# Properties

 Label 9555.2.a.u Level $9555$ Weight $2$ Character orbit 9555.a Self dual yes Analytic conductor $76.297$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [9555,2,Mod(1,9555)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(9555, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("9555.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$9555 = 3 \cdot 5 \cdot 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9555.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$76.2970591313$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 195) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 2 q^{2} - q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + q^{9}+O(q^{10})$$ q + 2 * q^2 - q^3 + 2 * q^4 + q^5 - 2 * q^6 + q^9 $$q + 2 q^{2} - q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + q^{9} + 2 q^{10} + 5 q^{11} - 2 q^{12} + q^{13} - q^{15} - 4 q^{16} + 7 q^{17} + 2 q^{18} + 6 q^{19} + 2 q^{20} + 10 q^{22} + 3 q^{23} + q^{25} + 2 q^{26} - q^{27} + 2 q^{29} - 2 q^{30} - 2 q^{31} - 8 q^{32} - 5 q^{33} + 14 q^{34} + 2 q^{36} + 7 q^{37} + 12 q^{38} - q^{39} - 9 q^{41} - 8 q^{43} + 10 q^{44} + q^{45} + 6 q^{46} - 10 q^{47} + 4 q^{48} + 2 q^{50} - 7 q^{51} + 2 q^{52} + 5 q^{53} - 2 q^{54} + 5 q^{55} - 6 q^{57} + 4 q^{58} - 2 q^{60} - 5 q^{61} - 4 q^{62} - 8 q^{64} + q^{65} - 10 q^{66} - 4 q^{67} + 14 q^{68} - 3 q^{69} + 9 q^{71} + 6 q^{73} + 14 q^{74} - q^{75} + 12 q^{76} - 2 q^{78} - 3 q^{79} - 4 q^{80} + q^{81} - 18 q^{82} + 4 q^{83} + 7 q^{85} - 16 q^{86} - 2 q^{87} - 11 q^{89} + 2 q^{90} + 6 q^{92} + 2 q^{93} - 20 q^{94} + 6 q^{95} + 8 q^{96} + 11 q^{97} + 5 q^{99}+O(q^{100})$$ q + 2 * q^2 - q^3 + 2 * q^4 + q^5 - 2 * q^6 + q^9 + 2 * q^10 + 5 * q^11 - 2 * q^12 + q^13 - q^15 - 4 * q^16 + 7 * q^17 + 2 * q^18 + 6 * q^19 + 2 * q^20 + 10 * q^22 + 3 * q^23 + q^25 + 2 * q^26 - q^27 + 2 * q^29 - 2 * q^30 - 2 * q^31 - 8 * q^32 - 5 * q^33 + 14 * q^34 + 2 * q^36 + 7 * q^37 + 12 * q^38 - q^39 - 9 * q^41 - 8 * q^43 + 10 * q^44 + q^45 + 6 * q^46 - 10 * q^47 + 4 * q^48 + 2 * q^50 - 7 * q^51 + 2 * q^52 + 5 * q^53 - 2 * q^54 + 5 * q^55 - 6 * q^57 + 4 * q^58 - 2 * q^60 - 5 * q^61 - 4 * q^62 - 8 * q^64 + q^65 - 10 * q^66 - 4 * q^67 + 14 * q^68 - 3 * q^69 + 9 * q^71 + 6 * q^73 + 14 * q^74 - q^75 + 12 * q^76 - 2 * q^78 - 3 * q^79 - 4 * q^80 + q^81 - 18 * q^82 + 4 * q^83 + 7 * q^85 - 16 * q^86 - 2 * q^87 - 11 * q^89 + 2 * q^90 + 6 * q^92 + 2 * q^93 - 20 * q^94 + 6 * q^95 + 8 * q^96 + 11 * q^97 + 5 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
2.00000 −1.00000 2.00000 1.00000 −2.00000 0 0 1.00000 2.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$1$$
$$5$$ $$-1$$
$$7$$ $$-1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9555.2.a.u 1
7.b odd 2 1 195.2.a.c 1
21.c even 2 1 585.2.a.c 1
28.d even 2 1 3120.2.a.d 1
35.c odd 2 1 975.2.a.a 1
35.f even 4 2 975.2.c.c 2
84.h odd 2 1 9360.2.a.bv 1
91.b odd 2 1 2535.2.a.d 1
105.g even 2 1 2925.2.a.s 1
105.k odd 4 2 2925.2.c.a 2
273.g even 2 1 7605.2.a.t 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.a.c 1 7.b odd 2 1
585.2.a.c 1 21.c even 2 1
975.2.a.a 1 35.c odd 2 1
975.2.c.c 2 35.f even 4 2
2535.2.a.d 1 91.b odd 2 1
2925.2.a.s 1 105.g even 2 1
2925.2.c.a 2 105.k odd 4 2
3120.2.a.d 1 28.d even 2 1
7605.2.a.t 1 273.g even 2 1
9360.2.a.bv 1 84.h odd 2 1
9555.2.a.u 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(9555))$$:

 $$T_{2} - 2$$ T2 - 2 $$T_{11} - 5$$ T11 - 5 $$T_{17} - 7$$ T17 - 7 $$T_{19} - 6$$ T19 - 6 $$T_{23} - 3$$ T23 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 2$$
$3$ $$T + 1$$
$5$ $$T - 1$$
$7$ $$T$$
$11$ $$T - 5$$
$13$ $$T - 1$$
$17$ $$T - 7$$
$19$ $$T - 6$$
$23$ $$T - 3$$
$29$ $$T - 2$$
$31$ $$T + 2$$
$37$ $$T - 7$$
$41$ $$T + 9$$
$43$ $$T + 8$$
$47$ $$T + 10$$
$53$ $$T - 5$$
$59$ $$T$$
$61$ $$T + 5$$
$67$ $$T + 4$$
$71$ $$T - 9$$
$73$ $$T - 6$$
$79$ $$T + 3$$
$83$ $$T - 4$$
$89$ $$T + 11$$
$97$ $$T - 11$$