Properties

Label 9576.2.a.cc.1.3
Level $9576$
Weight $2$
Character 9576.1
Self dual yes
Analytic conductor $76.465$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9576,2,Mod(1,9576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9576.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9576 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.4647449756\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 3192)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.81361\) of defining polynomial
Character \(\chi\) \(=\) 9576.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{7} +O(q^{10})\) \(q-1.00000 q^{7} +5.62721 q^{11} -2.57834 q^{13} -6.20555 q^{17} -1.00000 q^{19} -7.83276 q^{23} -5.00000 q^{25} +3.42166 q^{29} +5.04888 q^{31} -7.04888 q^{37} +9.25443 q^{41} +7.25443 q^{43} -3.62721 q^{47} +1.00000 q^{49} +8.57834 q^{53} +8.41110 q^{59} -14.4111 q^{61} -12.8816 q^{67} +13.8328 q^{71} +9.25443 q^{73} -5.62721 q^{77} -6.67609 q^{79} +12.6761 q^{83} +7.15667 q^{89} +2.57834 q^{91} +4.78389 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{7} + 4 q^{11} - 6 q^{13} - 4 q^{17} - 3 q^{19} + 4 q^{23} - 15 q^{25} + 12 q^{29} + 4 q^{31} - 10 q^{37} + 2 q^{41} - 4 q^{43} + 2 q^{47} + 3 q^{49} + 24 q^{53} - 4 q^{59} - 14 q^{61} + 14 q^{71} + 2 q^{73} - 4 q^{77} + 4 q^{79} + 14 q^{83} + 18 q^{89} + 6 q^{91} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.62721 1.69667 0.848334 0.529461i \(-0.177606\pi\)
0.848334 + 0.529461i \(0.177606\pi\)
\(12\) 0 0
\(13\) −2.57834 −0.715102 −0.357551 0.933894i \(-0.616388\pi\)
−0.357551 + 0.933894i \(0.616388\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.20555 −1.50507 −0.752533 0.658554i \(-0.771168\pi\)
−0.752533 + 0.658554i \(0.771168\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.83276 −1.63324 −0.816622 0.577173i \(-0.804156\pi\)
−0.816622 + 0.577173i \(0.804156\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.42166 0.635387 0.317693 0.948193i \(-0.397092\pi\)
0.317693 + 0.948193i \(0.397092\pi\)
\(30\) 0 0
\(31\) 5.04888 0.906805 0.453402 0.891306i \(-0.350210\pi\)
0.453402 + 0.891306i \(0.350210\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7.04888 −1.15883 −0.579414 0.815033i \(-0.696719\pi\)
−0.579414 + 0.815033i \(0.696719\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.25443 1.44530 0.722649 0.691215i \(-0.242924\pi\)
0.722649 + 0.691215i \(0.242924\pi\)
\(42\) 0 0
\(43\) 7.25443 1.10629 0.553145 0.833085i \(-0.313428\pi\)
0.553145 + 0.833085i \(0.313428\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.62721 −0.529083 −0.264542 0.964374i \(-0.585221\pi\)
−0.264542 + 0.964374i \(0.585221\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.57834 1.17833 0.589163 0.808014i \(-0.299458\pi\)
0.589163 + 0.808014i \(0.299458\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.41110 1.09503 0.547516 0.836795i \(-0.315574\pi\)
0.547516 + 0.836795i \(0.315574\pi\)
\(60\) 0 0
\(61\) −14.4111 −1.84515 −0.922576 0.385815i \(-0.873920\pi\)
−0.922576 + 0.385815i \(0.873920\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.8816 −1.57374 −0.786871 0.617117i \(-0.788300\pi\)
−0.786871 + 0.617117i \(0.788300\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.8328 1.64165 0.820823 0.571182i \(-0.193515\pi\)
0.820823 + 0.571182i \(0.193515\pi\)
\(72\) 0 0
\(73\) 9.25443 1.08315 0.541574 0.840653i \(-0.317828\pi\)
0.541574 + 0.840653i \(0.317828\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.62721 −0.641280
\(78\) 0 0
\(79\) −6.67609 −0.751119 −0.375559 0.926798i \(-0.622549\pi\)
