Newspace parameters
Level: | \( N \) | \(=\) | \( 96 = 2^{5} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 96.p (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.61581053786\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(30\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −1.99935 | − | 0.0509440i | 2.77972 | + | 1.12834i | 3.99481 | + | 0.203710i | 2.35810 | − | 5.69297i | −5.50016 | − | 2.39756i | −1.55454 | − | 1.55454i | −7.97665 | − | 0.610799i | 6.45370 | + | 6.27294i | −5.00470 | + | 11.2621i |
5.2 | −1.99160 | − | 0.183158i | 2.25564 | − | 1.97790i | 3.93291 | + | 0.729554i | −3.05886 | + | 7.38474i | −4.85460 | + | 3.52603i | 6.52353 | + | 6.52353i | −7.69913 | − | 2.17332i | 1.17585 | − | 8.92286i | 7.44458 | − | 14.1472i |
5.3 | −1.99034 | + | 0.196320i | −2.18088 | − | 2.06004i | 3.92292 | − | 0.781488i | 0.400040 | − | 0.965783i | 4.74513 | + | 3.67202i | −1.74071 | − | 1.74071i | −7.65452 | + | 2.32558i | 0.512501 | + | 8.98540i | −0.606614 | + | 2.00077i |
5.4 | −1.84984 | − | 0.760319i | −0.317768 | + | 2.98312i | 2.84383 | + | 2.81294i | −1.77368 | + | 4.28204i | 2.85595 | − | 5.27670i | −7.55140 | − | 7.55140i | −3.12190 | − | 7.36571i | −8.79805 | − | 1.89588i | 6.53674 | − | 6.57253i |
5.5 | −1.76181 | + | 0.946587i | −2.17853 | + | 2.06252i | 2.20795 | − | 3.33541i | 2.46183 | − | 5.94339i | 1.88580 | − | 5.69594i | 0.814968 | + | 0.814968i | −0.732725 | + | 7.96637i | 0.491998 | − | 8.98654i | 1.28865 | + | 12.8015i |
5.6 | −1.50790 | − | 1.31386i | −2.99990 | + | 0.0247672i | 0.547547 | + | 3.96235i | −0.0391005 | + | 0.0943970i | 4.55610 | + | 3.90410i | 2.42911 | + | 2.42911i | 4.38032 | − | 6.69424i | 8.99877 | − | 0.148598i | 0.182984 | − | 0.0909690i |
5.7 | −1.50510 | + | 1.31707i | 1.22667 | + | 2.73775i | 0.530655 | − | 3.96464i | −1.77994 | + | 4.29715i | −5.45207 | − | 2.50497i | 2.62887 | + | 2.62887i | 4.42302 | + | 6.66610i | −5.99054 | + | 6.71665i | −2.98066 | − | 8.81195i |
5.8 | −1.44213 | + | 1.38573i | 1.71367 | − | 2.46239i | 0.159500 | − | 3.99682i | −0.0258289 | + | 0.0623564i | 0.940865 | + | 5.92577i | −8.71239 | − | 8.71239i | 5.30849 | + | 5.98497i | −3.12668 | − | 8.43942i | −0.0491605 | − | 0.125718i |
5.9 | −1.43387 | − | 1.39428i | 0.960376 | − | 2.84213i | 0.111984 | + | 3.99843i | 2.53071 | − | 6.10968i | −5.33977 | + | 2.73622i | 1.09521 | + | 1.09521i | 5.41435 | − | 5.88938i | −7.15536 | − | 5.45902i | −12.1473 | + | 5.23199i |
5.10 | −1.05135 | + | 1.70137i | −1.64571 | − | 2.50831i | −1.78934 | − | 3.57746i | −1.03584 | + | 2.50074i | 5.99779 | − | 0.162867i | 7.44249 | + | 7.44249i | 7.96782 | + | 0.716807i | −3.58326 | + | 8.25592i | −3.16566 | − | 4.39149i |
5.11 | −0.896196 | − | 1.78797i | 2.31396 | + | 1.90935i | −2.39366 | + | 3.20474i | −0.794982 | + | 1.91926i | 1.34009 | − | 5.84843i | 4.69711 | + | 4.69711i | 7.87517 | + | 1.40772i | 1.70880 | + | 8.83629i | 4.14403 | − | 0.298628i |
