Properties

Label 96.2.o
Level 96
Weight 2
Character orbit o
Rep. character \(\chi_{96}(11,\cdot)\)
Character field \(\Q(\zeta_{8})\)
Dimension 56
Newform subspaces 1
Sturm bound 32
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 96.o (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 96 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(96, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 56 56 0
Eisenstein series 16 16 0

Trace form

\( 56q - 4q^{3} - 8q^{4} - 4q^{6} - 8q^{7} - 4q^{9} + O(q^{10}) \) \( 56q - 4q^{3} - 8q^{4} - 4q^{6} - 8q^{7} - 4q^{9} - 16q^{10} - 4q^{12} - 8q^{13} - 8q^{15} - 40q^{16} - 4q^{18} - 8q^{19} - 4q^{21} - 24q^{22} + 16q^{24} - 8q^{25} - 28q^{27} - 8q^{28} + 44q^{30} - 8q^{33} - 24q^{34} + 48q^{36} - 8q^{37} - 28q^{39} + 24q^{40} + 56q^{42} - 8q^{43} - 4q^{45} + 24q^{46} + 48q^{48} - 16q^{51} + 48q^{52} + 40q^{54} + 24q^{55} - 4q^{57} + 96q^{58} + 8q^{60} - 40q^{61} + 40q^{64} - 28q^{66} + 56q^{67} - 4q^{69} + 40q^{70} - 64q^{72} - 8q^{73} + 16q^{75} + 48q^{76} - 92q^{78} + 16q^{79} - 48q^{82} - 136q^{84} - 48q^{85} + 52q^{87} - 48q^{88} - 136q^{90} + 40q^{91} + 8q^{93} - 64q^{94} - 104q^{96} - 16q^{97} + 60q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(96, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
96.2.o.a \(56\) \(0.767\) None \(0\) \(-4\) \(0\) \(-8\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database