Properties

Label 96.4.a.f.1.1
Level $96$
Weight $4$
Character 96.1
Self dual yes
Analytic conductor $5.664$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [96,4,Mod(1,96)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(96, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("96.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 96.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.66418336055\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 96.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +10.0000 q^{5} +4.00000 q^{7} +9.00000 q^{9} -20.0000 q^{11} +70.0000 q^{13} +30.0000 q^{15} +90.0000 q^{17} -140.000 q^{19} +12.0000 q^{21} +192.000 q^{23} -25.0000 q^{25} +27.0000 q^{27} -134.000 q^{29} -100.000 q^{31} -60.0000 q^{33} +40.0000 q^{35} -170.000 q^{37} +210.000 q^{39} -110.000 q^{41} -532.000 q^{43} +90.0000 q^{45} +56.0000 q^{47} -327.000 q^{49} +270.000 q^{51} -430.000 q^{53} -200.000 q^{55} -420.000 q^{57} +20.0000 q^{59} +270.000 q^{61} +36.0000 q^{63} +700.000 q^{65} +524.000 q^{67} +576.000 q^{69} +80.0000 q^{71} +330.000 q^{73} -75.0000 q^{75} -80.0000 q^{77} -1060.00 q^{79} +81.0000 q^{81} +1188.00 q^{83} +900.000 q^{85} -402.000 q^{87} +1274.00 q^{89} +280.000 q^{91} -300.000 q^{93} -1400.00 q^{95} -590.000 q^{97} -180.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 10.0000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 4.00000 0.215980 0.107990 0.994152i \(-0.465559\pi\)
0.107990 + 0.994152i \(0.465559\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −20.0000 −0.548202 −0.274101 0.961701i \(-0.588380\pi\)
−0.274101 + 0.961701i \(0.588380\pi\)
\(12\) 0 0
\(13\) 70.0000 1.49342 0.746712 0.665148i \(-0.231631\pi\)
0.746712 + 0.665148i \(0.231631\pi\)
\(14\) 0 0
\(15\) 30.0000 0.516398
\(16\) 0 0
\(17\) 90.0000 1.28401 0.642006 0.766700i \(-0.278102\pi\)
0.642006 + 0.766700i \(0.278102\pi\)
\(18\) 0 0
\(19\) −140.000 −1.69043 −0.845216 0.534425i \(-0.820528\pi\)
−0.845216 + 0.534425i \(0.820528\pi\)
\(20\) 0 0
\(21\) 12.0000 0.124696
\(22\) 0 0
\(23\) 192.000 1.74064 0.870321 0.492485i \(-0.163911\pi\)
0.870321 + 0.492485i \(0.163911\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −134.000 −0.858041 −0.429020 0.903295i \(-0.641141\pi\)
−0.429020 + 0.903295i \(0.641141\pi\)
\(30\) 0 0
\(31\) −100.000 −0.579372 −0.289686 0.957122i \(-0.593551\pi\)
−0.289686 + 0.957122i \(0.593551\pi\)
\(32\) 0 0
\(33\) −60.0000 −0.316505
\(34\) 0 0
\(35\) 40.0000 0.193178
\(36\) 0 0
\(37\) −170.000 −0.755347 −0.377673 0.925939i \(-0.623276\pi\)
−0.377673 + 0.925939i \(0.623276\pi\)
\(38\) 0 0
\(39\) 210.000 0.862229
\(40\) 0 0
\(41\) −110.000 −0.419003 −0.209501 0.977808i \(-0.567184\pi\)
−0.209501 + 0.977808i \(0.567184\pi\)
\(42\) 0 0
\(43\) −532.000 −1.88673 −0.943363 0.331762i \(-0.892357\pi\)
−0.943363 + 0.331762i \(0.892357\pi\)
\(44\) 0 0
\(45\) 90.0000 0.298142
\(46\) 0 0
\(47\) 56.0000 0.173797 0.0868983 0.996217i \(-0.472304\pi\)
0.0868983 + 0.996217i \(0.472304\pi\)
\(48\) 0 0
\(49\) −327.000 −0.953353
\(50\) 0 0
\(51\) 270.000 0.741325
\(52\) 0 0
\(53\) −430.000 −1.11443 −0.557217 0.830367i \(-0.688131\pi\)
−0.557217 + 0.830367i \(0.688131\pi\)
\(54\) 0 0
\(55\) −200.000 −0.490327
\(56\) 0 0
\(57\) −420.000 −0.975971
\(58\) 0 0
\(59\) 20.0000 0.0441318 0.0220659 0.999757i \(-0.492976\pi\)
0.0220659 + 0.999757i \(0.492976\pi\)
\(60\) 0 0
\(61\) 270.000 0.566721 0.283360 0.959014i \(-0.408551\pi\)
0.283360 + 0.959014i \(0.408551\pi\)
\(62\) 0 0
\(63\) 36.0000 0.0719932
\(64\) 0 0
\(65\) 700.000 1.33576
\(66\) 0 0
\(67\) 524.000 0.955474 0.477737 0.878503i \(-0.341457\pi\)
0.477737 + 0.878503i \(0.341457\pi\)
\(68\) 0 0
\(69\) 576.000 1.00496
\(70\) 0 0
\(71\) 80.0000 0.133722 0.0668609 0.997762i \(-0.478702\pi\)
0.0668609 + 0.997762i \(0.478702\pi\)
\(72\) 0 0
\(73\) 330.000 0.529090 0.264545 0.964373i \(-0.414778\pi\)
0.264545 + 0.964373i \(0.414778\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) −80.0000 −0.118401
\(78\) 0 0
\(79\) −1060.00 −1.50961 −0.754806 0.655948i \(-0.772269\pi\)
−0.754806 + 0.655948i \(0.772269\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1188.00 1.57108 0.785542 0.618809i \(-0.212384\pi\)
