Properties

Label 9576.2.a.bd.1.1
Level $9576$
Weight $2$
Character 9576.1
Self dual yes
Analytic conductor $76.465$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9576,2,Mod(1,9576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9576.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9576 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.4647449756\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 9576.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{5} -1.00000 q^{7} +O(q^{10})\) \(q-2.00000 q^{5} -1.00000 q^{7} +2.00000 q^{11} -3.12311 q^{13} -3.12311 q^{17} -1.00000 q^{19} -7.12311 q^{23} -1.00000 q^{25} +9.12311 q^{29} -1.12311 q^{31} +2.00000 q^{35} -0.876894 q^{37} -8.24621 q^{41} +4.00000 q^{43} +1.00000 q^{49} +5.12311 q^{53} -4.00000 q^{55} +6.24621 q^{59} -2.00000 q^{61} +6.24621 q^{65} -14.2462 q^{67} -9.36932 q^{71} -10.0000 q^{73} -2.00000 q^{77} +13.1231 q^{79} -9.12311 q^{83} +6.24621 q^{85} -0.246211 q^{89} +3.12311 q^{91} +2.00000 q^{95} +8.24621 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{5} - 2 q^{7} + 4 q^{11} + 2 q^{13} + 2 q^{17} - 2 q^{19} - 6 q^{23} - 2 q^{25} + 10 q^{29} + 6 q^{31} + 4 q^{35} - 10 q^{37} + 8 q^{43} + 2 q^{49} + 2 q^{53} - 8 q^{55} - 4 q^{59} - 4 q^{61} - 4 q^{65} - 12 q^{67} + 6 q^{71} - 20 q^{73} - 4 q^{77} + 18 q^{79} - 10 q^{83} - 4 q^{85} + 16 q^{89} - 2 q^{91} + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −3.12311 −0.866194 −0.433097 0.901347i \(-0.642579\pi\)
−0.433097 + 0.901347i \(0.642579\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.12311 −0.757464 −0.378732 0.925506i \(-0.623640\pi\)
−0.378732 + 0.925506i \(0.623640\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.12311 −1.48527 −0.742635 0.669696i \(-0.766424\pi\)
−0.742635 + 0.669696i \(0.766424\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.12311 1.69412 0.847059 0.531499i \(-0.178371\pi\)
0.847059 + 0.531499i \(0.178371\pi\)
\(30\) 0 0
\(31\) −1.12311 −0.201716 −0.100858 0.994901i \(-0.532159\pi\)
−0.100858 + 0.994901i \(0.532159\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −0.876894 −0.144161 −0.0720803 0.997399i \(-0.522964\pi\)
−0.0720803 + 0.997399i \(0.522964\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.24621 −1.28784 −0.643921 0.765092i \(-0.722693\pi\)
−0.643921 + 0.765092i \(0.722693\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.12311 0.703713 0.351856 0.936054i \(-0.385551\pi\)
0.351856 + 0.936054i \(0.385551\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.24621 0.813187 0.406594 0.913609i \(-0.366716\pi\)
0.406594 + 0.913609i \(0.366716\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.24621 0.774747
\(66\) 0 0
\(67\) −14.2462 −1.74045 −0.870226 0.492653i \(-0.836027\pi\)
−0.870226 + 0.492653i \(0.836027\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.36932 −1.11193 −0.555967 0.831205i \(-0.687652\pi\)
−0.555967 + 0.831205i \(0.687652\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 13.1231 1.47646 0.738232 0.674546i \(-0.235661\pi\)
0.738232 + 0.674546i \(0.235661\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.12311 −1.00139 −0.500695 0.865624i \(-0.666922\pi\)
−0.500695 + 0.865624i \(0.666922\pi\)
\(84\) 0 0
\(85\) 6.24621 0.677497
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.246211 −0.0260983 −0.0130492 0.999915i \(-0.504154\pi\)
−0.0130492 + 0.999915i \(0.504154\pi\)
\(90\) 0 0
\(91\) 3.12311 0.327390
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 8.24621 0.837276 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) −17.1231 −1.68719 −0.843595 0.536980i \(-0.819565\pi\)
−0.843595 + 0.536980i \(0.819565\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.12311 0.301922 0.150961 0.988540i \(-0.451763\pi\)
0.150961 + 0.988540i \(0.451763\pi\)
\(108\) 0 0
\(109\) −0.876894 −0.0839912 −0.0419956 0.999118i \(-0.513372\pi\)
−0.0419956 + 0.999118i \(0.513372\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.12311 0.858230 0.429115 0.903250i \(-0.358826\pi\)
