Properties

Label 9576.2.a.bw.1.2
Level $9576$
Weight $2$
Character 9576.1
Self dual yes
Analytic conductor $76.465$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9576,2,Mod(1,9576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9576.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9576 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.4647449756\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3192)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 9576.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.73205 q^{5} +1.00000 q^{7} +O(q^{10})\) \(q+2.73205 q^{5} +1.00000 q^{7} +4.00000 q^{11} +5.46410 q^{13} +6.73205 q^{17} +1.00000 q^{19} -6.92820 q^{23} +2.46410 q^{25} +6.73205 q^{29} -2.00000 q^{31} +2.73205 q^{35} +8.92820 q^{37} -4.92820 q^{41} -8.92820 q^{43} +10.1962 q^{47} +1.00000 q^{49} +9.66025 q^{53} +10.9282 q^{55} -2.92820 q^{59} -12.9282 q^{61} +14.9282 q^{65} -1.46410 q^{67} +6.19615 q^{71} +10.3923 q^{73} +4.00000 q^{77} -10.9282 q^{79} +2.19615 q^{83} +18.3923 q^{85} +6.00000 q^{89} +5.46410 q^{91} +2.73205 q^{95} -15.8564 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} + 2 q^{7} + 8 q^{11} + 4 q^{13} + 10 q^{17} + 2 q^{19} - 2 q^{25} + 10 q^{29} - 4 q^{31} + 2 q^{35} + 4 q^{37} + 4 q^{41} - 4 q^{43} + 10 q^{47} + 2 q^{49} + 2 q^{53} + 8 q^{55} + 8 q^{59} - 12 q^{61} + 16 q^{65} + 4 q^{67} + 2 q^{71} + 8 q^{77} - 8 q^{79} - 6 q^{83} + 16 q^{85} + 12 q^{89} + 4 q^{91} + 2 q^{95} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.73205 1.22181 0.610905 0.791704i \(-0.290806\pi\)
0.610905 + 0.791704i \(0.290806\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 5.46410 1.51547 0.757735 0.652563i \(-0.226306\pi\)
0.757735 + 0.652563i \(0.226306\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.73205 1.63276 0.816381 0.577514i \(-0.195977\pi\)
0.816381 + 0.577514i \(0.195977\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.92820 −1.44463 −0.722315 0.691564i \(-0.756922\pi\)
−0.722315 + 0.691564i \(0.756922\pi\)
\(24\) 0 0
\(25\) 2.46410 0.492820
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.73205 1.25011 0.625055 0.780581i \(-0.285076\pi\)
0.625055 + 0.780581i \(0.285076\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.73205 0.461801
\(36\) 0 0
\(37\) 8.92820 1.46779 0.733894 0.679264i \(-0.237701\pi\)
0.733894 + 0.679264i \(0.237701\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.92820 −0.769656 −0.384828 0.922988i \(-0.625739\pi\)
−0.384828 + 0.922988i \(0.625739\pi\)
\(42\) 0 0
\(43\) −8.92820 −1.36154 −0.680769 0.732498i \(-0.738354\pi\)
−0.680769 + 0.732498i \(0.738354\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.1962 1.48726 0.743631 0.668590i \(-0.233102\pi\)
0.743631 + 0.668590i \(0.233102\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.66025 1.32694 0.663469 0.748204i \(-0.269083\pi\)
0.663469 + 0.748204i \(0.269083\pi\)
\(54\) 0 0
\(55\) 10.9282 1.47356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.92820 −0.381220 −0.190610 0.981666i \(-0.561047\pi\)
−0.190610 + 0.981666i \(0.561047\pi\)
\(60\) 0 0
\(61\) −12.9282 −1.65529 −0.827643 0.561254i \(-0.810319\pi\)
−0.827643 + 0.561254i \(0.810319\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.9282 1.85162
\(66\) 0 0
\(67\) −1.46410 −0.178868 −0.0894342 0.995993i \(-0.528506\pi\)
−0.0894342 + 0.995993i \(0.528506\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.19615 0.735348 0.367674 0.929955i \(-0.380154\pi\)
0.367674 + 0.929955i \(0.380154\pi\)
\(72\) 0 0
\(73\) 10.3923 1.21633 0.608164 0.793812i \(-0.291906\pi\)
0.608164 + 0.793812i \(0.291906\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) −10.9282 −1.22952 −0.614759 0.788715i \(-0.710747\pi\)
