Properties

Label 9576.2.a.bu.1.2
Level $9576$
Weight $2$
Character 9576.1
Self dual yes
Analytic conductor $76.465$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9576,2,Mod(1,9576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9576.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9576 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.4647449756\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 9576.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.64575 q^{5} +1.00000 q^{7} +O(q^{10})\) \(q+3.64575 q^{5} +1.00000 q^{7} +2.00000 q^{11} -4.00000 q^{13} -0.354249 q^{17} +1.00000 q^{19} -6.00000 q^{23} +8.29150 q^{25} +5.64575 q^{29} +1.29150 q^{31} +3.64575 q^{35} +5.29150 q^{37} -8.58301 q^{41} -2.00000 q^{43} +2.35425 q^{47} +1.00000 q^{49} -8.93725 q^{53} +7.29150 q^{55} +14.5830 q^{59} +2.70850 q^{61} -14.5830 q^{65} +14.5830 q^{67} +0.354249 q^{71} -9.29150 q^{73} +2.00000 q^{77} +11.2915 q^{79} +16.9373 q^{83} -1.29150 q^{85} +6.00000 q^{89} -4.00000 q^{91} +3.64575 q^{95} +16.5830 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} + 2 q^{7} + 4 q^{11} - 8 q^{13} - 6 q^{17} + 2 q^{19} - 12 q^{23} + 6 q^{25} + 6 q^{29} - 8 q^{31} + 2 q^{35} + 4 q^{41} - 4 q^{43} + 10 q^{47} + 2 q^{49} - 2 q^{53} + 4 q^{55} + 8 q^{59} + 16 q^{61} - 8 q^{65} + 8 q^{67} + 6 q^{71} - 8 q^{73} + 4 q^{77} + 12 q^{79} + 18 q^{83} + 8 q^{85} + 12 q^{89} - 8 q^{91} + 2 q^{95} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.64575 1.63043 0.815215 0.579159i \(-0.196619\pi\)
0.815215 + 0.579159i \(0.196619\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.354249 −0.0859179 −0.0429590 0.999077i \(-0.513678\pi\)
−0.0429590 + 0.999077i \(0.513678\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 8.29150 1.65830
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.64575 1.04839 0.524195 0.851598i \(-0.324366\pi\)
0.524195 + 0.851598i \(0.324366\pi\)
\(30\) 0 0
\(31\) 1.29150 0.231961 0.115980 0.993252i \(-0.462999\pi\)
0.115980 + 0.993252i \(0.462999\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.64575 0.616244
\(36\) 0 0
\(37\) 5.29150 0.869918 0.434959 0.900450i \(-0.356763\pi\)
0.434959 + 0.900450i \(0.356763\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.58301 −1.34044 −0.670220 0.742162i \(-0.733800\pi\)
−0.670220 + 0.742162i \(0.733800\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.35425 0.343402 0.171701 0.985149i \(-0.445074\pi\)
0.171701 + 0.985149i \(0.445074\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.93725 −1.22763 −0.613813 0.789451i \(-0.710365\pi\)
−0.613813 + 0.789451i \(0.710365\pi\)
\(54\) 0 0
\(55\) 7.29150 0.983186
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14.5830 1.89855 0.949273 0.314454i \(-0.101821\pi\)
0.949273 + 0.314454i \(0.101821\pi\)
\(60\) 0 0
\(61\) 2.70850 0.346788 0.173394 0.984853i \(-0.444527\pi\)
0.173394 + 0.984853i \(0.444527\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.5830 −1.80880
\(66\) 0 0
\(67\) 14.5830 1.78160 0.890799 0.454398i \(-0.150146\pi\)
0.890799 + 0.454398i \(0.150146\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.354249 0.0420416 0.0210208 0.999779i \(-0.493308\pi\)
0.0210208 + 0.999779i \(0.493308\pi\)
\(72\) 0 0
\(73\) −9.29150 −1.08749 −0.543744 0.839251i \(-0.682994\pi\)
−0.543744 + 0.839251i \(0.682994\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) 11.2915 1.27039 0.635197 0.772350i \(-0.280919\pi\)
0.635197 + 0.772350i \(0.280919\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 16.9373 1.85911 0.929553 0.368690i \(-0.120193\pi\)
