Properties

Label 96.2.c
Level $96$
Weight $2$
Character orbit 96.c
Rep. character $\chi_{96}(95,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 96.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(96, [\chi])\).

Total New Old
Modular forms 24 4 20
Cusp forms 8 4 4
Eisenstein series 16 0 16

Trace form

\( 4 q + 4 q^{9} - 8 q^{13} - 8 q^{21} - 12 q^{25} - 16 q^{33} + 24 q^{37} + 32 q^{45} + 12 q^{49} + 24 q^{57} - 8 q^{61} - 32 q^{69} - 24 q^{73} - 28 q^{81} - 8 q^{93} + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(96, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
96.2.c.a 96.c 12.b $4$ $0.767$ \(\Q(\zeta_{8})\) None 96.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{3}+\beta_{3} q^{5}+(\beta_{2}-\beta_1)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(96, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(96, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)