0.785542 + 0.618809i \(0.212384\pi\)
\(84\) 0 0
\(85\) 900.000 1.14846
\(86\) 0 0
\(87\) −402.000 −0.495390
\(88\) 0 0
\(89\) 1274.00 1.51735 0.758673 0.651472i \(-0.225848\pi\)
0.758673 + 0.651472i \(0.225848\pi\)
\(90\) 0 0
\(91\) 280.000 0.322549
\(92\) 0 0
\(93\) −300.000 −0.334501
\(94\) 0 0
\(95\) −1400.00 −1.51197
\(96\) 0 0
\(97\) −590.000 −0.617582 −0.308791 0.951130i \(-0.599924\pi\)
−0.308791 + 0.951130i \(0.599924\pi\)
\(98\) 0 0
\(99\) −180.000 −0.182734
\(100\) 0 0
\(101\) −798.000 −0.786178 −0.393089 0.919500i \(-0.628594\pi\)
−0.393089 + 0.919500i \(0.628594\pi\)
\(102\) 0 0
\(103\) 1548.00 1.48086 0.740432 0.672131i \(-0.234621\pi\)
0.740432 + 0.672131i \(0.234621\pi\)
\(104\) 0 0
\(105\) 120.000 0.111531
\(106\) 0 0
\(107\) −1324.00 −1.19622 −0.598112 0.801413i \(-0.704082\pi\)
−0.598112 + 0.801413i \(0.704082\pi\)
\(108\) 0 0
\(109\) 470.000 0.413008 0.206504 0.978446i \(-0.433791\pi\)
0.206504 + 0.978446i \(0.433791\pi\)
\(110\) 0 0
\(111\) −510.000 −0.436100
\(112\) 0 0
\(113\) 610.000 0.507823 0.253911 0.967227i \(-0.418283\pi\)
0.253911 + 0.967227i \(0.418283\pi\)
\(114\) 0 0
\(115\) 1920.00 1.55688
\(116\) 0 0
\(117\) 630.000 0.497808
\(118\) 0 0
\(119\) 360.000 0.277321
\(120\) 0 0
\(121\) −931.000 −0.699474
\(122\) 0 0
\(123\) −330.000 −0.241911
\(124\) 0 0
\(125\) −1500.00 −1.07331
\(126\) 0 0
\(127\) 884.000 0.617656 0.308828 0.951118i \(-0.400063\pi\)
0.308828 + 0.951118i \(0.400063\pi\)
\(128\) 0 0
\(129\) −1596.00 −1.08930
\(130\) 0 0
\(131\) −500.000 −0.333475 −0.166737 0.986001i \(-0.553323\pi\)
−0.166737 + 0.986001i \(0.553323\pi\)
\(132\) 0 0
\(133\) −560.000 −0.365099
\(134\) 0 0
\(135\) 270.000 0.172133
\(136\) 0 0
\(137\) −1950.00 −1.21606 −0.608028 0.793915i \(-0.708039\pi\)
−0.608028 + 0.793915i \(0.708039\pi\)
\(138\) 0 0
\(139\) −220.000 −0.134246 −0.0671229 0.997745i \(-0.521382\pi\)
−0.0671229 + 0.997745i \(0.521382\pi\)
\(140\) 0 0
\(141\) 168.000 0.100342
\(142\) 0 0
\(143\) −1400.00 −0.818698
\(144\) 0 0
\(145\) −1340.00 −0.767455
\(146\) 0 0
\(147\) −981.000 −0.550418
\(148\) 0 0
\(149\) −390.000 −0.214430 −0.107215 0.994236i \(-0.534193\pi\)
−0.107215 + 0.994236i \(0.534193\pi\)
\(150\) 0 0
\(151\) 2100.00 1.13176 0.565879 0.824488i \(-0.308537\pi\)
0.565879 + 0.824488i \(0.308537\pi\)
\(152\) 0 0
\(153\) 810.000 0.428004
\(154\) 0 0
\(155\) −1000.00 −0.518206
\(156\) 0 0
\(157\) −2050.00 −1.04209 −0.521044 0.853530i \(-0.674457\pi\)
−0.521044 + 0.853530i \(0.674457\pi\)
\(158\) 0 0
\(159\) −1290.00 −0.643419
\(160\) 0 0
\(161\) 768.000 0.375943
\(162\) 0 0
\(163\) −332.000 −0.159535 −0.0797676 0.996813i \(-0.525418\pi\)
−0.0797676 + 0.996813i \(0.525418\pi\)
\(164\) 0 0
\(165\) −600.000 −0.283091
\(166\) 0 0
\(167\) 2744.00 1.27148 0.635740 0.771903i \(-0.280695\pi\)
0.635740 + 0.771903i \(0.280695\pi\)
\(168\) 0 0
\(169\) 2703.00 1.23031
\(170\) 0 0
\(171\) −1260.00 −0.563477
\(172\) 0 0
\(173\) 3570.00 1.56891 0.784457 0.620183i \(-0.212942\pi\)
0.784457 + 0.620183i \(0.212942\pi\)
\(174\) 0 0
\(175\) −100.000 −0.0431959
\(176\) 0 0
\(177\) 60.0000 0.0254795
\(178\) 0 0
\(179\) −1380.00 −0.576235 −0.288117 0.957595i \(-0.593029\pi\)
−0.288117 + 0.957595i \(0.593029\pi\)
\(180\) 0 0
\(181\) 1358.00 0.557676 0.278838 0.960338i \(-0.410051\pi\)
0.278838 + 0.960338i \(0.410051\pi\)
\(182\) 0 0
\(183\) 810.000 0.327196
\(184\) 0 0
\(185\) −1700.00 −0.675603
\(186\) 0 0
\(187\) −1800.00 −0.703899
\(188\) 0 0
\(189\) 108.000 0.0415653
\(190\) 0 0
\(191\) 3840.00 1.45473 0.727363 0.686253i \(-0.240746\pi\)
0.727363 + 0.686253i \(0.240746\pi\)
\(192\) 0 0
\(193\) 3090.00 1.15245 0.576226 0.817291i \(-0.304525\pi\)
0.576226 + 0.817291i \(0.304525\pi\)
\(194\) 0 0
\(195\) 2100.00 0.771201
\(196\) 0 0
\(197\) −1070.00 −0.386976 −0.193488 0.981103i \(-0.561980\pi\)
−0.193488 + 0.981103i \(0.561980\pi\)
\(198\) 0 0
\(199\) 380.000 0.135364 0.0676821 0.997707i \(-0.478440\pi\)
0.0676821 + 0.997707i \(0.478440\pi\)
\(200\) 0 0
\(201\) 1572.00 0.551643
\(202\) 0 0
\(203\) −536.000 −0.185319
\(204\) 0 0
\(205\) −1100.00 −0.374767
\(206\) 0 0
\(207\) 1728.00 0.580214
\(208\) 0 0
\(209\) 2800.00 0.926699
\(210\) 0 0
