Properties

Label 96.2.o
Level $96$
Weight $2$
Character orbit 96.o
Rep. character $\chi_{96}(11,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $56$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 96.o (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 96 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(96, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 56 56 0
Eisenstein series 16 16 0

Trace form

\( 56 q - 4 q^{3} - 8 q^{4} - 4 q^{6} - 8 q^{7} - 4 q^{9} - 16 q^{10} - 4 q^{12} - 8 q^{13} - 8 q^{15} - 40 q^{16} - 4 q^{18} - 8 q^{19} - 4 q^{21} - 24 q^{22} + 16 q^{24} - 8 q^{25} - 28 q^{27} - 8 q^{28}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(96, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
96.2.o.a 96.o 96.o $56$ $0.767$ None 96.2.o.a \(0\) \(-4\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{8}]$