−0.614759 + 0.788715i \(0.710747\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.19615 0.241059 0.120530 0.992710i \(-0.461541\pi\)
0.120530 + 0.992710i \(0.461541\pi\)
\(84\) 0 0
\(85\) 18.3923 1.99493
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 5.46410 0.572793
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.73205 0.280302
\(96\) 0 0
\(97\) −15.8564 −1.60997 −0.804987 0.593292i \(-0.797828\pi\)
−0.804987 + 0.593292i \(0.797828\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.26795 0.126166 0.0630828 0.998008i \(-0.479907\pi\)
0.0630828 + 0.998008i \(0.479907\pi\)
\(102\) 0 0
\(103\) 10.9282 1.07679 0.538394 0.842693i \(-0.319031\pi\)
0.538394 + 0.842693i \(0.319031\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.80385 0.174385 0.0871923 0.996192i \(-0.472211\pi\)
0.0871923 + 0.996192i \(0.472211\pi\)
\(108\) 0 0
\(109\) −11.4641 −1.09806 −0.549031 0.835802i \(-0.685003\pi\)
−0.549031 + 0.835802i \(0.685003\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.2679 −1.24814 −0.624072 0.781367i \(-0.714523\pi\)
−0.624072 + 0.781367i \(0.714523\pi\)
\(114\) 0 0
\(115\) −18.9282 −1.76506
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.73205 0.617126
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.92820 −0.619677
\(126\) 0 0
\(127\) −13.4641 −1.19475 −0.597373 0.801964i \(-0.703789\pi\)
−0.597373 + 0.801964i \(0.703789\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.26795 −0.635004 −0.317502 0.948258i \(-0.602844\pi\)
−0.317502 + 0.948258i \(0.602844\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.92820 0.762788 0.381394 0.924413i \(-0.375444\pi\)
0.381394 + 0.924413i \(0.375444\pi\)
\(138\) 0 0
\(139\) −15.3205 −1.29947 −0.649734 0.760161i \(-0.725120\pi\)
−0.649734 + 0.760161i \(0.725120\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 21.8564 1.82772
\(144\) 0 0
\(145\) 18.3923 1.52740
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.46410 −0.283790 −0.141895 0.989882i \(-0.545320\pi\)
−0.141895 + 0.989882i \(0.545320\pi\)
\(150\) 0 0
\(151\) 6.53590 0.531884 0.265942 0.963989i \(-0.414317\pi\)
0.265942 + 0.963989i \(0.414317\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.46410 −0.438887
\(156\) 0 0
\(157\) −16.9282 −1.35102 −0.675509 0.737352i \(-0.736076\pi\)
−0.675509 + 0.737352i \(0.736076\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.92820 −0.546019
\(162\) 0 0
\(163\) 0.928203 0.0727025 0.0363512 0.999339i \(-0.488426\pi\)
0.0363512 + 0.999339i \(0.488426\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.53590 −0.196234 −0.0981169 0.995175i \(-0.531282\pi\)
−0.0981169 + 0.995175i \(0.531282\pi\)
\(168\) 0 0
\(169\) 16.8564 1.29665
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −15.8564 −1.20554 −0.602770 0.797915i \(-0.705936\pi\)
−0.602770 + 0.797915i \(0.705936\pi\)
\(174\) 0 0
\(175\) 2.46410 0.186269
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.2679 0.842206 0.421103 0.907013i \(-0.361643\pi\)
0.421103 + 0.907013i \(0.361643\pi\)
\(180\) 0 0
\(181\) −20.9282 −1.55558 −0.777791 0.628524i \(-0.783660\pi\)
−0.777791 + 0.628524i \(0.783660\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 24.3923 1.79336
\(186\) 0 0
\(187\) 26.9282 1.96919
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.07180 −0.366982 −0.183491 0.983021i \(-0.558740\pi\)
−0.183491 + 0.983021i \(0.558740\pi\)
\(192\) 0 0
\(193\) −4.92820 −0.354740 −0.177370 0.984144i \(-0.556759\pi\)
−0.177370 + 0.984144i \(0.556759\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.9282 0.921096 0.460548 0.887635i \(-0.347653\pi\)
0.460548 + 0.887635i \(0.347653\pi\)
\(198\) 0 0
\(199\) −15.3205 −1.08604 −0.543021 0.839719i \(-0.682720\pi\)