\(211\) −2180.00 −0.711267 −0.355634 0.934625i \(-0.615735\pi\)
−0.355634 + 0.934625i \(0.615735\pi\)
\(212\) 0 0
\(213\) 240.000 0.0772044
\(214\) 0 0
\(215\) −5320.00 −1.68754
\(216\) 0 0
\(217\) −400.000 −0.125133
\(218\) 0 0
\(219\) 990.000 0.305470
\(220\) 0 0
\(221\) 6300.00 1.91757
\(222\) 0 0
\(223\) −668.000 −0.200595 −0.100297 0.994958i \(-0.531979\pi\)
−0.100297 + 0.994958i \(0.531979\pi\)
\(224\) 0 0
\(225\) −225.000 −0.0666667
\(226\) 0 0
\(227\) 4836.00 1.41399 0.706997 0.707217i \(-0.250049\pi\)
0.706997 + 0.707217i \(0.250049\pi\)
\(228\) 0 0
\(229\) 4334.00 1.25065 0.625325 0.780365i \(-0.284966\pi\)
0.625325 + 0.780365i \(0.284966\pi\)
\(230\) 0 0
\(231\) −240.000 −0.0683586
\(232\) 0 0
\(233\) −2550.00 −0.716979 −0.358489 0.933534i \(-0.616708\pi\)
−0.358489 + 0.933534i \(0.616708\pi\)
\(234\) 0 0
\(235\) 560.000 0.155448
\(236\) 0 0
\(237\) −3180.00 −0.871575
\(238\) 0 0
\(239\) −1920.00 −0.519642 −0.259821 0.965657i \(-0.583664\pi\)
−0.259821 + 0.965657i \(0.583664\pi\)
\(240\) 0 0
\(241\) −1070.00 −0.285995 −0.142997 0.989723i \(-0.545674\pi\)
−0.142997 + 0.989723i \(0.545674\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) −3270.00 −0.852705
\(246\) 0 0
\(247\) −9800.00 −2.52453
\(248\) 0 0
\(249\) 3564.00 0.907066
\(250\) 0 0
\(251\) 1020.00 0.256501 0.128251 0.991742i \(-0.459064\pi\)
0.128251 + 0.991742i \(0.459064\pi\)
\(252\) 0 0
\(253\) −3840.00 −0.954224
\(254\) 0 0
\(255\) 2700.00 0.663061
\(256\) 0 0
\(257\) −5630.00 −1.36650 −0.683249 0.730186i \(-0.739433\pi\)
−0.683249 + 0.730186i \(0.739433\pi\)
\(258\) 0 0
\(259\) −680.000 −0.163140
\(260\) 0 0
\(261\) −1206.00 −0.286014
\(262\) 0 0
\(263\) 7128.00 1.67122 0.835611 0.549322i \(-0.185114\pi\)
0.835611 + 0.549322i \(0.185114\pi\)
\(264\) 0 0
\(265\) −4300.00 −0.996781
\(266\) 0 0
\(267\) 3822.00 0.876040
\(268\) 0 0
\(269\) 4650.00 1.05396 0.526980 0.849877i \(-0.323324\pi\)
0.526980 + 0.849877i \(0.323324\pi\)
\(270\) 0 0
\(271\) −3180.00 −0.712809 −0.356405 0.934332i \(-0.615997\pi\)
−0.356405 + 0.934332i \(0.615997\pi\)
\(272\) 0 0
\(273\) 840.000 0.186224
\(274\) 0 0
\(275\) 500.000 0.109640
\(276\) 0 0
\(277\) −5330.00 −1.15613 −0.578066 0.815990i \(-0.696192\pi\)
−0.578066 + 0.815990i \(0.696192\pi\)
\(278\) 0 0
\(279\) −900.000 −0.193124
\(280\) 0 0
\(281\) −7830.00 −1.66227 −0.831136 0.556069i \(-0.812309\pi\)
−0.831136 + 0.556069i \(0.812309\pi\)
\(282\) 0 0
\(283\) −268.000 −0.0562931 −0.0281465 0.999604i \(-0.508961\pi\)
−0.0281465 + 0.999604i \(0.508961\pi\)
\(284\) 0 0
\(285\) −4200.00 −0.872935
\(286\) 0 0
\(287\) −440.000 −0.0904961
\(288\) 0 0
\(289\) 3187.00 0.648687
\(290\) 0 0
\(291\) −1770.00 −0.356561
\(292\) 0 0
\(293\) −1950.00 −0.388806 −0.194403 0.980922i \(-0.562277\pi\)
−0.194403 + 0.980922i \(0.562277\pi\)
\(294\) 0 0
\(295\) 200.000 0.0394727
\(296\) 0 0
\(297\) −540.000 −0.105502
\(298\) 0 0
\(299\) 13440.0 2.59952
\(300\) 0 0
\(301\) −2128.00 −0.407495
\(302\) 0 0
\(303\) −2394.00 −0.453900
\(304\) 0 0
\(305\) 2700.00 0.506890
\(306\) 0 0
\(307\) −2916.00 −0.542101 −0.271050 0.962565i \(-0.587371\pi\)
−0.271050 + 0.962565i \(0.587371\pi\)
\(308\) 0 0
\(309\) 4644.00 0.854977
\(310\) 0 0
\(311\) −9000.00 −1.64097 −0.820487 0.571665i \(-0.806298\pi\)
−0.820487 + 0.571665i \(0.806298\pi\)
\(312\) 0 0
\(313\) 8890.00 1.60541 0.802704 0.596378i \(-0.203394\pi\)
0.802704 + 0.596378i \(0.203394\pi\)
\(314\) 0 0
\(315\) 360.000 0.0643927
\(316\) 0 0
\(317\) 1290.00 0.228560 0.114280 0.993449i \(-0.463544\pi\)
0.114280 + 0.993449i \(0.463544\pi\)
\(318\) 0 0
\(319\) 2680.00 0.470380
\(320\) 0 0
\(321\) −3972.00 −0.690640
\(322\) 0 0
\(323\) −12600.0 −2.17053
\(324\) 0 0
\(325\) −1750.00 −0.298685
\(326\) 0 0
\(327\) 1410.00 0.238450
\(328\) 0 0
\(329\) 224.000 0.0375365
\(330\) 0 0
\(331\) 5300.00 0.880104 0.440052 0.897972i \(-0.354960\pi\)
0.440052 + 0.897972i \(0.354960\pi\)
\(332\) 0 0
\(333\) −1530.00 −0.251782
\(334\) 0 0
\(335\) 5240.00 0.854602
\(336\) 0 0
\(337\) −9310.00 −1.50489 −0.752445 0.658655i \(-0.771126\pi\)
−0.752445 + 0.658655i \(0.771126\pi\)
\(338\) 0 0
\(339\) 1830.00 0.293192
\(340\) 0 0
\(341\) 2000.00 0.317613
\(342\) 0 0