0.429115 + 0.903250i \(0.358826\pi\)
\(114\) 0 0
\(115\) 14.2462 1.32847
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.12311 0.286295
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 21.1231 1.87437 0.937186 0.348829i \(-0.113421\pi\)
0.937186 + 0.348829i \(0.113421\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 21.6155 1.88856 0.944279 0.329147i \(-0.106761\pi\)
0.944279 + 0.329147i \(0.106761\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.75379 −0.149836 −0.0749181 0.997190i \(-0.523870\pi\)
−0.0749181 + 0.997190i \(0.523870\pi\)
\(138\) 0 0
\(139\) −2.24621 −0.190521 −0.0952606 0.995452i \(-0.530368\pi\)
−0.0952606 + 0.995452i \(0.530368\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.24621 −0.522334
\(144\) 0 0
\(145\) −18.2462 −1.51527
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.1231 1.40278 0.701390 0.712778i \(-0.252563\pi\)
0.701390 + 0.712778i \(0.252563\pi\)
\(150\) 0 0
\(151\) 13.1231 1.06794 0.533972 0.845502i \(-0.320699\pi\)
0.533972 + 0.845502i \(0.320699\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.24621 0.180420
\(156\) 0 0
\(157\) −7.75379 −0.618820 −0.309410 0.950929i \(-0.600131\pi\)
−0.309410 + 0.950929i \(0.600131\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.12311 0.561379
\(162\) 0 0
\(163\) −24.4924 −1.91839 −0.959197 0.282738i \(-0.908757\pi\)
−0.959197 + 0.282738i \(0.908757\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.75379 0.135712 0.0678561 0.997695i \(-0.478384\pi\)
0.0678561 + 0.997695i \(0.478384\pi\)
\(168\) 0 0
\(169\) −3.24621 −0.249709
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.24621 −0.322833 −0.161417 0.986886i \(-0.551606\pi\)
−0.161417 + 0.986886i \(0.551606\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.3693 −0.999270 −0.499635 0.866236i \(-0.666532\pi\)
−0.499635 + 0.866236i \(0.666532\pi\)
\(180\) 0 0
\(181\) −5.36932 −0.399098 −0.199549 0.979888i \(-0.563948\pi\)
−0.199549 + 0.979888i \(0.563948\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.75379 0.128941
\(186\) 0 0
\(187\) −6.24621 −0.456768
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.36932 0.0990803 0.0495401 0.998772i \(-0.484224\pi\)
0.0495401 + 0.998772i \(0.484224\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.3693 1.94998 0.974992 0.222242i \(-0.0713375\pi\)
0.974992 + 0.222242i \(0.0713375\pi\)
\(198\) 0 0
\(199\) −5.75379 −0.407875 −0.203938 0.978984i \(-0.565374\pi\)
−0.203938 + 0.978984i \(0.565374\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.12311 −0.640316
\(204\) 0 0
\(205\) 16.4924 1.15188
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) 8.49242 0.584642 0.292321 0.956320i \(-0.405572\pi\)
0.292321 + 0.956320i \(0.405572\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 1.12311 0.0762414
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.75379 0.656111
\(222\) 0 0
\(223\) 15.3693 1.02921 0.514603 0.857429i \(-0.327939\pi\)
0.514603 + 0.857429i \(0.327939\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 14.2462 0.945554 0.472777 0.881182i \(-0.343252\pi\)
0.472777 + 0.881182i \(0.343252\pi\)
\(228\) 0 0
\(229\) −20.7386 −1.37045 −0.685224 0.728333i \(-0.740296\pi\)
−0.685224 + 0.728333i \(0.740296\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.2462 0.933300 0.466650 0.884442i \(-0.345461\pi\)
0.466650 + 0.884442i \(0.345461\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.87689 0.574199 0.287099 0.957901i \(-0.407309\pi\)
0.287099 + 0.957901i \(0.407309\pi\)
\(240\) 0 0
\(241\) 20.7386 1.33589 0.667946 0.744209i \(-0.267174\pi\)
0.667946 + 0.744209i \(0.267174\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 3.12311 0.198718
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.630683 0.0398084 0.0199042 0.999802i \(-0.493664\pi\)
0.0199042 + 0.999802i \(0.493664\pi\)
\(252\) 0 0
\(253\) −14.2462 −0.895652