0.929553 + 0.368690i \(0.120193\pi\)
\(84\) 0 0
\(85\) −1.29150 −0.140083
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.64575 0.374046
\(96\) 0 0
\(97\) 16.5830 1.68375 0.841875 0.539673i \(-0.181452\pi\)
0.841875 + 0.539673i \(0.181452\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.35425 0.433264 0.216632 0.976253i \(-0.430493\pi\)
0.216632 + 0.976253i \(0.430493\pi\)
\(102\) 0 0
\(103\) −2.58301 −0.254511 −0.127256 0.991870i \(-0.540617\pi\)
−0.127256 + 0.991870i \(0.540617\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.64575 0.352448 0.176224 0.984350i \(-0.443612\pi\)
0.176224 + 0.984350i \(0.443612\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −16.9373 −1.59332 −0.796661 0.604426i \(-0.793403\pi\)
−0.796661 + 0.604426i \(0.793403\pi\)
\(114\) 0 0
\(115\) −21.8745 −2.03981
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.354249 −0.0324739
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −16.9373 −1.47981 −0.739907 0.672709i \(-0.765131\pi\)
−0.739907 + 0.672709i \(0.765131\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.5830 1.92940 0.964698 0.263358i \(-0.0848300\pi\)
0.964698 + 0.263358i \(0.0848300\pi\)
\(138\) 0 0
\(139\) −0.708497 −0.0600940 −0.0300470 0.999548i \(-0.509566\pi\)
−0.0300470 + 0.999548i \(0.509566\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 20.5830 1.70933
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.2915 1.25273 0.626364 0.779530i \(-0.284542\pi\)
0.626364 + 0.779530i \(0.284542\pi\)
\(150\) 0 0
\(151\) 19.2915 1.56992 0.784960 0.619546i \(-0.212683\pi\)
0.784960 + 0.619546i \(0.212683\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.70850 0.378196
\(156\) 0 0
\(157\) 11.8745 0.947689 0.473844 0.880609i \(-0.342866\pi\)
0.473844 + 0.880609i \(0.342866\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) −12.5830 −0.985577 −0.492789 0.870149i \(-0.664022\pi\)
−0.492789 + 0.870149i \(0.664022\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.2915 1.18329 0.591646 0.806198i \(-0.298478\pi\)
0.591646 + 0.806198i \(0.298478\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 8.29150 0.626779
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 25.5203 1.90747 0.953737 0.300643i \(-0.0972011\pi\)
0.953737 + 0.300643i \(0.0972011\pi\)
\(180\) 0 0
\(181\) 16.5830 1.23261 0.616303 0.787509i \(-0.288630\pi\)
0.616303 + 0.787509i \(0.288630\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 19.2915 1.41834
\(186\) 0 0
\(187\) −0.708497 −0.0518105
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) −25.2915 −1.82052 −0.910261 0.414035i \(-0.864119\pi\)
−0.910261 + 0.414035i \(0.864119\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.41699 −0.385945 −0.192972 0.981204i \(-0.561813\pi\)
−0.192972 + 0.981204i \(0.561813\pi\)
\(198\) 0 0
\(199\) 1.41699 0.100448 0.0502240 0.998738i \(-0.484006\pi\)
0.0502240 + 0.998738i \(0.484006\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.64575 0.396254
\(204\) 0 0
\(205\) −31.2915 −2.18549
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) −1.41699 −0.0975499 −0.0487750 0.998810i \(-0.515532\pi\)
−0.0487750 + 0.998810i \(0.515532\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.29150 −0.497276
\(216\) 0 0
\(217\) 1.29150 0.0876729
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.41699 0.0953174
\(222\) 0 0
\(223\) −5.29150 −0.354345 −0.177173 0.984180i \(-0.556695\pi\)