−0.543021 + 0.839719i \(0.682720\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.73205 0.472497
\(204\) 0 0
\(205\) −13.4641 −0.940374
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −24.3923 −1.66354
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 36.7846 2.47440
\(222\) 0 0
\(223\) 18.7846 1.25791 0.628955 0.777442i \(-0.283483\pi\)
0.628955 + 0.777442i \(0.283483\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −27.3205 −1.81333 −0.906663 0.421856i \(-0.861379\pi\)
−0.906663 + 0.421856i \(0.861379\pi\)
\(228\) 0 0
\(229\) −18.3923 −1.21540 −0.607699 0.794168i \(-0.707907\pi\)
−0.607699 + 0.794168i \(0.707907\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.3205 −1.13470 −0.567352 0.823475i \(-0.692032\pi\)
−0.567352 + 0.823475i \(0.692032\pi\)
\(234\) 0 0
\(235\) 27.8564 1.81715
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.53590 0.164034 0.0820168 0.996631i \(-0.473864\pi\)
0.0820168 + 0.996631i \(0.473864\pi\)
\(240\) 0 0
\(241\) −30.7846 −1.98301 −0.991506 0.130065i \(-0.958482\pi\)
−0.991506 + 0.130065i \(0.958482\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.73205 0.174544
\(246\) 0 0
\(247\) 5.46410 0.347672
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.6603 −0.988466 −0.494233 0.869329i \(-0.664551\pi\)
−0.494233 + 0.869329i \(0.664551\pi\)
\(252\) 0 0
\(253\) −27.7128 −1.74229
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.3923 1.14728 0.573640 0.819107i \(-0.305531\pi\)
0.573640 + 0.819107i \(0.305531\pi\)
\(258\) 0 0
\(259\) 8.92820 0.554772
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.46410 −0.583582 −0.291791 0.956482i \(-0.594251\pi\)
−0.291791 + 0.956482i \(0.594251\pi\)
\(264\) 0 0
\(265\) 26.3923 1.62127
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.5359 1.25210 0.626048 0.779785i \(-0.284671\pi\)
0.626048 + 0.779785i \(0.284671\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.85641 0.594364
\(276\) 0 0
\(277\) −3.60770 −0.216765 −0.108383 0.994109i \(-0.534567\pi\)
−0.108383 + 0.994109i \(0.534567\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.26795 0.0756395 0.0378198 0.999285i \(-0.487959\pi\)
0.0378198 + 0.999285i \(0.487959\pi\)
\(282\) 0 0
\(283\) 12.3923 0.736646 0.368323 0.929698i \(-0.379932\pi\)
0.368323 + 0.929698i \(0.379932\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.92820 −0.290903
\(288\) 0 0
\(289\) 28.3205 1.66591
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.143594 0.00838882 0.00419441 0.999991i \(-0.498665\pi\)
0.00419441 + 0.999991i \(0.498665\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −37.8564 −2.18929
\(300\) 0 0
\(301\) −8.92820 −0.514613
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −35.3205 −2.02245
\(306\) 0 0
\(307\) 3.07180 0.175317 0.0876584 0.996151i \(-0.472062\pi\)
0.0876584 + 0.996151i \(0.472062\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −17.1244 −0.971033 −0.485517 0.874227i \(-0.661368\pi\)
−0.485517 + 0.874227i \(0.661368\pi\)
\(312\) 0 0
\(313\) 32.9282 1.86121 0.930606 0.366022i \(-0.119281\pi\)
0.930606 + 0.366022i \(0.119281\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.7321 1.27676 0.638380 0.769722i \(-0.279605\pi\)
0.638380 + 0.769722i \(0.279605\pi\)
\(318\) 0 0
\(319\) 26.9282 1.50769
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.73205 0.374581
\(324\) 0 0
\(325\) 13.4641 0.746854
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.1962 0.562132
\(330\) 0 0
\(331\) −12.3923 −0.681143 −0.340571 0.940219i \(-0.610620\pi\)
−0.340571 + 0.940219i \(0.610620\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 22.3923 1.21979 0.609893 0.792484i \(-0.291212\pi\)
