 + 0.570931i \(0.806582\pi\)
\(810\) 0 0
\(811\) 33570.4i 1.45354i −0.686883 0.726768i \(-0.741021\pi\)
0.686883 0.726768i \(-0.258979\pi\)
\(812\) 0 0
\(813\) −25225.2 + 2427.37i −1.08817 + 0.104713i
\(814\) 0 0
\(815\) 39802.9 1.71072
\(816\) 0 0
\(817\) −3283.83 −0.140620
\(818\) 0 0
\(819\) −2981.58 15348.8i −0.127210 0.654860i
\(820\) 0 0
\(821\) 15122.2i 0.642835i 0.946938 + 0.321417i \(0.104159\pi\)
−0.946938 + 0.321417i \(0.895841\pi\)
\(822\) 0 0
\(823\) 26434.7i 1.11963i −0.828617 0.559816i \(-0.810872\pi\)
0.828617 0.559816i \(-0.189128\pi\)
\(824\) 0 0
\(825\) 5170.26 + 53729.2i 0.218188 + 2.26741i
\(826\) 0 0
\(827\) 9808.95 0.412443 0.206222 0.978505i \(-0.433883\pi\)
0.206222 + 0.978505i \(0.433883\pi\)
\(828\) 0 0
\(829\) −23250.9 −0.974110 −0.487055 0.873371i \(-0.661929\pi\)
−0.487055 + 0.873371i \(0.661929\pi\)
\(830\) 0 0
\(831\) 2922.84 + 30374.1i 0.122012 + 1.26795i
\(832\) 0 0
\(833\) 4100.82i 0.170570i
\(834\) 0 0
\(835\) 41570.4i 1.72288i
\(836\) 0 0
\(837\) 6977.49 2065.45i 0.288145 0.0852958i
\(838\) 0 0
\(839\) 43358.6 1.78416 0.892078 0.451882i \(-0.149247\pi\)
0.892078 + 0.451882i \(0.149247\pi\)
\(840\) 0 0
\(841\) 4451.08 0.182504
\(842\) 0 0
\(843\) 8632.57 830.697i 0.352695 0.0339392i
\(844\) 0 0
\(845\) 19526.0i 0.794930i
\(846\) 0 0
\(847\) 17025.5i 0.690677i
\(848\) 0 0
\(849\) −6453.07 + 620.967i −0.260858 + 0.0251019i
\(850\) 0 0
\(851\) −31241.1 −1.25844
\(852\) 0 0
\(853\) −6641.65 −0.266595 −0.133298 0.991076i \(-0.542557\pi\)
−0.133298 + 0.991076i \(0.542557\pi\)
\(854\) 0 0
\(855\) −14043.6 + 2728.04i −0.561733 + 0.109119i
\(856\) 0 0
\(857\) 39138.2i 1.56002i −0.625767 0.780010i \(-0.715214\pi\)
0.625767 0.780010i \(-0.284786\pi\)
\(858\) 0 0
\(859\) 40377.3i 1.60379i 0.597465 + 0.801895i \(0.296175\pi\)
−0.597465 + 0.801895i \(0.703825\pi\)
\(860\) 0 0
\(861\) −1148.25 11932.5i −0.0454497 0.472311i
\(862\) 0 0
\(863\) 39324.1 1.55111 0.775554 0.631281i \(-0.217471\pi\)
0.775554 + 0.631281i \(0.217471\pi\)
\(864\) 0 0
\(865\) 16024.9 0.629900
\(866\) 0 0
\(867\) 1108.13 + 11515.6i 0.0434072 + 0.451086i
\(868\) 0 0
\(869\) 28324.8i 1.10570i
\(870\) 0 0
\(871\) 30384.4i 1.18202i
\(872\) 0 0
\(873\) 1644.94 319.539i 0.0637719 0.0123880i
\(874\) 0 0
\(875\) 28664.3 1.10746
\(876\) 0 0
\(877\) 1540.57 0.0593175 0.0296588 0.999560i \(-0.490558\pi\)
0.0296588 + 0.999560i \(0.490558\pi\)
\(878\) 0 0
\(879\) 7501.53 721.859i 0.287850 0.0276993i
\(880\) 0 0
\(881\) 37069.1i 1.41758i 0.705419 + 0.708790i \(0.250759\pi\)