−0.375559 + 0.926798i \(0.622549\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.6761 1.39138 0.695691 0.718341i \(-0.255098\pi\)
0.695691 + 0.718341i \(0.255098\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.15667 0.758606 0.379303 0.925273i \(-0.376164\pi\)
0.379303 + 0.925273i \(0.376164\pi\)
\(90\) 0 0
\(91\) 2.57834 0.270283
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.78389 0.485730 0.242865 0.970060i \(-0.421913\pi\)
0.242865 + 0.970060i \(0.421913\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) 9.45998 0.932119 0.466060 0.884753i \(-0.345673\pi\)
0.466060 + 0.884753i \(0.345673\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.9894 1.06239 0.531195 0.847250i \(-0.321743\pi\)
0.531195 + 0.847250i \(0.321743\pi\)
\(108\) 0 0
\(109\) −16.6167 −1.59159 −0.795793 0.605568i \(-0.792946\pi\)
−0.795793 + 0.605568i \(0.792946\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.6761 1.00432 0.502161 0.864774i \(-0.332538\pi\)
0.502161 + 0.864774i \(0.332538\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.20555 0.568862
\(120\) 0 0
\(121\) 20.6655 1.87868
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.8328 1.04999 0.524994 0.851106i \(-0.324068\pi\)
0.524994 + 0.851106i \(0.324068\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −18.2439 −1.59397 −0.796987 0.603997i \(-0.793574\pi\)
−0.796987 + 0.603997i \(0.793574\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.66553 −0.825782 −0.412891 0.910781i \(-0.635481\pi\)
−0.412891 + 0.910781i \(0.635481\pi\)
\(138\) 0 0
\(139\) 3.25443 0.276037 0.138018 0.990430i \(-0.455927\pi\)
0.138018 + 0.990430i \(0.455927\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.5089 −1.21329
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.4600 1.26653 0.633265 0.773935i \(-0.281714\pi\)
0.633265 + 0.773935i \(0.281714\pi\)
\(150\) 0 0
\(151\) 12.9894 1.05707 0.528533 0.848913i \(-0.322742\pi\)
0.528533 + 0.848913i \(0.322742\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.15667 0.571165 0.285582 0.958354i \(-0.407813\pi\)
0.285582 + 0.958354i \(0.407813\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.83276 0.617308
\(162\) 0 0
\(163\) 15.2544 1.19482 0.597409 0.801936i \(-0.296197\pi\)
0.597409 + 0.801936i \(0.296197\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.25443 0.561364 0.280682 0.959801i \(-0.409439\pi\)
0.280682 + 0.959801i \(0.409439\pi\)
\(168\) 0 0
\(169\) −6.35218 −0.488629
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.66553 −0.430742 −0.215371 0.976532i \(-0.569096\pi\)
−0.215371 + 0.976532i \(0.569096\pi\)
\(174\) 0 0
\(175\) 5.00000 0.377964
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.6761 −1.24643 −0.623215 0.782051i \(-0.714174\pi\)
−0.623215 + 0.782051i \(0.714174\pi\)
\(180\) 0 0
\(181\) −6.57834 −0.488964 −0.244482 0.969654i \(-0.578618\pi\)
−0.244482 + 0.969654i \(0.578618\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −34.9200 −2.55360
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.67609 0.483065 0.241532 0.970393i \(-0.422350\pi\)
0.241532 + 0.970393i \(0.422350\pi\)
\(192\) 0 0
\(193\) 12.0978 0.870815 0.435408 0.900233i \(-0.356604\pi\)
0.435408 + 0.900233i \(0.356604\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.7144 −0.763370 −0.381685 0.924293i \(-0.624656\pi\)
−0.381685 + 0.924293i \(0.624656\pi\)
\(198\) 0 0
\(199\) −19.6655 −1.39405 −0.697026 0.717046i \(-0.745494\pi\)
−0.697026 + 0.717046i \(0.745494\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.42166 −0.240154