0.609893 + 0.792484i \(0.291212\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.3205 0.822448 0.411224 0.911534i \(-0.365101\pi\)
0.411224 + 0.911534i \(0.365101\pi\)
\(348\) 0 0
\(349\) 18.7846 1.00552 0.502759 0.864427i \(-0.332318\pi\)
0.502759 + 0.864427i \(0.332318\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.5167 −1.03877 −0.519384 0.854541i \(-0.673838\pi\)
−0.519384 + 0.854541i \(0.673838\pi\)
\(354\) 0 0
\(355\) 16.9282 0.898456
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.14359 −0.113135 −0.0565673 0.998399i \(-0.518016\pi\)
−0.0565673 + 0.998399i \(0.518016\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 28.3923 1.48612
\(366\) 0 0
\(367\) 19.3205 1.00852 0.504261 0.863551i \(-0.331765\pi\)
0.504261 + 0.863551i \(0.331765\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.66025 0.501535
\(372\) 0 0
\(373\) −10.7846 −0.558406 −0.279203 0.960232i \(-0.590070\pi\)
−0.279203 + 0.960232i \(0.590070\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 36.7846 1.89450
\(378\) 0 0
\(379\) −0.392305 −0.0201513 −0.0100757 0.999949i \(-0.503207\pi\)
−0.0100757 + 0.999949i \(0.503207\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.3205 −1.80479 −0.902397 0.430906i \(-0.858194\pi\)
−0.902397 + 0.430906i \(0.858194\pi\)
\(384\) 0 0
\(385\) 10.9282 0.556953
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 34.3923 1.74376 0.871880 0.489720i \(-0.162901\pi\)
0.871880 + 0.489720i \(0.162901\pi\)
\(390\) 0 0
\(391\) −46.6410 −2.35874
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −29.8564 −1.50224
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.5885 1.22789 0.613944 0.789349i \(-0.289582\pi\)
0.613944 + 0.789349i \(0.289582\pi\)
\(402\) 0 0
\(403\) −10.9282 −0.544373
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 35.7128 1.77022
\(408\) 0 0
\(409\) −9.46410 −0.467970 −0.233985 0.972240i \(-0.575177\pi\)
−0.233985 + 0.972240i \(0.575177\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.92820 −0.144087
\(414\) 0 0
\(415\) 6.00000 0.294528
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −33.1244 −1.61823 −0.809115 0.587650i \(-0.800053\pi\)
−0.809115 + 0.587650i \(0.800053\pi\)
\(420\) 0 0
\(421\) −23.4641 −1.14357 −0.571785 0.820403i \(-0.693749\pi\)
−0.571785 + 0.820403i \(0.693749\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 16.5885 0.804658
\(426\) 0 0
\(427\) −12.9282 −0.625640
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.9808 −0.528925 −0.264462 0.964396i \(-0.585194\pi\)
−0.264462 + 0.964396i \(0.585194\pi\)
\(432\) 0 0
\(433\) −3.85641 −0.185327 −0.0926635 0.995697i \(-0.529538\pi\)
−0.0926635 + 0.995697i \(0.529538\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.92820 −0.331421
\(438\) 0 0
\(439\) 23.8564 1.13860 0.569302 0.822128i \(-0.307213\pi\)
0.569302 + 0.822128i \(0.307213\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.39230 0.208685 0.104342 0.994541i \(-0.466726\pi\)
0.104342 + 0.994541i \(0.466726\pi\)
\(444\) 0 0
\(445\) 16.3923 0.777070
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.33975 −0.110419 −0.0552097 0.998475i \(-0.517583\pi\)
−0.0552097 + 0.998475i \(0.517583\pi\)
\(450\) 0 0
\(451\) −19.7128 −0.928240
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.9282 0.699845
\(456\) 0 0
\(457\) 23.3205 1.09089 0.545444 0.838147i \(-0.316361\pi\)
0.545444 + 0.838147i \(0.316361\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.1962 0.940629 0.470314 0.882499i \(-0.344141\pi\)
0.470314 + 0.882499i \(0.344141\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.19615 −0.101626 −0.0508129 0.998708i \(-0.516181\pi\)
−0.0508129 + 0.998708i \(0.516181\pi\)
\(468\) 0 0
\(469\) −1.46410 −0.0676059