−0.705419 + 0.708790i \(0.749241\pi\)
\(882\) 0 0
\(883\) 18496.2i 0.704922i 0.935826 + 0.352461i \(0.114655\pi\)
−0.935826 + 0.352461i \(0.885345\pi\)
\(884\) 0 0
\(885\) −57801.7 + 5562.15i −2.19546 + 0.211265i
\(886\) 0 0
\(887\) 24375.0 0.922698 0.461349 0.887219i \(-0.347366\pi\)
0.461349 + 0.887219i \(0.347366\pi\)
\(888\) 0 0
\(889\) −12594.1 −0.475131
\(890\) 0 0
\(891\) 32581.8 13154.8i 1.22506 0.494614i
\(892\) 0 0
\(893\) 7108.16i 0.266367i
\(894\) 0 0
\(895\) 3710.65i 0.138585i
\(896\) 0 0
\(897\) 1620.56 + 16840.8i 0.0603222 + 0.626867i
\(898\) 0 0
\(899\) 7323.75 0.271703
\(900\) 0 0
\(901\) 14329.7 0.529846
\(902\) 0 0
\(903\) −976.777 10150.6i −0.0359968 0.374078i
\(904\) 0 0
\(905\) 17723.1i 0.650978i
\(906\) 0 0
\(907\) 21352.8i 0.781708i 0.920453 + 0.390854i \(0.127820\pi\)
−0.920453 + 0.390854i \(0.872180\pi\)
\(908\) 0 0
\(909\) 4063.09 + 20916.2i 0.148255 + 0.763199i
\(910\) 0 0
\(911\) −39237.3 −1.42699 −0.713496 0.700659i \(-0.752889\pi\)
−0.713496 + 0.700659i \(0.752889\pi\)
\(912\) 0 0
\(913\) 70562.5 2.55781
\(914\) 0 0
\(915\) −32765.8 + 3153.00i −1.18383 + 0.113918i
\(916\) 0 0
\(917\) 29439.9i 1.06019i
\(918\) 0 0
\(919\) 11761.3i 0.422166i −0.977468 0.211083i \(-0.932301\pi\)
0.977468 0.211083i \(-0.0676990\pi\)
\(920\) 0 0
\(921\) 22485.3 2163.72i 0.804468 0.0774125i
\(922\) 0 0
\(923\) 11201.5 0.399459
\(924\) 0 0
\(925\) −69786.2 −2.48060
\(926\) 0 0
\(927\) −6844.92 35236.7i −0.242521 1.24846i
\(928\) 0 0
\(929\) 1473.03i 0.0520222i 0.999662 + 0.0260111i \(0.00828053\pi\)
−0.999662 + 0.0260111i \(0.991719\pi\)
\(930\) 0 0
\(931\) 1393.56i 0.0490570i
\(932\) 0 0
\(933\) 2460.82 + 25572.7i 0.0863489 + 0.897335i
\(934\) 0 0
\(935\) −75152.5 −2.62861
\(936\) 0 0
\(937\) 18439.9 0.642907 0.321453 0.946925i \(-0.395829\pi\)
0.321453 + 0.946925i \(0.395829\pi\)
\(938\) 0 0
\(939\) −4534.41 47121.4i −0.157588 1.63765i
\(940\) 0 0
\(941\) 37937.5i 1.31427i 0.753773 + 0.657135i \(0.228232\pi\)
−0.753773 + 0.657135i \(0.771768\pi\)
\(942\) 0 0
\(943\) 12971.3i 0.447935i
\(944\) 0 0
\(945\) −12609.9 42598.7i −0.434075 1.46639i
\(946\) 0 0
\(947\) −36960.6 −1.26828 −0.634138 0.773220i \(-0.718645\pi\)
−0.634138 + 0.773220i \(0.718645\pi\)
\(948\) 0 0
\(949\) 26239.2 0.897534
\(950\) 0 0
\(951\) 16049.8 1544.45i 0.547268 0.0526626i
\(952\) 0 0
\(953\) 2649.69i 0.0900650i −0.998986 0.0450325i \(-0.985661\pi\)
0.998986 0.0450325i \(-0.0143391\pi\)
\(954\) 0 0
\(955\) 20540.9i 0.696008i
\(956\) 0 0
\(957\) 35201.4 3387.37i 1.18903 0.114418i
\(958\) 0 0