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.62721 −0.389242
\(210\) 0 0
\(211\) 10.3728 0.714092 0.357046 0.934087i \(-0.383784\pi\)
0.357046 + 0.934087i \(0.383784\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.04888 −0.342740
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.0000 1.07628
\(222\) 0 0
\(223\) −8.51890 −0.570468 −0.285234 0.958458i \(-0.592071\pi\)
−0.285234 + 0.958458i \(0.592071\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.2544 −1.27796 −0.638981 0.769223i \(-0.720644\pi\)
−0.638981 + 0.769223i \(0.720644\pi\)
\(228\) 0 0
\(229\) 3.15667 0.208599 0.104299 0.994546i \(-0.466740\pi\)
0.104299 + 0.994546i \(0.466740\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.4111 0.944103 0.472051 0.881571i \(-0.343514\pi\)
0.472051 + 0.881571i \(0.343514\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.57834 −0.554886 −0.277443 0.960742i \(-0.589487\pi\)
−0.277443 + 0.960742i \(0.589487\pi\)
\(240\) 0 0
\(241\) 7.21611 0.464831 0.232415 0.972617i \(-0.425337\pi\)
0.232415 + 0.972617i \(0.425337\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.57834 0.164056
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −18.2439 −1.15154 −0.575771 0.817611i \(-0.695298\pi\)
−0.575771 + 0.817611i \(0.695298\pi\)
\(252\) 0 0
\(253\) −44.0766 −2.77107
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.25443 −0.0782489 −0.0391245 0.999234i \(-0.512457\pi\)
−0.0391245 + 0.999234i \(0.512457\pi\)
\(258\) 0 0
\(259\) 7.04888 0.437996
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.67609 0.165015 0.0825074 0.996590i \(-0.473707\pi\)
0.0825074 + 0.996590i \(0.473707\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.4111 1.12254 0.561272 0.827631i \(-0.310312\pi\)
0.561272 + 0.827631i \(0.310312\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −28.1361 −1.69667
\(276\) 0 0
\(277\) 25.6655 1.54209 0.771046 0.636779i \(-0.219734\pi\)
0.771046 + 0.636779i \(0.219734\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.9894 1.72936 0.864682 0.502319i \(-0.167520\pi\)
0.864682 + 0.502319i \(0.167520\pi\)
\(282\) 0 0
\(283\) 21.5678 1.28207 0.641036 0.767511i \(-0.278505\pi\)
0.641036 + 0.767511i \(0.278505\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.25443 −0.546271
\(288\) 0 0
\(289\) 21.5089 1.26523
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.9411 −0.872867 −0.436434 0.899736i \(-0.643759\pi\)
−0.436434 + 0.899736i \(0.643759\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 20.1955 1.16794
\(300\) 0 0
\(301\) −7.25443 −0.418138
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −19.6655 −1.12237 −0.561185 0.827690i \(-0.689655\pi\)
−0.561185 + 0.827690i \(0.689655\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.1361 1.25522 0.627611 0.778527i \(-0.284033\pi\)
0.627611 + 0.778527i \(0.284033\pi\)
\(312\) 0 0
\(313\) −0.0977518 −0.00552526 −0.00276263 0.999996i \(-0.500879\pi\)
−0.00276263 + 0.999996i \(0.500879\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.7738 0.942113 0.471056 0.882103i \(-0.343873\pi\)
0.471056 + 0.882103i \(0.343873\pi\)
\(318\) 0 0
\(319\) 19.2544 1.07804
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.20555 0.345286
\(324\) 0 0
\(325\) 12.8917 0.715102
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.62721 0.199975
\(330\) 0 0
\(331\) 4.05944 0.223127 0.111563 0.993757i \(-0.464414\pi\)
0.111563 + 0.993757i \(0.464414\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.0978 0.876900 0.438450 0.898755i \(-0.355528\pi\)