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −35.7128 −1.64208
\(474\) 0 0
\(475\) 2.46410 0.113061
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.5167 1.16589 0.582943 0.812513i \(-0.301901\pi\)
0.582943 + 0.812513i \(0.301901\pi\)
\(480\) 0 0
\(481\) 48.7846 2.22439
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −43.3205 −1.96708
\(486\) 0 0
\(487\) −21.8564 −0.990408 −0.495204 0.868777i \(-0.664907\pi\)
−0.495204 + 0.868777i \(0.664907\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −42.2487 −1.90666 −0.953329 0.301934i \(-0.902368\pi\)
−0.953329 + 0.301934i \(0.902368\pi\)
\(492\) 0 0
\(493\) 45.3205 2.04113
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.19615 0.277935
\(498\) 0 0
\(499\) 25.8564 1.15749 0.578746 0.815508i \(-0.303542\pi\)
0.578746 + 0.815508i \(0.303542\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.7321 1.28110 0.640549 0.767917i \(-0.278707\pi\)
0.640549 + 0.767917i \(0.278707\pi\)
\(504\) 0 0
\(505\) 3.46410 0.154150
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 29.3205 1.29961 0.649804 0.760102i \(-0.274851\pi\)
0.649804 + 0.760102i \(0.274851\pi\)
\(510\) 0 0
\(511\) 10.3923 0.459728
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 29.8564 1.31563
\(516\) 0 0
\(517\) 40.7846 1.79371
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.2487 −0.536626 −0.268313 0.963332i \(-0.586466\pi\)
−0.268313 + 0.963332i \(0.586466\pi\)
\(522\) 0 0
\(523\) 38.0000 1.66162 0.830812 0.556553i \(-0.187876\pi\)
0.830812 + 0.556553i \(0.187876\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −13.4641 −0.586505
\(528\) 0 0
\(529\) 25.0000 1.08696
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −26.9282 −1.16639
\(534\) 0 0
\(535\) 4.92820 0.213065
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −31.3205 −1.34162
\(546\) 0 0
\(547\) 17.0718 0.729937 0.364969 0.931020i \(-0.381080\pi\)
0.364969 + 0.931020i \(0.381080\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.73205 0.286795
\(552\) 0 0
\(553\) −10.9282 −0.464714
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −38.1051 −1.61457 −0.807283 0.590165i \(-0.799063\pi\)
−0.807283 + 0.590165i \(0.799063\pi\)
\(558\) 0 0
\(559\) −48.7846 −2.06337
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.679492 −0.0286372 −0.0143186 0.999897i \(-0.504558\pi\)
−0.0143186 + 0.999897i \(0.504558\pi\)
\(564\) 0 0
\(565\) −36.2487 −1.52499
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.5167 −0.650492 −0.325246 0.945629i \(-0.605447\pi\)
−0.325246 + 0.945629i \(0.605447\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −17.0718 −0.711943
\(576\) 0 0
\(577\) −26.7846 −1.11506 −0.557529 0.830157i \(-0.688250\pi\)
−0.557529 + 0.830157i \(0.688250\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.19615 0.0911118
\(582\) 0 0
\(583\) 38.6410 1.60035
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.80385 −0.404648 −0.202324 0.979319i \(-0.564849\pi\)
−0.202324 + 0.979319i \(0.564849\pi\)
\(588\) 0 0
\(589\) −2.00000 −0.0824086
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −20.1962 −0.829357 −0.414678 0.909968i \(-0.636106\pi\)
−0.414678 + 0.909968i \(0.636106\pi\)
\(594\) 0 0
\(595\) 18.3923 0.754011
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.1962 0.743475 0.371737 0.928338i \(-0.378762\pi\)
0.371737 + 0.928338i \(0.378762\pi\)
\(600\) 0 0
\(601\) 43.8564 1.78894 0.894470 0.447128i \(-0.147553\pi\)
0.894470 + 0.447128i \(0.147553\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 13.6603 0.555368
\(606\) 0 0
\(607\) −24.7846 −1.00598 −0.502988 0.864293i \(-0.667766\pi\)
−0.502988 + 0.864293i \(0.667766\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 55.7128 2.25390