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) 0.876894 0.0544876
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.6155 −0.716244 −0.358122 0.933675i \(-0.616583\pi\)
−0.358122 + 0.933675i \(0.616583\pi\)
\(264\) 0 0
\(265\) −10.2462 −0.629420
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.1231 1.26010 0.630049 0.776555i \(-0.283035\pi\)
0.630049 + 0.776555i \(0.283035\pi\)
\(282\) 0 0
\(283\) −8.49242 −0.504822 −0.252411 0.967620i \(-0.581224\pi\)
−0.252411 + 0.967620i \(0.581224\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.24621 0.486758
\(288\) 0 0
\(289\) −7.24621 −0.426248
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.2462 0.949114 0.474557 0.880225i \(-0.342608\pi\)
0.474557 + 0.880225i \(0.342608\pi\)
\(294\) 0 0
\(295\) −12.4924 −0.727337
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.2462 1.28653
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) 24.4924 1.39786 0.698928 0.715192i \(-0.253661\pi\)
0.698928 + 0.715192i \(0.253661\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.0000 0.907277 0.453638 0.891186i \(-0.350126\pi\)
0.453638 + 0.891186i \(0.350126\pi\)
\(312\) 0 0
\(313\) −30.9848 −1.75137 −0.875683 0.482886i \(-0.839589\pi\)
−0.875683 + 0.482886i \(0.839589\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.3693 −0.863227 −0.431613 0.902059i \(-0.642056\pi\)
−0.431613 + 0.902059i \(0.642056\pi\)
\(318\) 0 0
\(319\) 18.2462 1.02159
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.12311 0.173774
\(324\) 0 0
\(325\) 3.12311 0.173239
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 28.4924 1.55671
\(336\) 0 0
\(337\) −6.49242 −0.353665 −0.176832 0.984241i \(-0.556585\pi\)
−0.176832 + 0.984241i \(0.556585\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.24621 −0.121639
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.2462 1.30160 0.650802 0.759247i \(-0.274433\pi\)
0.650802 + 0.759247i \(0.274433\pi\)
\(348\) 0 0
\(349\) 3.75379 0.200936 0.100468 0.994940i \(-0.467966\pi\)
0.100468 + 0.994940i \(0.467966\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.63068 0.140017 0.0700086 0.997546i \(-0.477697\pi\)
0.0700086 + 0.997546i \(0.477697\pi\)
\(354\) 0 0
\(355\) 18.7386 0.994543
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.3693 0.916717 0.458359 0.888767i \(-0.348437\pi\)
0.458359 + 0.888767i \(0.348437\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 20.0000 1.04685
\(366\) 0 0
\(367\) −26.2462 −1.37004 −0.685021 0.728524i \(-0.740207\pi\)
−0.685021 + 0.728524i \(0.740207\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.12311 −0.265978
\(372\) 0 0
\(373\) −11.6155 −0.601429 −0.300715 0.953714i \(-0.597225\pi\)
−0.300715 + 0.953714i \(0.597225\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −28.4924 −1.46743
\(378\) 0 0
\(379\) −8.49242 −0.436226 −0.218113 0.975923i \(-0.569990\pi\)
−0.218113 + 0.975923i \(0.569990\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.0000 1.63512 0.817562 0.575841i \(-0.195325\pi\)
0.817562 + 0.575841i \(0.195325\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.87689 0.145864 0.0729322 0.997337i \(-0.476764\pi\)
0.0729322 + 0.997337i \(0.476764\pi\)
\(390\) 0 0
\(391\) 22.2462 1.12504
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −26.2462 −1.32059
\(396\) 0 0
\(397\) 20.7386 1.04084 0.520421 0.853910i \(-0.325775\pi\)
0.520421 + 0.853910i \(0.325775\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.61553 −0.0806756 −0.0403378 0.999186i \(-0.512843\pi\)
−0.0403378 + 0.999186i \(0.512843\pi\)
\(402\) 0 0
\(403\) 3.50758 0.174725
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.75379 −0.0869321
\(408\) 0 0
\(409\) −20.2462 −1.00111 −0.500555 0.865705i \(-0.666871\pi\)
−0.500555 + 0.865705i \(0.666871\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.24621 −0.307356
\(414\) 0 0
\(415\) 18.2462 0.895671
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −23.3693 −1.14167 −0.570833 0.821066i \(-0.693380\pi\)