0.438450 + 0.898755i \(0.355528\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 28.4111 1.53855
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.9794 −1.66306 −0.831530 0.555479i \(-0.812535\pi\)
−0.831530 + 0.555479i \(0.812535\pi\)
\(348\) 0 0
\(349\) −0.843326 −0.0451422 −0.0225711 0.999745i \(-0.507185\pi\)
−0.0225711 + 0.999745i \(0.507185\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.1078 −0.644433 −0.322217 0.946666i \(-0.604428\pi\)
−0.322217 + 0.946666i \(0.604428\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.9305 1.36856 0.684280 0.729219i \(-0.260117\pi\)
0.684280 + 0.729219i \(0.260117\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −35.6655 −1.86173 −0.930863 0.365369i \(-0.880943\pi\)
−0.930863 + 0.365369i \(0.880943\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.57834 −0.445365
\(372\) 0 0
\(373\) 18.7144 0.968995 0.484498 0.874793i \(-0.339002\pi\)
0.484498 + 0.874793i \(0.339002\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.82220 −0.454366
\(378\) 0 0
\(379\) 36.8816 1.89448 0.947241 0.320521i \(-0.103858\pi\)
0.947241 + 0.320521i \(0.103858\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −27.6655 −1.41364 −0.706821 0.707392i \(-0.749871\pi\)
−0.706821 + 0.707392i \(0.749871\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.5189 −0.533329 −0.266665 0.963789i \(-0.585922\pi\)
−0.266665 + 0.963789i \(0.585922\pi\)
\(390\) 0 0
\(391\) 48.6066 2.45814
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 26.0766 1.30875 0.654374 0.756171i \(-0.272932\pi\)
0.654374 + 0.756171i \(0.272932\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.4983 1.57295 0.786475 0.617622i \(-0.211904\pi\)
0.786475 + 0.617622i \(0.211904\pi\)
\(402\) 0 0
\(403\) −13.0177 −0.648458
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −39.6655 −1.96615
\(408\) 0 0
\(409\) 13.3139 0.658328 0.329164 0.944273i \(-0.393233\pi\)
0.329164 + 0.944273i \(0.393233\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.41110 −0.413883
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.3416 0.993753 0.496876 0.867821i \(-0.334480\pi\)
0.496876 + 0.867821i \(0.334480\pi\)
\(420\) 0 0
\(421\) 7.87108 0.383613 0.191806 0.981433i \(-0.438565\pi\)
0.191806 + 0.981433i \(0.438565\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 31.0278 1.50507
\(426\) 0 0
\(427\) 14.4111 0.697402
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.48059 −0.215822 −0.107911 0.994161i \(-0.534416\pi\)
−0.107911 + 0.994161i \(0.534416\pi\)
\(432\) 0 0
\(433\) 0.157190 0.00755409 0.00377705 0.999993i \(-0.498798\pi\)
0.00377705 + 0.999993i \(0.498798\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.83276 0.374692
\(438\) 0 0
\(439\) −25.4600 −1.21514 −0.607569 0.794267i \(-0.707855\pi\)
−0.607569 + 0.794267i \(0.707855\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.6061 1.31160 0.655802 0.754933i \(-0.272330\pi\)
0.655802 + 0.754933i \(0.272330\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 39.8328 1.87982 0.939912 0.341416i \(-0.110907\pi\)
0.939912 + 0.341416i \(0.110907\pi\)
\(450\) 0 0
\(451\) 52.0766 2.45219
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.3311 −1.18494 −0.592468 0.805594i \(-0.701846\pi\)
−0.592468 + 0.805594i \(0.701846\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.41110 −0.205445 −0.102723 0.994710i \(-0.532755\pi\)
−0.102723 + 0.994710i \(0.532755\pi\)
\(462\) 0 0
\(463\) 1.49115 0.0692995 0.0346498 0.999400i \(-0.488968\pi\)