\(612\) 0 0
\(613\) −44.3923 −1.79299 −0.896494 0.443056i \(-0.853894\pi\)
−0.896494 + 0.443056i \(0.853894\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.7846 0.756240 0.378120 0.925757i \(-0.376571\pi\)
0.378120 + 0.925757i \(0.376571\pi\)
\(618\) 0 0
\(619\) −25.4641 −1.02349 −0.511744 0.859138i \(-0.671000\pi\)
−0.511744 + 0.859138i \(0.671000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) −31.2487 −1.24995
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 60.1051 2.39655
\(630\) 0 0
\(631\) 6.78461 0.270091 0.135046 0.990839i \(-0.456882\pi\)
0.135046 + 0.990839i \(0.456882\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −36.7846 −1.45975
\(636\) 0 0
\(637\) 5.46410 0.216496
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.73205 −0.265900 −0.132950 0.991123i \(-0.542445\pi\)
−0.132950 + 0.991123i \(0.542445\pi\)
\(642\) 0 0
\(643\) −20.3923 −0.804194 −0.402097 0.915597i \(-0.631719\pi\)
−0.402097 + 0.915597i \(0.631719\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27.6603 −1.08744 −0.543718 0.839268i \(-0.682984\pi\)
−0.543718 + 0.839268i \(0.682984\pi\)
\(648\) 0 0
\(649\) −11.7128 −0.459768
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.71281 −0.380092 −0.190046 0.981775i \(-0.560864\pi\)
−0.190046 + 0.981775i \(0.560864\pi\)
\(654\) 0 0
\(655\) −19.8564 −0.775854
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13.1244 −0.511252 −0.255626 0.966776i \(-0.582282\pi\)
−0.255626 + 0.966776i \(0.582282\pi\)
\(660\) 0 0
\(661\) −1.46410 −0.0569470 −0.0284735 0.999595i \(-0.509065\pi\)
−0.0284735 + 0.999595i \(0.509065\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.73205 0.105944
\(666\) 0 0
\(667\) −46.6410 −1.80595
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −51.7128 −1.99635
\(672\) 0 0
\(673\) 16.1436 0.622290 0.311145 0.950362i \(-0.399288\pi\)
0.311145 + 0.950362i \(0.399288\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.46410 −0.286869 −0.143434 0.989660i \(-0.545815\pi\)
−0.143434 + 0.989660i \(0.545815\pi\)
\(678\) 0 0
\(679\) −15.8564 −0.608513
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 38.1962 1.46154 0.730768 0.682626i \(-0.239162\pi\)
0.730768 + 0.682626i \(0.239162\pi\)
\(684\) 0 0
\(685\) 24.3923 0.931982
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 52.7846 2.01093
\(690\) 0 0
\(691\) 2.14359 0.0815461 0.0407731 0.999168i \(-0.487018\pi\)
0.0407731 + 0.999168i \(0.487018\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −41.8564 −1.58770
\(696\) 0 0
\(697\) −33.1769 −1.25667
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 46.7846 1.76703 0.883515 0.468403i \(-0.155170\pi\)
0.883515 + 0.468403i \(0.155170\pi\)
\(702\) 0 0
\(703\) 8.92820 0.336734
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.26795 0.0476861
\(708\) 0 0
\(709\) 4.67949 0.175742 0.0878710 0.996132i \(-0.471994\pi\)
0.0878710 + 0.996132i \(0.471994\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.8564 0.518927
\(714\) 0 0
\(715\) 59.7128 2.23313
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −42.5885 −1.58828 −0.794141 0.607734i \(-0.792079\pi\)
−0.794141 + 0.607734i \(0.792079\pi\)
\(720\) 0 0
\(721\) 10.9282 0.406988
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16.5885 0.616080
\(726\) 0 0
\(727\) 19.7128 0.731108 0.365554 0.930790i \(-0.380880\pi\)
0.365554 + 0.930790i \(0.380880\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −60.1051 −2.22307
\(732\) 0 0
\(733\) 2.67949 0.0989693 0.0494846 0.998775i \(-0.484242\pi\)
0.0494846 + 0.998775i \(0.484242\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.85641 −0.215724
\(738\) 0 0
\(739\) −20.1436 −0.740994 −0.370497 0.928834i \(-0.620813\pi\)