\(343\) −2680.00 −0.421885
\(344\) 0 0
\(345\) 5760.00 0.898864
\(346\) 0 0
\(347\) −2596.00 −0.401616 −0.200808 0.979631i \(-0.564357\pi\)
−0.200808 + 0.979631i \(0.564357\pi\)
\(348\) 0 0
\(349\) 814.000 0.124849 0.0624247 0.998050i \(-0.480117\pi\)
0.0624247 + 0.998050i \(0.480117\pi\)
\(350\) 0 0
\(351\) 1890.00 0.287410
\(352\) 0 0
\(353\) 7730.00 1.16551 0.582757 0.812647i \(-0.301974\pi\)
0.582757 + 0.812647i \(0.301974\pi\)
\(354\) 0 0
\(355\) 800.000 0.119604
\(356\) 0 0
\(357\) 1080.00 0.160111
\(358\) 0 0
\(359\) −5840.00 −0.858561 −0.429281 0.903171i \(-0.641233\pi\)
−0.429281 + 0.903171i \(0.641233\pi\)
\(360\) 0 0
\(361\) 12741.0 1.85756
\(362\) 0 0
\(363\) −2793.00 −0.403842
\(364\) 0 0
\(365\) 3300.00 0.473233
\(366\) 0 0
\(367\) 6636.00 0.943859 0.471930 0.881636i \(-0.343558\pi\)
0.471930 + 0.881636i \(0.343558\pi\)
\(368\) 0 0
\(369\) −990.000 −0.139668
\(370\) 0 0
\(371\) −1720.00 −0.240695
\(372\) 0 0
\(373\) 12950.0 1.79766 0.898828 0.438302i \(-0.144420\pi\)
0.898828 + 0.438302i \(0.144420\pi\)
\(374\) 0 0
\(375\) −4500.00 −0.619677
\(376\) 0 0
\(377\) −9380.00 −1.28142
\(378\) 0 0
\(379\) 6220.00 0.843008 0.421504 0.906827i \(-0.361502\pi\)
0.421504 + 0.906827i \(0.361502\pi\)
\(380\) 0 0
\(381\) 2652.00 0.356604
\(382\) 0 0
\(383\) 8672.00 1.15697 0.578484 0.815694i \(-0.303645\pi\)
0.578484 + 0.815694i \(0.303645\pi\)
\(384\) 0 0
\(385\) −800.000 −0.105901
\(386\) 0 0
\(387\) −4788.00 −0.628909
\(388\) 0 0
\(389\) 7530.00 0.981455 0.490728 0.871313i \(-0.336731\pi\)
0.490728 + 0.871313i \(0.336731\pi\)
\(390\) 0 0
\(391\) 17280.0 2.23501
\(392\) 0 0
\(393\) −1500.00 −0.192532
\(394\) 0 0
\(395\) −10600.0 −1.35024
\(396\) 0 0
\(397\) −3650.00 −0.461431 −0.230716 0.973021i \(-0.574107\pi\)
−0.230716 + 0.973021i \(0.574107\pi\)
\(398\) 0 0
\(399\) −1680.00 −0.210790
\(400\) 0 0
\(401\) 11498.0 1.43188 0.715939 0.698163i \(-0.245999\pi\)
0.715939 + 0.698163i \(0.245999\pi\)
\(402\) 0 0
\(403\) −7000.00 −0.865248
\(404\) 0 0
\(405\) 810.000 0.0993808
\(406\) 0 0
\(407\) 3400.00 0.414083
\(408\) 0 0
\(409\) −3590.00 −0.434020 −0.217010 0.976169i \(-0.569630\pi\)
−0.217010 + 0.976169i \(0.569630\pi\)
\(410\) 0 0
\(411\) −5850.00 −0.702091
\(412\) 0 0
\(413\) 80.0000 0.00953158
\(414\) 0 0
\(415\) 11880.0 1.40522
\(416\) 0 0
\(417\) −660.000 −0.0775068
\(418\) 0 0
\(419\) −380.000 −0.0443060 −0.0221530 0.999755i \(-0.507052\pi\)
−0.0221530 + 0.999755i \(0.507052\pi\)
\(420\) 0 0
\(421\) −5410.00 −0.626288 −0.313144 0.949706i \(-0.601382\pi\)
−0.313144 + 0.949706i \(0.601382\pi\)
\(422\) 0 0
\(423\) 504.000 0.0579322
\(424\) 0 0
\(425\) −2250.00 −0.256802
\(426\) 0 0
\(427\) 1080.00 0.122400
\(428\) 0 0
\(429\) −4200.00 −0.472676
\(430\) 0 0
\(431\) −8280.00 −0.925368 −0.462684 0.886523i \(-0.653114\pi\)
−0.462684 + 0.886523i \(0.653114\pi\)
\(432\) 0 0
\(433\) −12590.0 −1.39731 −0.698657 0.715457i \(-0.746219\pi\)
−0.698657 + 0.715457i \(0.746219\pi\)
\(434\) 0 0
\(435\) −4020.00 −0.443090
\(436\) 0 0
\(437\) −26880.0 −2.94244
\(438\) 0 0
\(439\) −15140.0 −1.64600 −0.822999 0.568043i \(-0.807701\pi\)
−0.822999 + 0.568043i \(0.807701\pi\)
\(440\) 0 0
\(441\) −2943.00 −0.317784
\(442\) 0 0
\(443\) 5628.00 0.603599 0.301799 0.953371i \(-0.402413\pi\)
0.301799 + 0.953371i \(0.402413\pi\)
\(444\) 0 0
\(445\) 12740.0 1.35715
\(446\) 0 0
\(447\) −1170.00 −0.123801
\(448\) 0 0
\(449\) 5450.00 0.572832 0.286416 0.958105i \(-0.407536\pi\)
0.286416 + 0.958105i \(0.407536\pi\)
\(450\) 0 0
\(451\) 2200.00 0.229698
\(452\) 0 0
\(453\) 6300.00 0.653421
\(454\) 0 0
\(455\) 2800.00 0.288497
\(456\) 0 0
\(457\) −2710.00 −0.277393 −0.138696 0.990335i \(-0.544291\pi\)
−0.138696 + 0.990335i \(0.544291\pi\)
\(458\) 0 0
\(459\) 2430.00 0.247108
\(460\) 0 0
\(461\) −11982.0 −1.21054 −0.605268 0.796022i \(-0.706934\pi\)
−0.605268 + 0.796022i \(0.706934\pi\)
\(462\) 0 0
\(463\) 6068.00 0.609080 0.304540 0.952500i \(-0.401497\pi\)
0.304540 + 0.952500i \(0.401497\pi\)
\(464\) 0 0
\(465\) −3000.00 −0.299186
\(466\) 0 0
\(467\) −5036.00 −0.499011 −0.249506 0.968373i \(-0.580268\pi\)
−0.249506 + 0.968373i \(0.580268\pi\)
\(468\) 0 0
\(469\) 2096.00 0.206363
\(470\) 0 0