0.0346498 + 0.999400i \(0.488968\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.67609 −0.216384 −0.108192 0.994130i \(-0.534506\pi\)
−0.108192 + 0.994130i \(0.534506\pi\)
\(468\) 0 0
\(469\) 12.8816 0.594819
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 40.8222 1.87701
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.3139 −0.608326 −0.304163 0.952620i \(-0.598377\pi\)
−0.304163 + 0.952620i \(0.598377\pi\)
\(480\) 0 0
\(481\) 18.1744 0.828680
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.08719 0.139894 0.0699469 0.997551i \(-0.477717\pi\)
0.0699469 + 0.997551i \(0.477717\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.88164 −0.220305 −0.110153 0.993915i \(-0.535134\pi\)
−0.110153 + 0.993915i \(0.535134\pi\)
\(492\) 0 0
\(493\) −21.2333 −0.956300
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.8328 −0.620484
\(498\) 0 0
\(499\) −4.94108 −0.221193 −0.110597 0.993865i \(-0.535276\pi\)
−0.110597 + 0.993865i \(0.535276\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.1361 0.986998 0.493499 0.869746i \(-0.335718\pi\)
0.493499 + 0.869746i \(0.335718\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.6066 1.71121 0.855604 0.517631i \(-0.173186\pi\)
0.855604 + 0.517631i \(0.173186\pi\)
\(510\) 0 0
\(511\) −9.25443 −0.409392
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −20.4111 −0.897679
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −27.0177 −1.18367 −0.591834 0.806060i \(-0.701596\pi\)
−0.591834 + 0.806060i \(0.701596\pi\)
\(522\) 0 0
\(523\) −37.9789 −1.66070 −0.830350 0.557242i \(-0.811860\pi\)
−0.830350 + 0.557242i \(0.811860\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −31.3311 −1.36480
\(528\) 0 0
\(529\) 38.3522 1.66749
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.8610 −1.03354
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.62721 0.242381
\(540\) 0 0
\(541\) −1.66553 −0.0716066 −0.0358033 0.999359i \(-0.511399\pi\)
−0.0358033 + 0.999359i \(0.511399\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 46.1149 1.97173 0.985866 0.167534i \(-0.0535805\pi\)
0.985866 + 0.167534i \(0.0535805\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.42166 −0.145768
\(552\) 0 0
\(553\) 6.67609 0.283896
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 43.6555 1.84974 0.924871 0.380281i \(-0.124173\pi\)
0.924871 + 0.380281i \(0.124173\pi\)
\(558\) 0 0
\(559\) −18.7044 −0.791110
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.5678 −0.908973 −0.454487 0.890754i \(-0.650177\pi\)
−0.454487 + 0.890754i \(0.650177\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.01056 0.126209 0.0631047 0.998007i \(-0.479900\pi\)
0.0631047 + 0.998007i \(0.479900\pi\)
\(570\) 0 0
\(571\) 9.68665 0.405374 0.202687 0.979244i \(-0.435033\pi\)
0.202687 + 0.979244i \(0.435033\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 39.1638 1.63324
\(576\) 0 0
\(577\) −4.50885 −0.187706 −0.0938530 0.995586i \(-0.529918\pi\)
−0.0938530 + 0.995586i \(0.529918\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.6761 −0.525893
\(582\) 0 0
\(583\) 48.2721 1.99923
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.5572 1.67398 0.836988 0.547222i \(-0.184315\pi\)
0.836988 + 0.547222i \(0.184315\pi\)
\(588\) 0 0
\(589\) −5.04888 −0.208035
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.7144 −0.686378 −0.343189 0.939266i \(-0.611507\pi\)
−0.343189 + 0.939266i \(0.611507\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.5194 −1.12441 −0.562206 0.826997i \(-0.690047\pi\)
−0.562206 + 0.826997i \(0.690047\pi\)
\(600\) 0 0
\(601\) −19.8227 −0.808585 −0.404293 0.914630i \(-0.632482\pi\)