−0.177173 + 0.984180i \(0.556695\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.7085 0.843493 0.421746 0.906714i \(-0.361417\pi\)
0.421746 + 0.906714i \(0.361417\pi\)
\(228\) 0 0
\(229\) −8.58301 −0.567181 −0.283590 0.958945i \(-0.591526\pi\)
−0.283590 + 0.958945i \(0.591526\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.2915 −1.00178 −0.500890 0.865511i \(-0.666994\pi\)
−0.500890 + 0.865511i \(0.666994\pi\)
\(234\) 0 0
\(235\) 8.58301 0.559894
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.70850 0.175198 0.0875991 0.996156i \(-0.472081\pi\)
0.0875991 + 0.996156i \(0.472081\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.64575 0.232919
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.35425 0.148599 0.0742994 0.997236i \(-0.476328\pi\)
0.0742994 + 0.997236i \(0.476328\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.2915 0.829101 0.414551 0.910026i \(-0.363939\pi\)
0.414551 + 0.910026i \(0.363939\pi\)
\(258\) 0 0
\(259\) 5.29150 0.328798
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.70850 0.167013 0.0835066 0.996507i \(-0.473388\pi\)
0.0835066 + 0.996507i \(0.473388\pi\)
\(264\) 0 0
\(265\) −32.5830 −2.00156
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.4575 −1.36926 −0.684629 0.728891i \(-0.740036\pi\)
−0.684629 + 0.728891i \(0.740036\pi\)
\(270\) 0 0
\(271\) 4.70850 0.286021 0.143010 0.989721i \(-0.454322\pi\)
0.143010 + 0.989721i \(0.454322\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.5830 0.999993
\(276\) 0 0
\(277\) −29.8745 −1.79499 −0.897493 0.441030i \(-0.854613\pi\)
−0.897493 + 0.441030i \(0.854613\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.06275 −0.421328 −0.210664 0.977559i \(-0.567563\pi\)
−0.210664 + 0.977559i \(0.567563\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.58301 −0.506639
\(288\) 0 0
\(289\) −16.8745 −0.992618
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.41699 0.199623 0.0998115 0.995006i \(-0.468176\pi\)
0.0998115 + 0.995006i \(0.468176\pi\)
\(294\) 0 0
\(295\) 53.1660 3.09544
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) −2.00000 −0.115278
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.87451 0.565413
\(306\) 0 0
\(307\) −23.8745 −1.36259 −0.681295 0.732009i \(-0.738583\pi\)
−0.681295 + 0.732009i \(0.738583\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.3542 −0.813955 −0.406977 0.913438i \(-0.633417\pi\)
−0.406977 + 0.913438i \(0.633417\pi\)
\(312\) 0 0
\(313\) 17.2915 0.977374 0.488687 0.872459i \(-0.337476\pi\)
0.488687 + 0.872459i \(0.337476\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.93725 −0.277304 −0.138652 0.990341i \(-0.544277\pi\)
−0.138652 + 0.990341i \(0.544277\pi\)
\(318\) 0 0
\(319\) 11.2915 0.632203
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.354249 −0.0197109
\(324\) 0 0
\(325\) −33.1660 −1.83972
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.35425 0.129794
\(330\) 0 0
\(331\) −24.4575 −1.34431 −0.672153 0.740412i \(-0.734630\pi\)
−0.672153 + 0.740412i \(0.734630\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 53.1660 2.90477
\(336\) 0 0
\(337\) 12.5830 0.685440 0.342720 0.939438i \(-0.388652\pi\)
0.342720 + 0.939438i \(0.388652\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.58301 0.139878
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.8745 −1.06692 −0.533460 0.845825i \(-0.679108\pi\)
−0.533460 + 0.845825i \(0.679108\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.6458 −1.04564 −0.522819 0.852444i \(-0.675120\pi\)
−0.522819 + 0.852444i \(0.675120\pi\)
\(354\) 0 0
\(355\) 1.29150 0.0685458