−0.570833 + 0.821066i \(0.693380\pi\)
\(420\) 0 0
\(421\) 35.1231 1.71180 0.855898 0.517145i \(-0.173005\pi\)
0.855898 + 0.517145i \(0.173005\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.12311 0.151493
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 35.1231 1.69182 0.845910 0.533325i \(-0.179058\pi\)
0.845910 + 0.533325i \(0.179058\pi\)
\(432\) 0 0
\(433\) 24.7386 1.18886 0.594431 0.804146i \(-0.297377\pi\)
0.594431 + 0.804146i \(0.297377\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.12311 0.340744
\(438\) 0 0
\(439\) 39.3693 1.87899 0.939497 0.342556i \(-0.111293\pi\)
0.939497 + 0.342556i \(0.111293\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.24621 −0.201744 −0.100872 0.994899i \(-0.532163\pi\)
−0.100872 + 0.994899i \(0.532163\pi\)
\(444\) 0 0
\(445\) 0.492423 0.0233431
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.1231 −1.56318 −0.781588 0.623795i \(-0.785590\pi\)
−0.781588 + 0.623795i \(0.785590\pi\)
\(450\) 0 0
\(451\) −16.4924 −0.776598
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.24621 −0.292827
\(456\) 0 0
\(457\) 32.2462 1.50841 0.754207 0.656637i \(-0.228021\pi\)
0.754207 + 0.656637i \(0.228021\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −32.2462 −1.50186 −0.750928 0.660384i \(-0.770393\pi\)
−0.750928 + 0.660384i \(0.770393\pi\)
\(462\) 0 0
\(463\) 30.7386 1.42855 0.714273 0.699867i \(-0.246758\pi\)
0.714273 + 0.699867i \(0.246758\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.3693 −1.08140 −0.540702 0.841215i \(-0.681841\pi\)
−0.540702 + 0.841215i \(0.681841\pi\)
\(468\) 0 0
\(469\) 14.2462 0.657829
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.00000 0.367840
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 36.4924 1.66738 0.833691 0.552232i \(-0.186224\pi\)
0.833691 + 0.552232i \(0.186224\pi\)
\(480\) 0 0
\(481\) 2.73863 0.124871
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.4924 −0.748882
\(486\) 0 0
\(487\) 35.8617 1.62505 0.812525 0.582926i \(-0.198092\pi\)
0.812525 + 0.582926i \(0.198092\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.00000 −0.0902587 −0.0451294 0.998981i \(-0.514370\pi\)
−0.0451294 + 0.998981i \(0.514370\pi\)
\(492\) 0 0
\(493\) −28.4924 −1.28323
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.36932 0.420271
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.73863 0.387333 0.193667 0.981067i \(-0.437962\pi\)
0.193667 + 0.981067i \(0.437962\pi\)
\(510\) 0 0
\(511\) 10.0000 0.442374
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 34.2462 1.50907
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.4924 1.51114 0.755570 0.655068i \(-0.227360\pi\)
0.755570 + 0.655068i \(0.227360\pi\)
\(522\) 0 0
\(523\) 40.9848 1.79214 0.896071 0.443911i \(-0.146409\pi\)
0.896071 + 0.443911i \(0.146409\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.50758 0.152792
\(528\) 0 0
\(529\) 27.7386 1.20603
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.7538 1.11552
\(534\) 0 0
\(535\) −6.24621 −0.270047
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) −15.7538 −0.677308 −0.338654 0.940911i \(-0.609972\pi\)
−0.338654 + 0.940911i \(0.609972\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.75379 0.0751241
\(546\) 0 0
\(547\) −20.9848 −0.897247 −0.448624 0.893721i \(-0.648086\pi\)
−0.448624 + 0.893721i \(0.648086\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9.12311 −0.388657
\(552\) 0 0
\(553\) −13.1231 −0.558051
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −27.3693 −1.15968 −0.579838 0.814732i \(-0.696884\pi\)
−0.579838 + 0.814732i \(0.696884\pi\)
\(558\) 0 0
\(559\) −12.4924 −0.528373
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.49242 −0.357913 −0.178956 0.983857i \(-0.557272\pi\)
−0.178956 + 0.983857i \(0.557272\pi\)
\(564\) 0 0
\(565\) −18.2462 −0.767624
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 41.6155 1.74461 0.872307 0.488959i \(-0.162623\pi\)