−0.404293 + 0.914630i \(0.632482\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −25.7944 −1.04696 −0.523482 0.852037i \(-0.675367\pi\)
−0.523482 + 0.852037i \(0.675367\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.35218 0.378349
\(612\) 0 0
\(613\) 21.2544 0.858458 0.429229 0.903196i \(-0.358785\pi\)
0.429229 + 0.903196i \(0.358785\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.94108 −0.118403 −0.0592017 0.998246i \(-0.518856\pi\)
−0.0592017 + 0.998246i \(0.518856\pi\)
\(618\) 0 0
\(619\) −9.76328 −0.392419 −0.196210 0.980562i \(-0.562863\pi\)
−0.196210 + 0.980562i \(0.562863\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.15667 −0.286726
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 43.7422 1.74411
\(630\) 0 0
\(631\) 25.1567 1.00147 0.500736 0.865600i \(-0.333063\pi\)
0.500736 + 0.865600i \(0.333063\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2.57834 −0.102157
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.65838 −0.0655023 −0.0327511 0.999464i \(-0.510427\pi\)
−0.0327511 + 0.999464i \(0.510427\pi\)
\(642\) 0 0
\(643\) 32.4877 1.28119 0.640595 0.767879i \(-0.278688\pi\)
0.640595 + 0.767879i \(0.278688\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.4116 0.605893 0.302947 0.953008i \(-0.402030\pi\)
0.302947 + 0.953008i \(0.402030\pi\)
\(648\) 0 0
\(649\) 47.3311 1.85791
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −43.6555 −1.70837 −0.854185 0.519968i \(-0.825944\pi\)
−0.854185 + 0.519968i \(0.825944\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.83276 0.227212 0.113606 0.993526i \(-0.463760\pi\)
0.113606 + 0.993526i \(0.463760\pi\)
\(660\) 0 0
\(661\) −28.3416 −1.10236 −0.551181 0.834386i \(-0.685822\pi\)
−0.551181 + 0.834386i \(0.685822\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −26.8011 −1.03774
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −81.0943 −3.13061
\(672\) 0 0
\(673\) 13.4700 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.1567 0.582518 0.291259 0.956644i \(-0.405926\pi\)
0.291259 + 0.956644i \(0.405926\pi\)
\(678\) 0 0
\(679\) −4.78389 −0.183589
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.9305 −0.762620 −0.381310 0.924447i \(-0.624527\pi\)
−0.381310 + 0.924447i \(0.624527\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −22.1178 −0.842623
\(690\) 0 0
\(691\) −34.5089 −1.31278 −0.656389 0.754422i \(-0.727917\pi\)
−0.656389 + 0.754422i \(0.727917\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −57.4288 −2.17527
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 43.4600 1.64146 0.820730 0.571316i \(-0.193567\pi\)
0.820730 + 0.571316i \(0.193567\pi\)
\(702\) 0 0
\(703\) 7.04888 0.265853
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.00000 −0.300871
\(708\) 0 0
\(709\) 31.2333 1.17299 0.586496 0.809952i \(-0.300507\pi\)
0.586496 + 0.809952i \(0.300507\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −39.5466 −1.48103
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 31.9194 1.19039 0.595197 0.803580i \(-0.297074\pi\)
0.595197 + 0.803580i \(0.297074\pi\)
\(720\) 0 0
\(721\) −9.45998 −0.352308
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −17.1083 −0.635387
\(726\) 0 0
\(727\) 6.72445 0.249396 0.124698 0.992195i \(-0.460204\pi\)
0.124698 + 0.992195i \(0.460204\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −45.0177 −1.66504
\(732\) 0 0
\(733\) −45.3311 −1.67434 −0.837170 0.546942i \(-0.815792\pi\)
−0.837170 + 0.546942i \(0.815792\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −72.4877 −2.67012
