# Properties

 Label 96.2.a.a Level $96$ Weight $2$ Character orbit 96.a Self dual yes Analytic conductor $0.767$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [96,2,Mod(1,96)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(96, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("96.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$96 = 2^{5} \cdot 3$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 96.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.766563859404$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} + 2 q^{5} + 4 q^{7} + q^{9}+O(q^{10})$$ q - q^3 + 2 * q^5 + 4 * q^7 + q^9 $$q - q^{3} + 2 q^{5} + 4 q^{7} + q^{9} - 4 q^{11} - 2 q^{13} - 2 q^{15} - 6 q^{17} + 4 q^{19} - 4 q^{21} - q^{25} - q^{27} + 2 q^{29} - 4 q^{31} + 4 q^{33} + 8 q^{35} - 2 q^{37} + 2 q^{39} + 2 q^{41} - 4 q^{43} + 2 q^{45} - 8 q^{47} + 9 q^{49} + 6 q^{51} + 10 q^{53} - 8 q^{55} - 4 q^{57} + 4 q^{59} + 6 q^{61} + 4 q^{63} - 4 q^{65} - 4 q^{67} + 16 q^{71} - 6 q^{73} + q^{75} - 16 q^{77} - 4 q^{79} + q^{81} - 12 q^{83} - 12 q^{85} - 2 q^{87} + 10 q^{89} - 8 q^{91} + 4 q^{93} + 8 q^{95} - 14 q^{97} - 4 q^{99}+O(q^{100})$$ q - q^3 + 2 * q^5 + 4 * q^7 + q^9 - 4 * q^11 - 2 * q^13 - 2 * q^15 - 6 * q^17 + 4 * q^19 - 4 * q^21 - q^25 - q^27 + 2 * q^29 - 4 * q^31 + 4 * q^33 + 8 * q^35 - 2 * q^37 + 2 * q^39 + 2 * q^41 - 4 * q^43 + 2 * q^45 - 8 * q^47 + 9 * q^49 + 6 * q^51 + 10 * q^53 - 8 * q^55 - 4 * q^57 + 4 * q^59 + 6 * q^61 + 4 * q^63 - 4 * q^65 - 4 * q^67 + 16 * q^71 - 6 * q^73 + q^75 - 16 * q^77 - 4 * q^79 + q^81 - 12 * q^83 - 12 * q^85 - 2 * q^87 + 10 * q^89 - 8 * q^91 + 4 * q^93 + 8 * q^95 - 14 * q^97 - 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 2.00000 0 4.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 96.2.a.a 1
3.b odd 2 1 288.2.a.c 1
4.b odd 2 1 96.2.a.b yes 1
5.b even 2 1 2400.2.a.r 1
5.c odd 4 2 2400.2.f.a 2
7.b odd 2 1 4704.2.a.t 1
8.b even 2 1 192.2.a.c 1
8.d odd 2 1 192.2.a.a 1
9.c even 3 2 2592.2.i.b 2
9.d odd 6 2 2592.2.i.q 2
12.b even 2 1 288.2.a.b 1
15.d odd 2 1 7200.2.a.e 1
15.e even 4 2 7200.2.f.x 2
16.e even 4 2 768.2.d.a 2
16.f odd 4 2 768.2.d.h 2
20.d odd 2 1 2400.2.a.q 1
20.e even 4 2 2400.2.f.r 2
24.f even 2 1 576.2.a.g 1
24.h odd 2 1 576.2.a.h 1
28.d even 2 1 4704.2.a.e 1
36.f odd 6 2 2592.2.i.h 2
36.h even 6 2 2592.2.i.w 2
40.e odd 2 1 4800.2.a.co 1
40.f even 2 1 4800.2.a.f 1
40.i odd 4 2 4800.2.f.bh 2
40.k even 4 2 4800.2.f.e 2
48.i odd 4 2 2304.2.d.c 2
48.k even 4 2 2304.2.d.s 2
56.e even 2 1 9408.2.a.ct 1
56.h odd 2 1 9408.2.a.bj 1
60.h even 2 1 7200.2.a.bx 1
60.l odd 4 2 7200.2.f.f 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.2.a.a 1 1.a even 1 1 trivial
96.2.a.b yes 1 4.b odd 2 1
192.2.a.a 1 8.d odd 2 1
192.2.a.c 1 8.b even 2 1
288.2.a.b 1 12.b even 2 1
288.2.a.c 1 3.b odd 2 1
576.2.a.g 1 24.f even 2 1
576.2.a.h 1 24.h odd 2 1
768.2.d.a 2 16.e even 4 2
768.2.d.h 2 16.f odd 4 2
2304.2.d.c 2 48.i odd 4 2
2304.2.d.s 2 48.k even 4 2
2400.2.a.q 1 20.d odd 2 1
2400.2.a.r 1 5.b even 2 1
2400.2.f.a 2 5.c odd 4 2
2400.2.f.r 2 20.e even 4 2
2592.2.i.b 2 9.c even 3 2
2592.2.i.h 2 36.f odd 6 2
2592.2.i.q 2 9.d odd 6 2
2592.2.i.w 2 36.h even 6 2
4704.2.a.e 1 28.d even 2 1
4704.2.a.t 1 7.b odd 2 1
4800.2.a.f 1 40.f even 2 1
4800.2.a.co 1 40.e odd 2 1
4800.2.f.e 2 40.k even 4 2
4800.2.f.bh 2 40.i odd 4 2
7200.2.a.e 1 15.d odd 2 1
7200.2.a.bx 1 60.h even 2 1
7200.2.f.f 2 60.l odd 4 2
7200.2.f.x 2 15.e even 4 2
9408.2.a.bj 1 56.h odd 2 1
9408.2.a.ct 1 56.e even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{7} - 4$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(96))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T - 2$$
$7$ $$T - 4$$
$11$ $$T + 4$$
$13$ $$T + 2$$
$17$ $$T + 6$$
$19$ $$T - 4$$
$23$ $$T$$
$29$ $$T - 2$$
$31$ $$T + 4$$
$37$ $$T + 2$$
$41$ $$T - 2$$
$43$ $$T + 4$$
$47$ $$T + 8$$
$53$ $$T - 10$$
$59$ $$T - 4$$
$61$ $$T - 6$$
$67$ $$T + 4$$
$71$ $$T - 16$$
$73$ $$T + 6$$
$79$ $$T + 4$$
$83$ $$T + 12$$
$89$ $$T - 10$$
$97$ $$T + 14$$