\(471\) −6150.00 −0.601650
\(472\) 0 0
\(473\) 10640.0 1.03431
\(474\) 0 0
\(475\) 3500.00 0.338086
\(476\) 0 0
\(477\) −3870.00 −0.371478
\(478\) 0 0
\(479\) 4440.00 0.423526 0.211763 0.977321i \(-0.432080\pi\)
0.211763 + 0.977321i \(0.432080\pi\)
\(480\) 0 0
\(481\) −11900.0 −1.12805
\(482\) 0 0
\(483\) 2304.00 0.217051
\(484\) 0 0
\(485\) −5900.00 −0.552382
\(486\) 0 0
\(487\) 4996.00 0.464867 0.232434 0.972612i \(-0.425331\pi\)
0.232434 + 0.972612i \(0.425331\pi\)
\(488\) 0 0
\(489\) −996.000 −0.0921077
\(490\) 0 0
\(491\) −10700.0 −0.983471 −0.491735 0.870745i \(-0.663637\pi\)
−0.491735 + 0.870745i \(0.663637\pi\)
\(492\) 0 0
\(493\) −12060.0 −1.10173
\(494\) 0 0
\(495\) −1800.00 −0.163442
\(496\) 0 0
\(497\) 320.000 0.0288812
\(498\) 0 0
\(499\) 13980.0 1.25417 0.627085 0.778951i \(-0.284248\pi\)
0.627085 + 0.778951i \(0.284248\pi\)
\(500\) 0 0
\(501\) 8232.00 0.734089
\(502\) 0 0
\(503\) −13632.0 −1.20839 −0.604196 0.796836i \(-0.706505\pi\)
−0.604196 + 0.796836i \(0.706505\pi\)
\(504\) 0 0
\(505\) −7980.00 −0.703179
\(506\) 0 0
\(507\) 8109.00 0.710322
\(508\) 0 0
\(509\) 4746.00 0.413286 0.206643 0.978416i \(-0.433746\pi\)
0.206643 + 0.978416i \(0.433746\pi\)
\(510\) 0 0
\(511\) 1320.00 0.114273
\(512\) 0 0
\(513\) −3780.00 −0.325324
\(514\) 0 0
\(515\) 15480.0 1.32452
\(516\) 0 0
\(517\) −1120.00 −0.0952757
\(518\) 0 0
\(519\) 10710.0 0.905813
\(520\) 0 0
\(521\) −5838.00 −0.490916 −0.245458 0.969407i \(-0.578938\pi\)
−0.245458 + 0.969407i \(0.578938\pi\)
\(522\) 0 0
\(523\) −8388.00 −0.701303 −0.350652 0.936506i \(-0.614040\pi\)
−0.350652 + 0.936506i \(0.614040\pi\)
\(524\) 0 0
\(525\) −300.000 −0.0249392
\(526\) 0 0
\(527\) −9000.00 −0.743921
\(528\) 0 0
\(529\) 24697.0 2.02983
\(530\) 0 0
\(531\) 180.000 0.0147106
\(532\) 0 0
\(533\) −7700.00 −0.625749
\(534\) 0 0
\(535\) −13240.0 −1.06993
\(536\) 0 0
\(537\) −4140.00 −0.332689
\(538\) 0 0
\(539\) 6540.00 0.522630
\(540\) 0 0
\(541\) 7078.00 0.562490 0.281245 0.959636i \(-0.409253\pi\)
0.281245 + 0.959636i \(0.409253\pi\)
\(542\) 0 0
\(543\) 4074.00 0.321974
\(544\) 0 0
\(545\) 4700.00 0.369405
\(546\) 0 0
\(547\) −8604.00 −0.672542 −0.336271 0.941765i \(-0.609166\pi\)
−0.336271 + 0.941765i \(0.609166\pi\)
\(548\) 0 0
\(549\) 2430.00 0.188907
\(550\) 0 0
\(551\) 18760.0 1.45046
\(552\) 0 0
\(553\) −4240.00 −0.326045
\(554\) 0 0
\(555\) −5100.00 −0.390059
\(556\) 0 0
\(557\) 18850.0 1.43393 0.716966 0.697108i \(-0.245530\pi\)
0.716966 + 0.697108i \(0.245530\pi\)
\(558\) 0 0
\(559\) −37240.0 −2.81768
\(560\) 0 0
\(561\) −5400.00 −0.406396
\(562\) 0 0
\(563\) 5412.00 0.405131 0.202565 0.979269i \(-0.435072\pi\)
0.202565 + 0.979269i \(0.435072\pi\)
\(564\) 0 0
\(565\) 6100.00 0.454210
\(566\) 0 0
\(567\) 324.000 0.0239977
\(568\) 0 0
\(569\) 13570.0 0.999796 0.499898 0.866084i \(-0.333371\pi\)
0.499898 + 0.866084i \(0.333371\pi\)
\(570\) 0 0
\(571\) −860.000 −0.0630296 −0.0315148 0.999503i \(-0.510033\pi\)
−0.0315148 + 0.999503i \(0.510033\pi\)
\(572\) 0 0
\(573\) 11520.0 0.839886
\(574\) 0 0
\(575\) −4800.00 −0.348128
\(576\) 0 0
\(577\) 5010.00 0.361471 0.180736 0.983532i \(-0.442152\pi\)
0.180736 + 0.983532i \(0.442152\pi\)
\(578\) 0 0
\(579\) 9270.00 0.665368
\(580\) 0 0
\(581\) 4752.00 0.339322
\(582\) 0 0
\(583\) 8600.00 0.610936
\(584\) 0 0
\(585\) 6300.00 0.445253
\(586\) 0 0
\(587\) 16116.0 1.13318 0.566592 0.823999i \(-0.308262\pi\)
0.566592 + 0.823999i \(0.308262\pi\)
\(588\) 0 0
\(589\) 14000.0 0.979389
\(590\) 0 0
\(591\) −3210.00 −0.223421
\(592\) 0 0
\(593\) 7170.00 0.496520 0.248260 0.968693i \(-0.420141\pi\)
0.248260 + 0.968693i \(0.420141\pi\)
\(594\) 0 0
\(595\) 3600.00 0.248043
\(596\) 0 0
\(597\) 1140.00 0.0781526
\(598\) 0 0
\(599\) −9520.00 −0.649377 −0.324688 0.945821i \(-0.605259\pi\)
−0.324688 + 0.945821i \(0.605259\pi\)
\(600\) 0 0
\(601\) 6010.00 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 4716.00 0.318491
\(604\) 0 0
\(605\) −9310.00 −0.625629
\(606\) 0 0
\(607\) −24844.0 −1.66126 −0.830632 0.556822i \(-0.812020\pi\)
−0.830632 + 0.556822i \(0.812020\pi\)
\(608\) 0 0
\(609\) −1608.00 −0.106994
\(610\) 0 0
\(611\) 3920.00 0.259552
\(612\) 0 0
\(613\) 9990.00 0.658226 0.329113 0.944291i \(-0.393250\pi\)