0.872307 + 0.488959i \(0.162623\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.12311 0.297054
\(576\) 0 0
\(577\) −16.2462 −0.676339 −0.338169 0.941085i \(-0.609808\pi\)
−0.338169 + 0.941085i \(0.609808\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.12311 0.378490
\(582\) 0 0
\(583\) 10.2462 0.424355
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.36932 0.304164 0.152082 0.988368i \(-0.451402\pi\)
0.152082 + 0.988368i \(0.451402\pi\)
\(588\) 0 0
\(589\) 1.12311 0.0462768
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 29.8617 1.22627 0.613137 0.789976i \(-0.289907\pi\)
0.613137 + 0.789976i \(0.289907\pi\)
\(594\) 0 0
\(595\) −6.24621 −0.256070
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.6307 0.597794 0.298897 0.954285i \(-0.403381\pi\)
0.298897 + 0.954285i \(0.403381\pi\)
\(600\) 0 0
\(601\) 14.4924 0.591158 0.295579 0.955318i \(-0.404487\pi\)
0.295579 + 0.955318i \(0.404487\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.0000 0.569181
\(606\) 0 0
\(607\) 6.38447 0.259138 0.129569 0.991570i \(-0.458641\pi\)
0.129569 + 0.991570i \(0.458641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −24.7386 −0.999184 −0.499592 0.866261i \(-0.666517\pi\)
−0.499592 + 0.866261i \(0.666517\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.4924 1.30810 0.654048 0.756453i \(-0.273069\pi\)
0.654048 + 0.756453i \(0.273069\pi\)
\(618\) 0 0
\(619\) −5.75379 −0.231264 −0.115632 0.993292i \(-0.536889\pi\)
−0.115632 + 0.993292i \(0.536889\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.246211 0.00986425
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.73863 0.109196
\(630\) 0 0
\(631\) −5.75379 −0.229055 −0.114527 0.993420i \(-0.536535\pi\)
−0.114527 + 0.993420i \(0.536535\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −42.2462 −1.67649
\(636\) 0 0
\(637\) −3.12311 −0.123742
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −29.1231 −1.15029 −0.575147 0.818050i \(-0.695055\pi\)
−0.575147 + 0.818050i \(0.695055\pi\)
\(642\) 0 0
\(643\) −12.0000 −0.473234 −0.236617 0.971603i \(-0.576039\pi\)
−0.236617 + 0.971603i \(0.576039\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.2462 0.717333 0.358666 0.933466i \(-0.383232\pi\)
0.358666 + 0.933466i \(0.383232\pi\)
\(648\) 0 0
\(649\) 12.4924 0.490370
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.8617 0.464186 0.232093 0.972694i \(-0.425443\pi\)
0.232093 + 0.972694i \(0.425443\pi\)
\(654\) 0 0
\(655\) −43.2311 −1.68918
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13.8617 −0.539977 −0.269988 0.962864i \(-0.587020\pi\)
−0.269988 + 0.962864i \(0.587020\pi\)
\(660\) 0 0
\(661\) −35.6155 −1.38528 −0.692642 0.721282i \(-0.743553\pi\)
−0.692642 + 0.721282i \(0.743553\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) −64.9848 −2.51622
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) −46.4924 −1.79215 −0.896076 0.443901i \(-0.853594\pi\)
−0.896076 + 0.443901i \(0.853594\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20.2462 −0.778125 −0.389063 0.921211i \(-0.627201\pi\)
−0.389063 + 0.921211i \(0.627201\pi\)
\(678\) 0 0
\(679\) −8.24621 −0.316461
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.876894 −0.0335534 −0.0167767 0.999859i \(-0.505340\pi\)
−0.0167767 + 0.999859i \(0.505340\pi\)
\(684\) 0 0
\(685\) 3.50758 0.134018
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −16.0000 −0.609551
\(690\) 0 0
\(691\) −21.7538 −0.827553 −0.413777 0.910378i \(-0.635791\pi\)
−0.413777 + 0.910378i \(0.635791\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.49242 0.170407
\(696\) 0 0
\(697\) 25.7538 0.975494
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.6155 1.26964 0.634820 0.772660i \(-0.281074\pi\)
0.634820 + 0.772660i \(0.281074\pi\)
\(702\) 0 0
\(703\) 0.876894 0.0330727
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.0000 −0.376089
\(708\) 0 0
\(709\) 45.2311 1.69869 0.849344 0.527840i \(-0.176998\pi\)