\(738\) 0 0
\(739\) 26.5089 0.975144 0.487572 0.873083i \(-0.337883\pi\)
0.487572 + 0.873083i \(0.337883\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.36274 0.0866805 0.0433403 0.999060i \(-0.486200\pi\)
0.0433403 + 0.999060i \(0.486200\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.9894 −0.401545
\(750\) 0 0
\(751\) −18.4605 −0.673633 −0.336816 0.941570i \(-0.609350\pi\)
−0.336816 + 0.941570i \(0.609350\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34.6066 −1.25780 −0.628899 0.777487i \(-0.716494\pi\)
−0.628899 + 0.777487i \(0.716494\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.4011 0.522038 0.261019 0.965334i \(-0.415942\pi\)
0.261019 + 0.965334i \(0.415942\pi\)
\(762\) 0 0
\(763\) 16.6167 0.601563
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21.6867 −0.783060
\(768\) 0 0
\(769\) 40.7244 1.46856 0.734281 0.678846i \(-0.237520\pi\)
0.734281 + 0.678846i \(0.237520\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.94108 −0.249653 −0.124827 0.992179i \(-0.539837\pi\)
−0.124827 + 0.992179i \(0.539837\pi\)
\(774\) 0 0
\(775\) −25.2444 −0.906805
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.25443 −0.331574
\(780\) 0 0
\(781\) 77.8399 2.78533
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 20.9411 0.746469 0.373234 0.927737i \(-0.378249\pi\)
0.373234 + 0.927737i \(0.378249\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −10.6761 −0.379598
\(792\) 0 0
\(793\) 37.1567 1.31947
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.33447 0.0826913 0.0413457 0.999145i \(-0.486836\pi\)
0.0413457 + 0.999145i \(0.486836\pi\)
\(798\) 0 0
\(799\) 22.5089 0.796306
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 52.0766 1.83774
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.4111 −0.787932 −0.393966 0.919125i \(-0.628897\pi\)
−0.393966 + 0.919125i \(0.628897\pi\)
\(810\) 0 0
\(811\) 10.8433 0.380761 0.190380 0.981710i \(-0.439028\pi\)
0.190380 + 0.981710i \(0.439028\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −7.25443 −0.253800
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −52.2822 −1.82466 −0.912330 0.409455i \(-0.865719\pi\)
−0.912330 + 0.409455i \(0.865719\pi\)
\(822\) 0 0
\(823\) −8.82220 −0.307523 −0.153761 0.988108i \(-0.549139\pi\)
−0.153761 + 0.988108i \(0.549139\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −10.4595 −0.363711 −0.181856 0.983325i \(-0.558210\pi\)
−0.181856 + 0.983325i \(0.558210\pi\)
\(828\) 0 0
\(829\) 17.3028 0.600951 0.300475 0.953790i \(-0.402855\pi\)
0.300475 + 0.953790i \(0.402855\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.20555 −0.215010
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −40.6066 −1.40190 −0.700948 0.713213i \(-0.747239\pi\)
−0.700948 + 0.713213i \(0.747239\pi\)
\(840\) 0 0
\(841\) −17.2922 −0.596284
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −20.6655 −0.710076
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 55.2122 1.89265
\(852\) 0 0
\(853\) −0.724449 −0.0248046 −0.0124023 0.999923i \(-0.503948\pi\)
−0.0124023 + 0.999923i \(0.503948\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37.0388 −1.26522 −0.632611 0.774470i \(-0.718017\pi\)
−0.632611 + 0.774470i \(0.718017\pi\)
\(858\) 0 0
\(859\) 39.7422 1.35598 0.677992 0.735069i \(-0.262850\pi\)
0.677992 + 0.735069i \(0.262850\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.1638 0.856586 0.428293 0.903640i \(-0.359115\pi\)
0.428293 + 0.903640i \(0.359115\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −37.5678 −1.27440