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −32.5830 −1.71967 −0.859833 0.510576i \(-0.829432\pi\)
−0.859833 + 0.510576i \(0.829432\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −33.8745 −1.77307
\(366\) 0 0
\(367\) −17.1660 −0.896058 −0.448029 0.894019i \(-0.647874\pi\)
−0.448029 + 0.894019i \(0.647874\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.93725 −0.463999
\(372\) 0 0
\(373\) −26.0000 −1.34623 −0.673114 0.739538i \(-0.735044\pi\)
−0.673114 + 0.739538i \(0.735044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −22.5830 −1.16308
\(378\) 0 0
\(379\) 7.29150 0.374539 0.187270 0.982309i \(-0.440036\pi\)
0.187270 + 0.982309i \(0.440036\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.12549 −0.108608 −0.0543038 0.998524i \(-0.517294\pi\)
−0.0543038 + 0.998524i \(0.517294\pi\)
\(384\) 0 0
\(385\) 7.29150 0.371609
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −21.8745 −1.10908 −0.554541 0.832157i \(-0.687106\pi\)
−0.554541 + 0.832157i \(0.687106\pi\)
\(390\) 0 0
\(391\) 2.12549 0.107491
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 41.1660 2.07129
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.6458 0.681436 0.340718 0.940165i \(-0.389330\pi\)
0.340718 + 0.940165i \(0.389330\pi\)
\(402\) 0 0
\(403\) −5.16601 −0.257337
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.5830 0.524580
\(408\) 0 0
\(409\) −13.1660 −0.651017 −0.325509 0.945539i \(-0.605536\pi\)
−0.325509 + 0.945539i \(0.605536\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.5830 0.717583
\(414\) 0 0
\(415\) 61.7490 3.03114
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.06275 0.345038 0.172519 0.985006i \(-0.444809\pi\)
0.172519 + 0.985006i \(0.444809\pi\)
\(420\) 0 0
\(421\) 19.8745 0.968624 0.484312 0.874895i \(-0.339070\pi\)
0.484312 + 0.874895i \(0.339070\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.93725 −0.142478
\(426\) 0 0
\(427\) 2.70850 0.131073
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.0627 0.629210 0.314605 0.949223i \(-0.398128\pi\)
0.314605 + 0.949223i \(0.398128\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) −35.8745 −1.71220 −0.856098 0.516813i \(-0.827118\pi\)
−0.856098 + 0.516813i \(0.827118\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 21.2915 1.01159 0.505795 0.862654i \(-0.331199\pi\)
0.505795 + 0.862654i \(0.331199\pi\)
\(444\) 0 0
\(445\) 21.8745 1.03695
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.64575 0.455211 0.227606 0.973753i \(-0.426910\pi\)
0.227606 + 0.973753i \(0.426910\pi\)
\(450\) 0 0
\(451\) −17.1660 −0.808316
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.5830 −0.683662
\(456\) 0 0
\(457\) −33.8745 −1.58458 −0.792291 0.610143i \(-0.791112\pi\)
−0.792291 + 0.610143i \(0.791112\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.9373 0.509399 0.254699 0.967020i \(-0.418023\pi\)
0.254699 + 0.967020i \(0.418023\pi\)
\(462\) 0 0
\(463\) −29.1660 −1.35546 −0.677730 0.735311i \(-0.737036\pi\)
−0.677730 + 0.735311i \(0.737036\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.22876 0.380781 0.190391 0.981708i \(-0.439025\pi\)
0.190391 + 0.981708i \(0.439025\pi\)
\(468\) 0 0
\(469\) 14.5830 0.673381
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) 8.29150 0.380440
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.2288 0.924275 0.462138 0.886808i \(-0.347083\pi\)
0.462138 + 0.886808i \(0.347083\pi\)
\(480\) 0 0
\(481\) −21.1660 −0.965087
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 60.4575 2.74523