−0.370497 + 0.928834i \(0.620813\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.6603 0.427773 0.213887 0.976858i \(-0.431388\pi\)
0.213887 + 0.976858i \(0.431388\pi\)
\(744\) 0 0
\(745\) −9.46410 −0.346738
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.80385 0.0659112
\(750\) 0 0
\(751\) 3.60770 0.131647 0.0658233 0.997831i \(-0.479033\pi\)
0.0658233 + 0.997831i \(0.479033\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17.8564 0.649861
\(756\) 0 0
\(757\) 26.7846 0.973503 0.486752 0.873540i \(-0.338182\pi\)
0.486752 + 0.873540i \(0.338182\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0526 −0.364405 −0.182202 0.983261i \(-0.558323\pi\)
−0.182202 + 0.983261i \(0.558323\pi\)
\(762\) 0 0
\(763\) −11.4641 −0.415028
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) −4.92820 −0.177716 −0.0888578 0.996044i \(-0.528322\pi\)
−0.0888578 + 0.996044i \(0.528322\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.21539 −0.0437146 −0.0218573 0.999761i \(-0.506958\pi\)
−0.0218573 + 0.999761i \(0.506958\pi\)
\(774\) 0 0
\(775\) −4.92820 −0.177026
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.92820 −0.176571
\(780\) 0 0
\(781\) 24.7846 0.886863
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −46.2487 −1.65069
\(786\) 0 0
\(787\) 31.8564 1.13556 0.567779 0.823181i \(-0.307803\pi\)
0.567779 + 0.823181i \(0.307803\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.2679 −0.471754
\(792\) 0 0
\(793\) −70.6410 −2.50854
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.7846 0.948760 0.474380 0.880320i \(-0.342672\pi\)
0.474380 + 0.880320i \(0.342672\pi\)
\(798\) 0 0
\(799\) 68.6410 2.42834
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 41.5692 1.46695
\(804\) 0 0
\(805\) −18.9282 −0.667132
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.71281 0.200852 0.100426 0.994945i \(-0.467979\pi\)
0.100426 + 0.994945i \(0.467979\pi\)
\(810\) 0 0
\(811\) 36.0000 1.26413 0.632065 0.774915i \(-0.282207\pi\)
0.632065 + 0.774915i \(0.282207\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.53590 0.0888286
\(816\) 0 0
\(817\) −8.92820 −0.312358
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.67949 0.233116 0.116558 0.993184i \(-0.462814\pi\)
0.116558 + 0.993184i \(0.462814\pi\)
\(822\) 0 0
\(823\) −18.7846 −0.654790 −0.327395 0.944888i \(-0.606171\pi\)
−0.327395 + 0.944888i \(0.606171\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.9808 1.21640 0.608200 0.793784i \(-0.291892\pi\)
0.608200 + 0.793784i \(0.291892\pi\)
\(828\) 0 0
\(829\) 45.7128 1.58767 0.793836 0.608132i \(-0.208081\pi\)
0.793836 + 0.608132i \(0.208081\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.73205 0.233252
\(834\) 0 0
\(835\) −6.92820 −0.239760
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.6410 0.919750 0.459875 0.887984i \(-0.347894\pi\)
0.459875 + 0.887984i \(0.347894\pi\)
\(840\) 0 0
\(841\) 16.3205 0.562776
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 46.0526 1.58426
\(846\) 0 0
\(847\) 5.00000 0.171802
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −61.8564 −2.12041
\(852\) 0 0
\(853\) 34.0000 1.16414 0.582069 0.813139i \(-0.302243\pi\)
0.582069 + 0.813139i \(0.302243\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.8564 −0.678282 −0.339141 0.940736i \(-0.610136\pi\)
−0.339141 + 0.940736i \(0.610136\pi\)
\(858\) 0 0
\(859\) 10.1436 0.346095 0.173047 0.984913i \(-0.444639\pi\)
0.173047 + 0.984913i \(0.444639\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.3731 −1.06795 −0.533976 0.845500i \(-0.679303\pi\)
−0.533976 + 0.845500i \(0.679303\pi\)
\(864\) 0 0
\(865\) −43.3205 −1.47294
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −43.7128 −1.48286