0.849344 + 0.527840i \(0.176998\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 12.4924 0.467190
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.24621 −0.232944 −0.116472 0.993194i \(-0.537159\pi\)
−0.116472 + 0.993194i \(0.537159\pi\)
\(720\) 0 0
\(721\) 17.1231 0.637698
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.12311 −0.338824
\(726\) 0 0
\(727\) −10.7386 −0.398274 −0.199137 0.979972i \(-0.563814\pi\)
−0.199137 + 0.979972i \(0.563814\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.4924 −0.462049
\(732\) 0 0
\(733\) 6.49242 0.239803 0.119902 0.992786i \(-0.461742\pi\)
0.119902 + 0.992786i \(0.461742\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −28.4924 −1.04953
\(738\) 0 0
\(739\) 32.4924 1.19525 0.597627 0.801775i \(-0.296111\pi\)
0.597627 + 0.801775i \(0.296111\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.6307 0.830239 0.415120 0.909767i \(-0.363740\pi\)
0.415120 + 0.909767i \(0.363740\pi\)
\(744\) 0 0
\(745\) −34.2462 −1.25468
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.12311 −0.114116
\(750\) 0 0
\(751\) −7.36932 −0.268910 −0.134455 0.990920i \(-0.542928\pi\)
−0.134455 + 0.990920i \(0.542928\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −26.2462 −0.955197
\(756\) 0 0
\(757\) −26.4924 −0.962883 −0.481442 0.876478i \(-0.659887\pi\)
−0.481442 + 0.876478i \(0.659887\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.1231 0.983212 0.491606 0.870818i \(-0.336410\pi\)
0.491606 + 0.870818i \(0.336410\pi\)
\(762\) 0 0
\(763\) 0.876894 0.0317457
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −19.5076 −0.704378
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 42.4924 1.52835 0.764173 0.645011i \(-0.223147\pi\)
0.764173 + 0.645011i \(0.223147\pi\)
\(774\) 0 0
\(775\) 1.12311 0.0403431
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.24621 0.295451
\(780\) 0 0
\(781\) −18.7386 −0.670521
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.5076 0.553489
\(786\) 0 0
\(787\) −1.26137 −0.0449629 −0.0224814 0.999747i \(-0.507157\pi\)
−0.0224814 + 0.999747i \(0.507157\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.12311 −0.324380
\(792\) 0 0
\(793\) 6.24621 0.221809
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.9848 0.814165 0.407082 0.913391i \(-0.366546\pi\)
0.407082 + 0.913391i \(0.366546\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.0000 −0.705785
\(804\) 0 0
\(805\) −14.2462 −0.502113
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14.7386 0.518183 0.259091 0.965853i \(-0.416577\pi\)
0.259091 + 0.965853i \(0.416577\pi\)
\(810\) 0 0
\(811\) −46.7386 −1.64122 −0.820608 0.571492i \(-0.806365\pi\)
−0.820608 + 0.571492i \(0.806365\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 48.9848 1.71586
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −50.1080 −1.74878 −0.874390 0.485224i \(-0.838738\pi\)
−0.874390 + 0.485224i \(0.838738\pi\)
\(822\) 0 0
\(823\) −6.73863 −0.234894 −0.117447 0.993079i \(-0.537471\pi\)
−0.117447 + 0.993079i \(0.537471\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 49.8617 1.73386 0.866931 0.498428i \(-0.166089\pi\)
0.866931 + 0.498428i \(0.166089\pi\)
\(828\) 0 0
\(829\) 3.61553 0.125572 0.0627862 0.998027i \(-0.480001\pi\)
0.0627862 + 0.998027i \(0.480001\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.12311 −0.108209
\(834\) 0 0
\(835\) −3.50758 −0.121385
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.7386 0.923120 0.461560 0.887109i \(-0.347290\pi\)
0.461560 + 0.887109i \(0.347290\pi\)
\(840\) 0 0
\(841\) 54.2311 1.87004
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.49242 0.223346
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.24621 0.214117
\(852\) 0 0
\(853\) 6.00000 0.205436 0.102718 0.994711i \(-0.467246\pi\)
0.102718 + 0.994711i \(0.467246\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.7386 −0.435143 −0.217572 0.976044i \(-0.569814\pi\)