\(870\) 0 0
\(871\) 33.2132 1.12539
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −34.1844 −1.15433 −0.577163 0.816629i \(-0.695840\pi\)
−0.577163 + 0.816629i \(0.695840\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.69670 0.259308 0.129654 0.991559i \(-0.458613\pi\)
0.129654 + 0.991559i \(0.458613\pi\)
\(882\) 0 0
\(883\) −1.56777 −0.0527598 −0.0263799 0.999652i \(-0.508398\pi\)
−0.0263799 + 0.999652i \(0.508398\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.2544 −0.512193 −0.256097 0.966651i \(-0.582437\pi\)
−0.256097 + 0.966651i \(0.582437\pi\)
\(888\) 0 0
\(889\) −11.8328 −0.396858
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.62721 0.121380
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 17.2756 0.576172
\(900\) 0 0
\(901\) −53.2333 −1.77346
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 42.8605 1.42316 0.711580 0.702605i \(-0.247980\pi\)
0.711580 + 0.702605i \(0.247980\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −26.0283 −0.862355 −0.431177 0.902267i \(-0.641902\pi\)
−0.431177 + 0.902267i \(0.641902\pi\)
\(912\) 0 0
\(913\) 71.3311 2.36071
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.2439 0.602465
\(918\) 0 0
\(919\) 37.0177 1.22110 0.610551 0.791977i \(-0.290948\pi\)
0.610551 + 0.791977i \(0.290948\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −35.6655 −1.17395
\(924\) 0 0
\(925\) 35.2444 1.15883
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.57885 −0.0518005 −0.0259002 0.999665i \(-0.508245\pi\)
−0.0259002 + 0.999665i \(0.508245\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −21.6655 −0.707782 −0.353891 0.935287i \(-0.615142\pi\)
−0.353891 + 0.935287i \(0.615142\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.9022 0.909587 0.454794 0.890597i \(-0.349713\pi\)
0.454794 + 0.890597i \(0.349713\pi\)
\(942\) 0 0
\(943\) −72.4877 −2.36053
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.54717 −0.277746 −0.138873 0.990310i \(-0.544348\pi\)
−0.138873 + 0.990310i \(0.544348\pi\)
\(948\) 0 0
\(949\) −23.8610 −0.774562
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 44.0283 1.42622 0.713108 0.701054i \(-0.247287\pi\)
0.713108 + 0.701054i \(0.247287\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.66553 0.312116
\(960\) 0 0
\(961\) −5.50885 −0.177705
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −40.4877 −1.30200 −0.650999 0.759079i \(-0.725650\pi\)
−0.650999 + 0.759079i \(0.725650\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.27555 0.169301 0.0846503 0.996411i \(-0.473023\pi\)
0.0846503 + 0.996411i \(0.473023\pi\)
\(972\) 0 0
\(973\) −3.25443 −0.104332
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.4595 −0.398613 −0.199307 0.979937i \(-0.563869\pi\)
−0.199307 + 0.979937i \(0.563869\pi\)
\(978\) 0 0
\(979\) 40.2721 1.28710
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.8222 0.536545 0.268272 0.963343i \(-0.413547\pi\)
0.268272 + 0.963343i \(0.413547\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −56.8222 −1.80684
\(990\) 0 0
\(991\) −3.08719 −0.0980678 −0.0490339 0.998797i \(-0.515614\pi\)
−0.0490339 + 0.998797i \(0.515614\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 49.8610 1.57911 0.789557 0.613677i \(-0.210310\pi\)
0.789557 + 0.613677i \(0.210310\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9576.2.a.cc.1.3 3
3.2 odd 2 3192.2.a.v.1.1 3
12.11 even 2 6384.2.a.bv.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3192.2.a.v.1.1 3 3.2 odd 2
6384.2.a.bv.1.3 3 12.11 even 2
9576.2.a.cc.1.3 3 1.1 even 1 trivial