Defining parameters
| Level: | \( N \) | \(=\) | \( 96 = 2^{5} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 96.e (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(48\) | ||
| Trace bound: | \(9\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(96, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 40 | 8 | 32 |
| Cusp forms | 24 | 8 | 16 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(96, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 96.3.e.a | $4$ | $2.616$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{2}q^{5}+(2\beta _{1}-\beta _{3})q^{7}+(-3+\cdots)q^{9}+\cdots\) |
| 96.3.e.b | $4$ | $2.616$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}+\beta _{3})q^{3}-\beta _{2}q^{5}+(-\beta _{1}-2\beta _{3})q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(96, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(96, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)