−0.217572 + 0.976044i \(0.569814\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.6155 −1.07621 −0.538103 0.842879i \(-0.680859\pi\)
−0.538103 + 0.842879i \(0.680859\pi\)
\(864\) 0 0
\(865\) 8.49242 0.288751
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 26.2462 0.890342
\(870\) 0 0
\(871\) 44.4924 1.50757
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) −19.6155 −0.662369 −0.331185 0.943566i \(-0.607448\pi\)
−0.331185 + 0.943566i \(0.607448\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −24.8769 −0.838124 −0.419062 0.907958i \(-0.637641\pi\)
−0.419062 + 0.907958i \(0.637641\pi\)
\(882\) 0 0
\(883\) 52.9848 1.78308 0.891541 0.452940i \(-0.149625\pi\)
0.891541 + 0.452940i \(0.149625\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.75379 −0.327500 −0.163750 0.986502i \(-0.552359\pi\)
−0.163750 + 0.986502i \(0.552359\pi\)
\(888\) 0 0
\(889\) −21.1231 −0.708446
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 26.7386 0.893774
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.2462 −0.341730
\(900\) 0 0
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.7386 0.356964
\(906\) 0 0
\(907\) −6.24621 −0.207402 −0.103701 0.994609i \(-0.533069\pi\)
−0.103701 + 0.994609i \(0.533069\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.13826 0.0708437 0.0354219 0.999372i \(-0.488723\pi\)
0.0354219 + 0.999372i \(0.488723\pi\)
\(912\) 0 0
\(913\) −18.2462 −0.603861
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −21.6155 −0.713808
\(918\) 0 0
\(919\) −5.75379 −0.189800 −0.0949000 0.995487i \(-0.530253\pi\)
−0.0949000 + 0.995487i \(0.530253\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 29.2614 0.963150
\(924\) 0 0
\(925\) 0.876894 0.0288321
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.38447 0.143850 0.0719249 0.997410i \(-0.477086\pi\)
0.0719249 + 0.997410i \(0.477086\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.4924 0.408546
\(936\) 0 0
\(937\) −60.7386 −1.98424 −0.992122 0.125273i \(-0.960019\pi\)
−0.992122 + 0.125273i \(0.960019\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −49.2311 −1.60489 −0.802443 0.596728i \(-0.796467\pi\)
−0.802443 + 0.596728i \(0.796467\pi\)
\(942\) 0 0
\(943\) 58.7386 1.91279
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.7386 1.06386 0.531931 0.846787i \(-0.321466\pi\)
0.531931 + 0.846787i \(0.321466\pi\)
\(948\) 0 0
\(949\) 31.2311 1.01380
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −42.1080 −1.36401 −0.682005 0.731347i \(-0.738892\pi\)
−0.682005 + 0.731347i \(0.738892\pi\)
\(954\) 0 0
\(955\) −2.73863 −0.0886201
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.75379 0.0566328
\(960\) 0 0
\(961\) −29.7386 −0.959311
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.00000 0.128765
\(966\) 0 0
\(967\) 24.0000 0.771788 0.385894 0.922543i \(-0.373893\pi\)
0.385894 + 0.922543i \(0.373893\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.4924 −0.657633 −0.328817 0.944394i \(-0.606650\pi\)
−0.328817 + 0.944394i \(0.606650\pi\)
\(972\) 0 0
\(973\) 2.24621 0.0720102
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17.6155 −0.563571 −0.281785 0.959477i \(-0.590927\pi\)
−0.281785 + 0.959477i \(0.590927\pi\)
\(978\) 0 0
\(979\) −0.492423 −0.0157379
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.00000 −0.255160 −0.127580 0.991828i \(-0.540721\pi\)
−0.127580 + 0.991828i \(0.540721\pi\)
\(984\) 0 0
\(985\) −54.7386 −1.74412
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −28.4924 −0.906006
\(990\) 0 0
\(991\) −15.3693 −0.488222 −0.244111 0.969747i \(-0.578496\pi\)
−0.244111 + 0.969747i \(0.578496\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.5076 0.364815
\(996\) 0 0
\(997\) −28.2462 −0.894566 −0.447283 0.894392i \(-0.647608\pi\)
−0.447283 + 0.894392i \(0.647608\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9576.2.a.bd.1.1 2
3.2 odd 2 9576.2.a.bx.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9576.2.a.bd.1.1 2 1.1 even 1 trivial
9576.2.a.bx.1.1 yes 2 3.2 odd 2