\(486\) 0 0
\(487\) 35.7490 1.61994 0.809971 0.586470i \(-0.199483\pi\)
0.809971 + 0.586470i \(0.199483\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.29150 0.419320 0.209660 0.977774i \(-0.432764\pi\)
0.209660 + 0.977774i \(0.432764\pi\)
\(492\) 0 0
\(493\) −2.00000 −0.0900755
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.354249 0.0158902
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −23.5203 −1.04872 −0.524358 0.851498i \(-0.675695\pi\)
−0.524358 + 0.851498i \(0.675695\pi\)
\(504\) 0 0
\(505\) 15.8745 0.706406
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.2915 0.943729 0.471865 0.881671i \(-0.343581\pi\)
0.471865 + 0.881671i \(0.343581\pi\)
\(510\) 0 0
\(511\) −9.29150 −0.411032
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.41699 −0.414962
\(516\) 0 0
\(517\) 4.70850 0.207079
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.8745 −0.695475 −0.347737 0.937592i \(-0.613050\pi\)
−0.347737 + 0.937592i \(0.613050\pi\)
\(522\) 0 0
\(523\) 23.8745 1.04396 0.521980 0.852958i \(-0.325194\pi\)
0.521980 + 0.852958i \(0.325194\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.457513 −0.0199296
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 34.3320 1.48708
\(534\) 0 0
\(535\) 13.2915 0.574642
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) 15.1660 0.652038 0.326019 0.945363i \(-0.394293\pi\)
0.326019 + 0.945363i \(0.394293\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 36.4575 1.56167
\(546\) 0 0
\(547\) 15.2915 0.653817 0.326909 0.945056i \(-0.393993\pi\)
0.326909 + 0.945056i \(0.393993\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.64575 0.240517
\(552\) 0 0
\(553\) 11.2915 0.480164
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.87451 −0.418396 −0.209198 0.977873i \(-0.567085\pi\)
−0.209198 + 0.977873i \(0.567085\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.8745 −0.921901 −0.460950 0.887426i \(-0.652491\pi\)
−0.460950 + 0.887426i \(0.652491\pi\)
\(564\) 0 0
\(565\) −61.7490 −2.59780
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.3542 0.769450 0.384725 0.923031i \(-0.374296\pi\)
0.384725 + 0.923031i \(0.374296\pi\)
\(570\) 0 0
\(571\) 39.7490 1.66344 0.831722 0.555192i \(-0.187355\pi\)
0.831722 + 0.555192i \(0.187355\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −49.7490 −2.07468
\(576\) 0 0
\(577\) −41.0405 −1.70854 −0.854270 0.519830i \(-0.825995\pi\)
−0.854270 + 0.519830i \(0.825995\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.9373 0.702676
\(582\) 0 0
\(583\) −17.8745 −0.740286
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.9373 0.699075 0.349538 0.936922i \(-0.386339\pi\)
0.349538 + 0.936922i \(0.386339\pi\)
\(588\) 0 0
\(589\) 1.29150 0.0532154
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.6458 1.29954 0.649768 0.760133i \(-0.274866\pi\)
0.649768 + 0.760133i \(0.274866\pi\)
\(594\) 0 0
\(595\) −1.29150 −0.0529464
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.5203 1.53304 0.766518 0.642223i \(-0.221988\pi\)
0.766518 + 0.642223i \(0.221988\pi\)
\(600\) 0 0
\(601\) −44.3320 −1.80834 −0.904170 0.427172i \(-0.859510\pi\)
−0.904170 + 0.427172i \(0.859510\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −25.5203 −1.03755
\(606\) 0 0
\(607\) 1.41699 0.0575140 0.0287570 0.999586i \(-0.490845\pi\)
0.0287570 + 0.999586i \(0.490845\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.41699 −0.380971
\(612\) 0 0
\(613\) −31.2915 −1.26385 −0.631926 0.775029i \(-0.717735\pi\)