5.12 | −0.576838 | − | 1.91501i | −0.719266 | − | 2.91250i | −3.33452 | + | 2.20930i | −3.63719 | + | 8.78095i | −5.16256 | + | 3.05744i | −5.54083 | − | 5.54083i | 6.15430 | + | 5.11122i | −7.96531 | + | 4.18972i | 18.9137 | + | 1.90006i |
5.13 | −0.503078 | + | 1.93569i | 2.97132 | − | 0.413808i | −3.49383 | − | 1.94761i | 2.54567 | − | 6.14580i | −0.693801 | + | 5.95975i | 7.32134 | + | 7.32134i | 5.52764 | − | 5.78318i | 8.65753 | − | 2.45911i | 10.6157 | + | 8.01946i |
5.14 | −0.369569 | + | 1.96556i | −2.74887 | + | 1.20154i | −3.72684 | − | 1.45282i | −0.710186 | + | 1.71454i | −1.34580 | − | 5.84712i | −3.31956 | − | 3.31956i | 4.23292 | − | 6.78840i | 6.11260 | − | 6.60576i | −3.10757 | − | 2.02955i |
5.15 | −0.310806 | − | 1.97570i | −1.34666 | + | 2.68076i | −3.80680 | + | 1.22812i | 2.72057 | − | 6.56803i | 5.71494 | + | 1.82741i | −5.53321 | − | 5.53321i | 3.60958 | + | 7.13939i | −5.37299 | − | 7.22018i | −13.8221 | − | 3.33365i |
5.16 | 0.310806 | + | 1.97570i | 2.84782 | + | 0.943351i | −3.80680 | + | 1.22812i | −2.72057 | + | 6.56803i | −0.978660 | + | 5.91965i | −5.53321 | − | 5.53321i | −3.60958 | − | 7.13939i | 7.22018 | + | 5.37299i | −13.8221 | − | 3.33365i |
5.17 | 0.369569 | − | 1.96556i | 2.79336 | − | 1.09413i | −3.72684 | − | 1.45282i | 0.710186 | − | 1.71454i | −1.11823 | − | 5.89488i | −3.31956 | − | 3.31956i | −4.23292 | + | 6.78840i | 6.60576 | − | 6.11260i | −3.10757 | − | 2.02955i |
5.18 | 0.503078 | − | 1.93569i | −2.39365 | + | 1.80844i | −3.49383 | − | 1.94761i | −2.54567 | + | 6.14580i | 2.29639 | + | 5.54316i | 7.32134 | + | 7.32134i | −5.52764 | + | 5.78318i | 2.45911 | − | 8.65753i | 10.6157 | + | 8.01946i |
5.19 | 0.576838 | + | 1.91501i | −1.55085 | − | 2.56805i | −3.33452 | + | 2.20930i | 3.63719 | − | 8.78095i | 4.02324 | − | 4.45124i | −5.54083 | − | 5.54083i | −6.15430 | − | 5.11122i | −4.18972 | + | 7.96531i | 18.9137 | + | 1.90006i |
5.20 | 0.896196 | + | 1.78797i | −0.286103 | + | 2.98633i | −2.39366 | + | 3.20474i | 0.794982 | − | 1.91926i | −5.59586 | + | 2.16479i | 4.69711 | + | 4.69711i | −7.87517 | − | 1.40772i | −8.83629 | − | 1.70880i | 4.14403 | − | 0.298628i |
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
32.g | even | 8 | 1 | inner |
96.p | odd | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 96.3.p.a | ✓ | 120 |
3.b | odd | 2 | 1 | inner | 96.3.p.a | ✓ | 120 |
4.b | odd | 2 | 1 | 384.3.p.a | 120 | ||
12.b | even | 2 | 1 | 384.3.p.a | 120 | ||
32.g | even | 8 | 1 | inner | 96.3.p.a | ✓ | 120 |
32.h | odd | 8 | 1 | 384.3.p.a | 120 | ||
96.o | even | 8 | 1 | 384.3.p.a | 120 | ||
96.p | odd | 8 | 1 | inner | 96.3.p.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
96.3.p.a | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
96.3.p.a | ✓ | 120 | 3.b | odd | 2 | 1 | inner |
96.3.p.a | ✓ | 120 | 32.g | even | 8 | 1 | inner |
96.3.p.a | ✓ | 120 | 96.p | odd | 8 | 1 | inner |
384.3.p.a | 120 | 4.b | odd | 2 | 1 | ||
384.3.p.a | 120 | 12.b | even | 2 | 1 | ||
384.3.p.a | 120 | 32.h | odd | 8 | 1 | ||
384.3.p.a | 120 | 96.o | even | 8 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(96, [\chi])\).