\(959\) 38723.9 1.30392
\(960\) 0 0
\(961\) 27100.8 0.909697
\(962\) 0 0
\(963\) −24090.5 + 4679.71i −0.806133 + 0.156595i
\(964\) 0 0
\(965\) 14992.3i 0.500125i
\(966\) 0 0
\(967\) 4333.01i 0.144095i 0.997401 + 0.0720476i \(0.0229534\pi\)
−0.997401 + 0.0720476i \(0.977047\pi\)
\(968\) 0 0
\(969\) −1207.54 12548.7i −0.0400327 0.416018i
\(970\) 0 0
\(971\) −35460.3 −1.17196 −0.585981 0.810325i \(-0.699291\pi\)
−0.585981 + 0.810325i \(0.699291\pi\)
\(972\) 0 0
\(973\) −14156.4 −0.466427
\(974\) 0 0
\(975\) 3620.00 + 37619.0i 0.118906 + 1.23566i
\(976\) 0 0
\(977\) 52275.3i 1.71181i −0.517135 0.855904i \(-0.673002\pi\)
0.517135 0.855904i \(-0.326998\pi\)
\(978\) 0 0
\(979\) 3789.61i 0.123715i
\(980\) 0 0
\(981\) −31856.7 + 6188.34i −1.03681 + 0.201405i
\(982\) 0 0
\(983\) −53985.9 −1.75166 −0.875831 0.482618i \(-0.839686\pi\)
−0.875831 + 0.482618i \(0.839686\pi\)
\(984\) 0 0
\(985\) −69430.5 −2.24593
\(986\) 0 0
\(987\) −21972.0 + 2114.33i −0.708588 + 0.0681861i
\(988\) 0 0
\(989\) 11034.2i 0.354771i
\(990\) 0 0
\(991\) 44415.5i 1.42372i 0.702322 + 0.711860i \(0.252147\pi\)
−0.702322 + 0.711860i \(0.747853\pi\)
\(992\) 0 0
\(993\) 7401.84 712.266i 0.236546 0.0227624i
\(994\) 0 0
\(995\) 25961.9 0.827183
\(996\) 0 0
\(997\) −21929.9 −0.696615 −0.348308 0.937380i \(-0.613244\pi\)
−0.348308 + 0.937380i \(0.613244\pi\)
\(998\) 0 0
\(999\) 12894.4 + 43559.7i 0.408369 + 1.37955i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 96.4.c.a.95.5 12
3.2 odd 2 inner 96.4.c.a.95.7 yes 12
4.3 odd 2 inner 96.4.c.a.95.8 yes 12
8.3 odd 2 192.4.c.d.191.5 12
8.5 even 2 192.4.c.d.191.8 12
12.11 even 2 inner 96.4.c.a.95.6 yes 12
16.3 odd 4 768.4.f.d.383.4 12
16.5 even 4 768.4.f.d.383.3 12
16.11 odd 4 768.4.f.i.383.9 12
16.13 even 4 768.4.f.i.383.10 12
24.5 odd 2 192.4.c.d.191.6 12
24.11 even 2 192.4.c.d.191.7 12
48.5 odd 4 768.4.f.d.383.2 12
48.11 even 4 768.4.f.i.383.12 12
48.29 odd 4 768.4.f.i.383.11 12
48.35 even 4 768.4.f.d.383.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.4.c.a.95.5 12 1.1 even 1 trivial
96.4.c.a.95.6 yes 12 12.11 even 2 inner
96.4.c.a.95.7 yes 12 3.2 odd 2 inner
96.4.c.a.95.8 yes 12 4.3 odd 2 inner
192.4.c.d.191.5 12 8.3 odd 2
192.4.c.d.191.6 12 24.5 odd 2
192.4.c.d.191.7 12 24.11 even 2
192.4.c.d.191.8 12 8.5 even 2
768.4.f.d.383.1 12 48.35 even 4
768.4.f.d.383.2 12 48.5 odd 4
768.4.f.d.383.3 12 16.5 even 4
768.4.f.d.383.4 12 16.3 odd 4
768.4.f.i.383.9 12 16.11 odd 4
768.4.f.i.383.10 12 16.13 even 4
768.4.f.i.383.11 12 48.29 odd 4
768.4.f.i.383.12 12 48.11 even 4