−0.631926 + 0.775029i \(0.717735\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.16601 −0.207976 −0.103988 0.994579i \(-0.533160\pi\)
−0.103988 + 0.994579i \(0.533160\pi\)
\(618\) 0 0
\(619\) −37.8745 −1.52231 −0.761153 0.648573i \(-0.775366\pi\)
−0.761153 + 0.648573i \(0.775366\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) 2.29150 0.0916601
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.87451 −0.0747415
\(630\) 0 0
\(631\) 34.0000 1.35352 0.676759 0.736204i \(-0.263384\pi\)
0.676759 + 0.736204i \(0.263384\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.5830 −0.578709
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.35425 0.250978 0.125489 0.992095i \(-0.459950\pi\)
0.125489 + 0.992095i \(0.459950\pi\)
\(642\) 0 0
\(643\) 21.1660 0.834706 0.417353 0.908744i \(-0.362958\pi\)
0.417353 + 0.908744i \(0.362958\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.22876 −0.166250 −0.0831248 0.996539i \(-0.526490\pi\)
−0.0831248 + 0.996539i \(0.526490\pi\)
\(648\) 0 0
\(649\) 29.1660 1.14487
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 37.1660 1.45442 0.727209 0.686416i \(-0.240817\pi\)
0.727209 + 0.686416i \(0.240817\pi\)
\(654\) 0 0
\(655\) −61.7490 −2.41273
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.06275 0.197217 0.0986083 0.995126i \(-0.468561\pi\)
0.0986083 + 0.995126i \(0.468561\pi\)
\(660\) 0 0
\(661\) −34.5830 −1.34512 −0.672562 0.740041i \(-0.734806\pi\)
−0.672562 + 0.740041i \(0.734806\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.64575 0.141376
\(666\) 0 0
\(667\) −33.8745 −1.31163
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.41699 0.209121
\(672\) 0 0
\(673\) −22.4575 −0.865674 −0.432837 0.901472i \(-0.642487\pi\)
−0.432837 + 0.901472i \(0.642487\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.4575 −1.17058 −0.585289 0.810825i \(-0.699019\pi\)
−0.585289 + 0.810825i \(0.699019\pi\)
\(678\) 0 0
\(679\) 16.5830 0.636397
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.1033 0.922286 0.461143 0.887326i \(-0.347440\pi\)
0.461143 + 0.887326i \(0.347440\pi\)
\(684\) 0 0
\(685\) 82.3320 3.14574
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 35.7490 1.36193
\(690\) 0 0
\(691\) −47.2915 −1.79905 −0.899527 0.436866i \(-0.856089\pi\)
−0.899527 + 0.436866i \(0.856089\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.58301 −0.0979790
\(696\) 0 0
\(697\) 3.04052 0.115168
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.1660 0.648351 0.324176 0.945997i \(-0.394913\pi\)
0.324176 + 0.945997i \(0.394913\pi\)
\(702\) 0 0
\(703\) 5.29150 0.199573
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.35425 0.163758
\(708\) 0 0
\(709\) −43.0405 −1.61642 −0.808210 0.588894i \(-0.799564\pi\)
−0.808210 + 0.588894i \(0.799564\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.74902 −0.290203
\(714\) 0 0
\(715\) −29.1660 −1.09075
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 40.9373 1.52670 0.763351 0.645984i \(-0.223553\pi\)
0.763351 + 0.645984i \(0.223553\pi\)
\(720\) 0 0
\(721\) −2.58301 −0.0961961
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 46.8118 1.73855
\(726\) 0 0
\(727\) −10.1255 −0.375534 −0.187767 0.982214i \(-0.560125\pi\)
−0.187767 + 0.982214i \(0.560125\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.708497 0.0262047
\(732\) 0 0
\(733\) −19.8745 −0.734082 −0.367041 0.930205i \(-0.619629\pi\)
−0.367041 + 0.930205i \(0.619629\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.1660 1.07434
\(738\) 0 0