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.92820 −0.234216
\(876\) 0 0
\(877\) 47.5692 1.60630 0.803149 0.595778i \(-0.203156\pi\)
0.803149 + 0.595778i \(0.203156\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26.7321 −0.900626 −0.450313 0.892871i \(-0.648688\pi\)
−0.450313 + 0.892871i \(0.648688\pi\)
\(882\) 0 0
\(883\) 12.7846 0.430236 0.215118 0.976588i \(-0.430986\pi\)
0.215118 + 0.976588i \(0.430986\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.1769 0.711051 0.355526 0.934667i \(-0.384302\pi\)
0.355526 + 0.934667i \(0.384302\pi\)
\(888\) 0 0
\(889\) −13.4641 −0.451571
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.1962 0.341201
\(894\) 0 0
\(895\) 30.7846 1.02902
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.4641 −0.449053
\(900\) 0 0
\(901\) 65.0333 2.16657
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −57.1769 −1.90062
\(906\) 0 0
\(907\) 34.6410 1.15024 0.575118 0.818070i \(-0.304956\pi\)
0.575118 + 0.818070i \(0.304956\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.48334 −0.0822767 −0.0411384 0.999153i \(-0.513098\pi\)
−0.0411384 + 0.999153i \(0.513098\pi\)
\(912\) 0 0
\(913\) 8.78461 0.290728
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.26795 −0.240009
\(918\) 0 0
\(919\) 51.7128 1.70585 0.852924 0.522035i \(-0.174827\pi\)
0.852924 + 0.522035i \(0.174827\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 33.8564 1.11440
\(924\) 0 0
\(925\) 22.0000 0.723356
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.58846 0.150542 0.0752712 0.997163i \(-0.476018\pi\)
0.0752712 + 0.997163i \(0.476018\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 73.5692 2.40597
\(936\) 0 0
\(937\) 39.0718 1.27642 0.638210 0.769862i \(-0.279675\pi\)
0.638210 + 0.769862i \(0.279675\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9.60770 −0.313202 −0.156601 0.987662i \(-0.550054\pi\)
−0.156601 + 0.987662i \(0.550054\pi\)
\(942\) 0 0
\(943\) 34.1436 1.11187
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −37.8564 −1.23017 −0.615084 0.788462i \(-0.710878\pi\)
−0.615084 + 0.788462i \(0.710878\pi\)
\(948\) 0 0
\(949\) 56.7846 1.84331
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.5885 1.05564 0.527822 0.849355i \(-0.323009\pi\)
0.527822 + 0.849355i \(0.323009\pi\)
\(954\) 0 0
\(955\) −13.8564 −0.448383
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.92820 0.288307
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.4641 −0.433425
\(966\) 0 0
\(967\) 10.7846 0.346810 0.173405 0.984851i \(-0.444523\pi\)
0.173405 + 0.984851i \(0.444523\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 56.7846 1.82230 0.911152 0.412069i \(-0.135194\pi\)
0.911152 + 0.412069i \(0.135194\pi\)
\(972\) 0 0
\(973\) −15.3205 −0.491153
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.5167 0.624393 0.312197 0.950018i \(-0.398935\pi\)
0.312197 + 0.950018i \(0.398935\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.7846 1.04567 0.522833 0.852435i \(-0.324875\pi\)
0.522833 + 0.852435i \(0.324875\pi\)
\(984\) 0 0
\(985\) 35.3205 1.12540
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 61.8564 1.96692
\(990\) 0 0
\(991\) 38.6410 1.22747 0.613736 0.789511i \(-0.289666\pi\)
0.613736 + 0.789511i \(0.289666\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −41.8564 −1.32694
\(996\) 0 0
\(997\) −56.9282 −1.80293 −0.901467 0.432848i \(-0.857509\pi\)
−0.901467 + 0.432848i \(0.857509\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9576.2.a.bw.1.2 2
3.2 odd 2 3192.2.a.s.1.1 2
12.11 even 2 6384.2.a.bi.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3192.2.a.s.1.1 2 3.2 odd 2
6384.2.a.bi.1.1 2 12.11 even 2
9576.2.a.bw.1.2 2 1.1 even 1 trivial