0.329113 + 0.944291i \(0.393250\pi\)
\(614\) 0 0
\(615\) −3300.00 −0.216372
\(616\) 0 0
\(617\) 570.000 0.0371918 0.0185959 0.999827i \(-0.494080\pi\)
0.0185959 + 0.999827i \(0.494080\pi\)
\(618\) 0 0
\(619\) −8700.00 −0.564915 −0.282458 0.959280i \(-0.591150\pi\)
−0.282458 + 0.959280i \(0.591150\pi\)
\(620\) 0 0
\(621\) 5184.00 0.334987
\(622\) 0 0
\(623\) 5096.00 0.327716
\(624\) 0 0
\(625\) −11875.0 −0.760000
\(626\) 0 0
\(627\) 8400.00 0.535030
\(628\) 0 0
\(629\) −15300.0 −0.969874
\(630\) 0 0
\(631\) 16340.0 1.03088 0.515440 0.856926i \(-0.327629\pi\)
0.515440 + 0.856926i \(0.327629\pi\)
\(632\) 0 0
\(633\) −6540.00 −0.410650
\(634\) 0 0
\(635\) 8840.00 0.552448
\(636\) 0 0
\(637\) −22890.0 −1.42376
\(638\) 0 0
\(639\) 720.000 0.0445740
\(640\) 0 0
\(641\) 11210.0 0.690746 0.345373 0.938465i \(-0.387752\pi\)
0.345373 + 0.938465i \(0.387752\pi\)
\(642\) 0 0
\(643\) −12828.0 −0.786760 −0.393380 0.919376i \(-0.628694\pi\)
−0.393380 + 0.919376i \(0.628694\pi\)
\(644\) 0 0
\(645\) −15960.0 −0.974301
\(646\) 0 0
\(647\) 24336.0 1.47874 0.739372 0.673298i \(-0.235123\pi\)
0.739372 + 0.673298i \(0.235123\pi\)
\(648\) 0 0
\(649\) −400.000 −0.0241932
\(650\) 0 0
\(651\) −1200.00 −0.0722453
\(652\) 0 0
\(653\) 770.000 0.0461446 0.0230723 0.999734i \(-0.492655\pi\)
0.0230723 + 0.999734i \(0.492655\pi\)
\(654\) 0 0
\(655\) −5000.00 −0.298269
\(656\) 0 0
\(657\) 2970.00 0.176363
\(658\) 0 0
\(659\) 4140.00 0.244722 0.122361 0.992486i \(-0.460954\pi\)
0.122361 + 0.992486i \(0.460954\pi\)
\(660\) 0 0
\(661\) 8390.00 0.493696 0.246848 0.969054i \(-0.420605\pi\)
0.246848 + 0.969054i \(0.420605\pi\)
\(662\) 0 0
\(663\) 18900.0 1.10711
\(664\) 0 0
\(665\) −5600.00 −0.326554
\(666\) 0 0
\(667\) −25728.0 −1.49354
\(668\) 0 0
\(669\) −2004.00 −0.115813
\(670\) 0 0
\(671\) −5400.00 −0.310678
\(672\) 0 0
\(673\) 1730.00 0.0990886 0.0495443 0.998772i \(-0.484223\pi\)
0.0495443 + 0.998772i \(0.484223\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) 23930.0 1.35850 0.679250 0.733907i \(-0.262305\pi\)
0.679250 + 0.733907i \(0.262305\pi\)
\(678\) 0 0
\(679\) −2360.00 −0.133385
\(680\) 0 0
\(681\) 14508.0 0.816370
\(682\) 0 0
\(683\) −29892.0 −1.67465 −0.837325 0.546706i \(-0.815882\pi\)
−0.837325 + 0.546706i \(0.815882\pi\)
\(684\) 0 0
\(685\) −19500.0 −1.08767
\(686\) 0 0
\(687\) 13002.0 0.722063
\(688\) 0 0
\(689\) −30100.0 −1.66432
\(690\) 0 0
\(691\) 21220.0 1.16823 0.584115 0.811671i \(-0.301442\pi\)
0.584115 + 0.811671i \(0.301442\pi\)
\(692\) 0 0
\(693\) −720.000 −0.0394669
\(694\) 0 0
\(695\) −2200.00 −0.120073
\(696\) 0 0
\(697\) −9900.00 −0.538005
\(698\) 0 0
\(699\) −7650.00 −0.413948
\(700\) 0 0
\(701\) −21750.0 −1.17188 −0.585939 0.810355i \(-0.699274\pi\)
−0.585939 + 0.810355i \(0.699274\pi\)
\(702\) 0 0
\(703\) 23800.0 1.27686
\(704\) 0 0
\(705\) 1680.00 0.0897482
\(706\) 0 0
\(707\) −3192.00 −0.169798
\(708\) 0 0
\(709\) −21554.0 −1.14172 −0.570859 0.821048i \(-0.693390\pi\)
−0.570859 + 0.821048i \(0.693390\pi\)
\(710\) 0 0
\(711\) −9540.00 −0.503204
\(712\) 0 0
\(713\) −19200.0 −1.00848
\(714\) 0 0
\(715\) −14000.0 −0.732266
\(716\) 0 0
\(717\) −5760.00 −0.300016
\(718\) 0 0
\(719\) −13000.0 −0.674295 −0.337148 0.941452i \(-0.609462\pi\)
−0.337148 + 0.941452i \(0.609462\pi\)
\(720\) 0 0
\(721\) 6192.00 0.319837
\(722\) 0 0
\(723\) −3210.00 −0.165119
\(724\) 0 0
\(725\) 3350.00 0.171608
\(726\) 0 0
\(727\) −3276.00 −0.167125 −0.0835627 0.996503i \(-0.526630\pi\)
−0.0835627 + 0.996503i \(0.526630\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −47880.0 −2.42258
\(732\) 0 0
\(733\) 21110.0 1.06373 0.531866 0.846828i \(-0.321491\pi\)
0.531866 + 0.846828i \(0.321491\pi\)
\(734\) 0 0
\(735\) −9810.00 −0.492309
\(736\) 0 0
\(737\) −10480.0 −0.523793
\(738\) 0 0
\(739\) 17980.0 0.895000 0.447500 0.894284i \(-0.352314\pi\)
0.447500 + 0.894284i \(0.352314\pi\)
\(740\) 0 0
\(741\) −29400.0 −1.45754
\(742\) 0 0
\(743\) 33192.0 1.63889 0.819446 0.573157i \(-0.194281\pi\)
0.819446 + 0.573157i \(0.194281\pi\)
\(744\) 0 0
\(745\) −3900.00 −0.191792
\(746\) 0 0
\(747\) 10692.0 0.523695
\(748\) 0 0
\(749\) −5296.00 −0.258360
\(750\) 0 0