\(739\) 26.0000 0.956425 0.478213 0.878244i \(-0.341285\pi\)
0.478213 + 0.878244i \(0.341285\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28.3542 −1.04022 −0.520108 0.854100i \(-0.674108\pi\)
−0.520108 + 0.854100i \(0.674108\pi\)
\(744\) 0 0
\(745\) 55.7490 2.04249
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.64575 0.133213
\(750\) 0 0
\(751\) −8.45751 −0.308619 −0.154310 0.988023i \(-0.549315\pi\)
−0.154310 + 0.988023i \(0.549315\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 70.3320 2.55964
\(756\) 0 0
\(757\) 32.3320 1.17513 0.587564 0.809178i \(-0.300087\pi\)
0.587564 + 0.809178i \(0.300087\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.0627 0.473524 0.236762 0.971568i \(-0.423914\pi\)
0.236762 + 0.971568i \(0.423914\pi\)
\(762\) 0 0
\(763\) 10.0000 0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −58.3320 −2.10625
\(768\) 0 0
\(769\) 30.4575 1.09833 0.549163 0.835715i \(-0.314947\pi\)
0.549163 + 0.835715i \(0.314947\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.58301 −0.308709 −0.154355 0.988016i \(-0.549330\pi\)
−0.154355 + 0.988016i \(0.549330\pi\)
\(774\) 0 0
\(775\) 10.7085 0.384661
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.58301 −0.307518
\(780\) 0 0
\(781\) 0.708497 0.0253520
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 43.2915 1.54514
\(786\) 0 0
\(787\) 34.4575 1.22828 0.614139 0.789198i \(-0.289503\pi\)
0.614139 + 0.789198i \(0.289503\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16.9373 −0.602219
\(792\) 0 0
\(793\) −10.8340 −0.384726
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.83399 −0.171229 −0.0856143 0.996328i \(-0.527285\pi\)
−0.0856143 + 0.996328i \(0.527285\pi\)
\(798\) 0 0
\(799\) −0.833990 −0.0295044
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.5830 −0.655780
\(804\) 0 0
\(805\) −21.8745 −0.770975
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39.7490 −1.39750 −0.698750 0.715365i \(-0.746260\pi\)
−0.698750 + 0.715365i \(0.746260\pi\)
\(810\) 0 0
\(811\) 50.3320 1.76740 0.883698 0.468057i \(-0.155046\pi\)
0.883698 + 0.468057i \(0.155046\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −45.8745 −1.60691
\(816\) 0 0
\(817\) −2.00000 −0.0699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.29150 0.114874 0.0574371 0.998349i \(-0.481707\pi\)
0.0574371 + 0.998349i \(0.481707\pi\)
\(822\) 0 0
\(823\) −4.58301 −0.159754 −0.0798768 0.996805i \(-0.525453\pi\)
−0.0798768 + 0.996805i \(0.525453\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −38.2288 −1.32934 −0.664672 0.747135i \(-0.731429\pi\)
−0.664672 + 0.747135i \(0.731429\pi\)
\(828\) 0 0
\(829\) −7.16601 −0.248886 −0.124443 0.992227i \(-0.539714\pi\)
−0.124443 + 0.992227i \(0.539714\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.354249 −0.0122740
\(834\) 0 0
\(835\) 55.7490 1.92927
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.41699 −0.325111 −0.162555 0.986699i \(-0.551974\pi\)
−0.162555 + 0.986699i \(0.551974\pi\)
\(840\) 0 0
\(841\) 2.87451 0.0991210
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.9373 0.376253
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −31.7490 −1.08834
\(852\) 0 0
\(853\) −31.4170 −1.07570 −0.537849 0.843041i \(-0.680763\pi\)
−0.537849 + 0.843041i \(0.680763\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49.7490 1.69939 0.849697 0.527271i \(-0.176785\pi\)
0.849697 + 0.527271i \(0.176785\pi\)
\(858\) 0 0
\(859\) −17.4170 −0.594260 −0.297130 0.954837i \(-0.596030\pi\)