\(751\) 23900.0 1.16128 0.580641 0.814159i \(-0.302802\pi\)
0.580641 + 0.814159i \(0.302802\pi\)
\(752\) 0 0
\(753\) 3060.00 0.148091
\(754\) 0 0
\(755\) 21000.0 1.01228
\(756\) 0 0
\(757\) 1950.00 0.0936248 0.0468124 0.998904i \(-0.485094\pi\)
0.0468124 + 0.998904i \(0.485094\pi\)
\(758\) 0 0
\(759\) −11520.0 −0.550922
\(760\) 0 0
\(761\) 8082.00 0.384983 0.192492 0.981299i \(-0.438343\pi\)
0.192492 + 0.981299i \(0.438343\pi\)
\(762\) 0 0
\(763\) 1880.00 0.0892013
\(764\) 0 0
\(765\) 8100.00 0.382818
\(766\) 0 0
\(767\) 1400.00 0.0659075
\(768\) 0 0
\(769\) −36494.0 −1.71132 −0.855661 0.517536i \(-0.826849\pi\)
−0.855661 + 0.517536i \(0.826849\pi\)
\(770\) 0 0
\(771\) −16890.0 −0.788947
\(772\) 0 0
\(773\) 28050.0 1.30516 0.652580 0.757720i \(-0.273687\pi\)
0.652580 + 0.757720i \(0.273687\pi\)
\(774\) 0 0
\(775\) 2500.00 0.115874
\(776\) 0 0
\(777\) −2040.00 −0.0941887
\(778\) 0 0
\(779\) 15400.0 0.708296
\(780\) 0 0
\(781\) −1600.00 −0.0733067
\(782\) 0 0
\(783\) −3618.00 −0.165130
\(784\) 0 0
\(785\) −20500.0 −0.932072
\(786\) 0 0
\(787\) −23004.0 −1.04194 −0.520968 0.853576i \(-0.674429\pi\)
−0.520968 + 0.853576i \(0.674429\pi\)
\(788\) 0 0
\(789\) 21384.0 0.964880
\(790\) 0 0
\(791\) 2440.00 0.109679
\(792\) 0 0
\(793\) 18900.0 0.846354
\(794\) 0 0
\(795\) −12900.0 −0.575492
\(796\) 0 0
\(797\) 19410.0 0.862657 0.431328 0.902195i \(-0.358045\pi\)
0.431328 + 0.902195i \(0.358045\pi\)
\(798\) 0 0
\(799\) 5040.00 0.223157
\(800\) 0 0
\(801\) 11466.0 0.505782
\(802\) 0 0
\(803\) −6600.00 −0.290048
\(804\) 0 0
\(805\) 7680.00 0.336254
\(806\) 0 0
\(807\) 13950.0 0.608505
\(808\) 0 0
\(809\) 34946.0 1.51871 0.759355 0.650677i \(-0.225515\pi\)
0.759355 + 0.650677i \(0.225515\pi\)
\(810\) 0 0
\(811\) 28300.0 1.22534 0.612668 0.790340i \(-0.290096\pi\)
0.612668 + 0.790340i \(0.290096\pi\)
\(812\) 0 0
\(813\) −9540.00 −0.411540
\(814\) 0 0
\(815\) −3320.00 −0.142693
\(816\) 0 0
\(817\) 74480.0 3.18938
\(818\) 0 0
\(819\) 2520.00 0.107516
\(820\) 0 0
\(821\) 16930.0 0.719685 0.359842 0.933013i \(-0.382830\pi\)
0.359842 + 0.933013i \(0.382830\pi\)
\(822\) 0 0
\(823\) 24772.0 1.04921 0.524604 0.851347i \(-0.324214\pi\)
0.524604 + 0.851347i \(0.324214\pi\)
\(824\) 0 0
\(825\) 1500.00 0.0633010
\(826\) 0 0
\(827\) 12004.0 0.504740 0.252370 0.967631i \(-0.418790\pi\)
0.252370 + 0.967631i \(0.418790\pi\)
\(828\) 0 0
\(829\) −22330.0 −0.935528 −0.467764 0.883853i \(-0.654940\pi\)
−0.467764 + 0.883853i \(0.654940\pi\)
\(830\) 0 0
\(831\) −15990.0 −0.667493
\(832\) 0 0
\(833\) −29430.0 −1.22412
\(834\) 0 0
\(835\) 27440.0 1.13725
\(836\) 0 0
\(837\) −2700.00 −0.111500
\(838\) 0 0
\(839\) −45280.0 −1.86322 −0.931609 0.363463i \(-0.881594\pi\)
−0.931609 + 0.363463i \(0.881594\pi\)
\(840\) 0 0
\(841\) −6433.00 −0.263766
\(842\) 0 0
\(843\) −23490.0 −0.959714
\(844\) 0 0
\(845\) 27030.0 1.10043
\(846\) 0 0
\(847\) −3724.00 −0.151072
\(848\) 0 0
\(849\) −804.000 −0.0325008
\(850\) 0 0
\(851\) −32640.0 −1.31479
\(852\) 0 0
\(853\) −26970.0 −1.08257 −0.541287 0.840838i \(-0.682063\pi\)
−0.541287 + 0.840838i \(0.682063\pi\)
\(854\) 0 0
\(855\) −12600.0 −0.503989
\(856\) 0 0
\(857\) −12190.0 −0.485884 −0.242942 0.970041i \(-0.578112\pi\)
−0.242942 + 0.970041i \(0.578112\pi\)
\(858\) 0 0
\(859\) 9260.00 0.367808 0.183904 0.982944i \(-0.441126\pi\)
0.183904 + 0.982944i \(0.441126\pi\)
\(860\) 0 0
\(861\) −1320.00 −0.0522479
\(862\) 0 0
\(863\) 4832.00 0.190595 0.0952973 0.995449i \(-0.469620\pi\)
0.0952973 + 0.995449i \(0.469620\pi\)
\(864\) 0 0
\(865\) 35700.0 1.40328
\(866\) 0 0
\(867\) 9561.00 0.374520
\(868\) 0 0
\(869\) 21200.0 0.827573
\(870\) 0 0
\(871\) 36680.0 1.42693
\(872\) 0 0
\(873\) −5310.00 −0.205861
\(874\) 0 0
\(875\) −6000.00 −0.231814
\(876\) 0 0
\(877\) 37630.0 1.44889 0.724444 0.689334i \(-0.242097\pi\)
0.724444 + 0.689334i \(0.242097\pi\)
\(878\) 0 0
\(879\) −5850.00 −0.224477
\(880\) 0 0
\(881\) −15630.0 −0.597716 −0.298858 0.954298i \(-0.596606\pi\)
−0.298858 + 0.954298i \(0.596606\pi\)
\(882\) 0 0
\(883\) −12988.0 −0.494995 −0.247498 0.968888i \(-0.579608\pi\)
−0.247498 + 0.968888i \(0.579608\pi\)
\(884\) 0 0
\(885\) 600.000 0.0227896
\(886\) 0 0
\(887\) −5976.00 −0.226217 −0.113108 0.993583i \(-0.536081\pi\)
−0.113108 + 0.993583i \(0.536081\pi\)
\(888\) 0 0
\(889\) 3536.00 0.133401
\(890\) 0 0
\(891\) −1620.00 −0.0609114
\(892\) 0 0
\(893\) −7840.00 −0.293791
\(894\) 0 0
\(895\) −13800.0 −0.515400
\(896\) 0 0
\(897\) 40320.0 1.50083
\(898\) 0 0
\(899\) 13400.0 0.497125
\(900\) 0 0
\(901\) −38700.0 −1.43095
\(902\) 0 0
\(903\) −6384.00 −0.235267
\(904\) 0 0
\(905\) 13580.0 0.498801
\(906\) 0 0
\(907\) 15004.0 0.549283 0.274641 0.961547i \(-0.411441\pi\)
0.274641 + 0.961547i \(0.411441\pi\)
\(908\) 0 0
\(909\) −7182.00 −0.262059
\(910\) 0 0
\(911\) −21120.0 −0.768097 −0.384049 0.923313i \(-0.625471\pi\)
−0.384049 + 0.923313i \(0.625471\pi\)
\(912\) 0 0
\(913\) −23760.0 −0.861272
\(914\) 0 0
\(915\) 8100.00 0.292653
\(916\) 0 0
\(917\) −2000.00 −0.0720238
\(918\) 0 0
\(919\) −25500.0 −0.915307 −0.457654 0.889131i \(-0.651310\pi\)
−0.457654 + 0.889131i \(0.651310\pi\)
\(920\) 0 0
\(921\) −8748.00 −0.312982
\(922\) 0 0
\(923\) 5600.00 0.199703
\(924\) 0 0
\(925\) 4250.00 0.151069
\(926\) 0 0
\(927\) 13932.0 0.493621
\(928\) 0 0
\(929\) −390.000 −0.0137734 −0.00688670 0.999976i \(-0.502192\pi\)
−0.00688670 + 0.999976i \(0.502192\pi\)
\(930\) 0 0
\(931\) 45780.0 1.61158
\(932\) 0 0
\(933\) −27000.0 −0.947417
\(934\) 0 0
\(935\) −18000.0 −0.629586
\(936\) 0 0
\(937\) 890.000 0.0310299 0.0155150 0.999880i \(-0.495061\pi\)
0.0155150 + 0.999880i \(0.495061\pi\)
\(938\) 0 0
\(939\) 26670.0 0.926882
\(940\) 0 0
\(941\) −3022.00 −0.104691 −0.0523456 0.998629i \(-0.516670\pi\)
−0.0523456 + 0.998629i \(0.516670\pi\)
\(942\) 0 0
\(943\) −21120.0 −0.729334
\(944\) 0 0
\(945\) 1080.00 0.0371771
\(946\) 0 0
\(947\) −2916.00 −0.100060 −0.0500302 0.998748i \(-0.515932\pi\)
−0.0500302 + 0.998748i \(0.515932\pi\)
\(948\) 0 0
\(949\) 23100.0 0.790156
\(950\) 0 0
\(951\) 3870.00 0.131959
\(952\) 0 0
\(953\) −12990.0 −0.441540 −0.220770 0.975326i \(-0.570857\pi\)
−0.220770 + 0.975326i \(0.570857\pi\)
\(954\) 0 0
\(955\) 38400.0 1.30115
\(956\) 0 0
\(957\) 8040.00 0.271574
\(958\) 0 0
\(959\) −7800.00 −0.262644
\(960\) 0 0
\(961\) −19791.0 −0.664328
\(962\) 0 0
\(963\) −11916.0 −0.398741
\(964\) 0 0
\(965\) 30900.0 1.03078
\(966\) 0 0
\(967\) −41844.0 −1.39153 −0.695766 0.718268i \(-0.744935\pi\)
−0.695766 + 0.718268i \(0.744935\pi\)
\(968\) 0 0
\(969\) −37800.0 −1.25316
\(970\) 0 0
\(971\) 43900.0 1.45089 0.725447 0.688278i \(-0.241633\pi\)
0.725447 + 0.688278i \(0.241633\pi\)
\(972\) 0 0
\(973\) −880.000 −0.0289944
\(974\) 0 0
\(975\) −5250.00 −0.172446
\(976\) 0 0
\(977\) −8630.00 −0.282598 −0.141299 0.989967i \(-0.545128\pi\)
−0.141299 + 0.989967i \(0.545128\pi\)
\(978\) 0 0
\(979\) −25480.0 −0.831812
\(980\) 0 0
\(981\) 4230.00 0.137669
\(982\) 0 0
\(983\) 168.000 0.00545104 0.00272552 0.999996i \(-0.499132\pi\)
0.00272552 + 0.999996i \(0.499132\pi\)
\(984\) 0 0
\(985\) −10700.0 −0.346122
\(986\) 0 0
\(987\) 672.000 0.0216717
\(988\) 0 0
\(989\) −102144. −3.28412
\(990\) 0 0
\(991\) 25580.0 0.819955 0.409978 0.912096i \(-0.365537\pi\)
0.409978 + 0.912096i \(0.365537\pi\)
\(992\) 0 0
\(993\) 15900.0 0.508128
\(994\) 0 0
\(995\) 3800.00 0.121073
\(996\) 0 0
\(997\) −47610.0 −1.51236 −0.756180 0.654363i \(-0.772937\pi\)
−0.756180 + 0.654363i \(0.772937\pi\)
\(998\) 0 0
\(999\) −4590.00 −0.145367
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 96.4.a.f.1.1 yes 1
3.2 odd 2 288.4.a.c.1.1 1
4.3 odd 2 96.4.a.c.1.1 1
5.4 even 2 2400.4.a.e.1.1 1
8.3 odd 2 192.4.a.h.1.1 1
8.5 even 2 192.4.a.b.1.1 1
12.11 even 2 288.4.a.b.1.1 1
16.3 odd 4 768.4.d.i.385.1 2
16.5 even 4 768.4.d.h.385.1 2
16.11 odd 4 768.4.d.i.385.2 2
16.13 even 4 768.4.d.h.385.2 2
20.19 odd 2 2400.4.a.r.1.1 1
24.5 odd 2 576.4.a.t.1.1 1
24.11 even 2 576.4.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.4.a.c.1.1 1 4.3 odd 2
96.4.a.f.1.1 yes 1 1.1 even 1 trivial
192.4.a.b.1.1 1 8.5 even 2
192.4.a.h.1.1 1 8.3 odd 2
288.4.a.b.1.1 1 12.11 even 2
288.4.a.c.1.1 1 3.2 odd 2
576.4.a.s.1.1 1 24.11 even 2
576.4.a.t.1.1 1 24.5 odd 2
768.4.d.h.385.1 2 16.5 even 4
768.4.d.h.385.2 2 16.13 even 4
768.4.d.i.385.1 2 16.3 odd 4
768.4.d.i.385.2 2 16.11 odd 4
2400.4.a.e.1.1 1 5.4 even 2
2400.4.a.r.1.1 1 20.19 odd 2