−0.297130 + 0.954837i \(0.596030\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.2288 −0.348191 −0.174095 0.984729i \(-0.555700\pi\)
−0.174095 + 0.984729i \(0.555700\pi\)
\(864\) 0 0
\(865\) 51.0405 1.73543
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.5830 0.766076
\(870\) 0 0
\(871\) −58.3320 −1.97651
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) 12.5830 0.424898 0.212449 0.977172i \(-0.431856\pi\)
0.212449 + 0.977172i \(0.431856\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.4797 −0.487835 −0.243917 0.969796i \(-0.578433\pi\)
−0.243917 + 0.969796i \(0.578433\pi\)
\(882\) 0 0
\(883\) 41.1660 1.38535 0.692673 0.721252i \(-0.256433\pi\)
0.692673 + 0.721252i \(0.256433\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.12549 0.205674 0.102837 0.994698i \(-0.467208\pi\)
0.102837 + 0.994698i \(0.467208\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.35425 0.0787819
\(894\) 0 0
\(895\) 93.0405 3.11000
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.29150 0.243185
\(900\) 0 0
\(901\) 3.16601 0.105475
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 60.4575 2.00968
\(906\) 0 0
\(907\) −25.1660 −0.835624 −0.417812 0.908534i \(-0.637203\pi\)
−0.417812 + 0.908534i \(0.637203\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −18.9373 −0.627419 −0.313710 0.949519i \(-0.601572\pi\)
−0.313710 + 0.949519i \(0.601572\pi\)
\(912\) 0 0
\(913\) 33.8745 1.12108
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −16.9373 −0.559317
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.41699 −0.0466410
\(924\) 0 0
\(925\) 43.8745 1.44258
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 27.6458 0.907028 0.453514 0.891249i \(-0.350170\pi\)
0.453514 + 0.891249i \(0.350170\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.58301 −0.0844733
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.29150 0.172498 0.0862490 0.996274i \(-0.472512\pi\)
0.0862490 + 0.996274i \(0.472512\pi\)
\(942\) 0 0
\(943\) 51.4980 1.67701
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.00000 −0.194974 −0.0974869 0.995237i \(-0.531080\pi\)
−0.0974869 + 0.995237i \(0.531080\pi\)
\(948\) 0 0
\(949\) 37.1660 1.20646
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19.5203 −0.632323 −0.316162 0.948705i \(-0.602394\pi\)
−0.316162 + 0.948705i \(0.602394\pi\)
\(954\) 0 0
\(955\) 21.8745 0.707842
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.5830 0.729243
\(960\) 0 0
\(961\) −29.3320 −0.946194
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −92.2065 −2.96823
\(966\) 0 0
\(967\) 0.833990 0.0268193 0.0134096 0.999910i \(-0.495731\pi\)
0.0134096 + 0.999910i \(0.495731\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.41699 −0.173840 −0.0869198 0.996215i \(-0.527702\pi\)
−0.0869198 + 0.996215i \(0.527702\pi\)
\(972\) 0 0
\(973\) −0.708497 −0.0227134
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.39477 0.300565 0.150283 0.988643i \(-0.451982\pi\)
0.150283 + 0.988643i \(0.451982\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −42.5830 −1.35819 −0.679093 0.734052i \(-0.737627\pi\)
−0.679093 + 0.734052i \(0.737627\pi\)
\(984\) 0 0
\(985\) −19.7490 −0.629256
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.16601 0.163774
\(996\) 0 0
\(997\) −23.8745 −0.756113 −0.378057 0.925782i \(-0.623408\pi\)
−0.378057 + 0.925782i \(0.623408\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9576.2.a.bu.1.2 yes 2
3.2 odd 2 9576.2.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9576.2.a.bh.1.1 2 3.2 odd 2
9576.2.a.bu.1.2 yes 2 1.1 even 1 trivial