Properties

Label 9537.2
Level 9537
Weight 2
Dimension 2431746
Nonzero newspaces 40
Sturm bound 13317120

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9537 = 3 \cdot 11 \cdot 17^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(13317120\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(9537))\).

Total New Old
Modular forms 3345280 2445014 900266
Cusp forms 3313281 2431746 881535
Eisenstein series 31999 13268 18731

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(9537))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9537.2.a \(\chi_{9537}(1, \cdot)\) 9537.2.a.a 1 1
9537.2.a.b 1
9537.2.a.c 1
9537.2.a.d 1
9537.2.a.e 1
9537.2.a.f 1
9537.2.a.g 1
9537.2.a.h 1
9537.2.a.i 1
9537.2.a.j 1
9537.2.a.k 1
9537.2.a.l 1
9537.2.a.m 1
9537.2.a.n 2
9537.2.a.o 2
9537.2.a.p 2
9537.2.a.q 2
9537.2.a.r 2
9537.2.a.s 2
9537.2.a.t 2
9537.2.a.u 2
9537.2.a.v 3
9537.2.a.w 3
9537.2.a.x 3
9537.2.a.y 4
9537.2.a.z 5
9537.2.a.ba 5
9537.2.a.bb 5
9537.2.a.bc 5
9537.2.a.bd 6
9537.2.a.be 6
9537.2.a.bf 6
9537.2.a.bg 6
9537.2.a.bh 6
9537.2.a.bi 6
9537.2.a.bj 6
9537.2.a.bk 6
9537.2.a.bl 6
9537.2.a.bm 8
9537.2.a.bn 8
9537.2.a.bo 10
9537.2.a.bp 10
9537.2.a.bq 14
9537.2.a.br 14
9537.2.a.bs 15
9537.2.a.bt 15
9537.2.a.bu 18
9537.2.a.bv 18
9537.2.a.bw 18
9537.2.a.bx 18
9537.2.a.by 21
9537.2.a.bz 21
9537.2.a.ca 28
9537.2.a.cb 28
9537.2.a.cc 36
9537.2.a.cd 36
9537.2.f \(\chi_{9537}(7226, \cdot)\) n/a 1054 1
9537.2.g \(\chi_{9537}(2311, \cdot)\) n/a 452 1
9537.2.h \(\chi_{9537}(9536, \cdot)\) n/a 1052 1
9537.2.i \(\chi_{9537}(2639, \cdot)\) n/a 2104 2
9537.2.j \(\chi_{9537}(4951, \cdot)\) n/a 904 2
9537.2.m \(\chi_{9537}(3469, \cdot)\) n/a 2168 4
9537.2.o \(\chi_{9537}(3334, \cdot)\) n/a 1792 4
9537.2.q \(\chi_{9537}(1022, \cdot)\) n/a 4208 4
9537.2.r \(\chi_{9537}(866, \cdot)\) n/a 4208 4
9537.2.s \(\chi_{9537}(577, \cdot)\) n/a 2160 4
9537.2.t \(\chi_{9537}(1157, \cdot)\) n/a 4216 4
9537.2.y \(\chi_{9537}(538, \cdot)\) n/a 4320 8
9537.2.z \(\chi_{9537}(6029, \cdot)\) n/a 7200 8
9537.2.bc \(\chi_{9537}(562, \cdot)\) n/a 8128 16
9537.2.bf \(\chi_{9537}(829, \cdot)\) n/a 4320 8
9537.2.bg \(\chi_{9537}(1118, \cdot)\) n/a 8416 8
9537.2.bh \(\chi_{9537}(560, \cdot)\) n/a 19520 16
9537.2.bi \(\chi_{9537}(67, \cdot)\) n/a 8128 16
9537.2.bj \(\chi_{9537}(494, \cdot)\) n/a 19520 16
9537.2.bo \(\chi_{9537}(134, \cdot)\) n/a 16832 16
9537.2.bq \(\chi_{9537}(757, \cdot)\) n/a 8640 16
9537.2.bu \(\chi_{9537}(166, \cdot)\) n/a 16256 32
9537.2.bv \(\chi_{9537}(98, \cdot)\) n/a 39040 32
9537.2.by \(\chi_{9537}(158, \cdot)\) n/a 33664 32
9537.2.bz \(\chi_{9537}(40, \cdot)\) n/a 17280 32
9537.2.ca \(\chi_{9537}(103, \cdot)\) n/a 39168 64
9537.2.cb \(\chi_{9537}(32, \cdot)\) n/a 78080 64
9537.2.cd \(\chi_{9537}(100, \cdot)\) n/a 32768 64
9537.2.cj \(\chi_{9537}(35, \cdot)\) n/a 78080 64
9537.2.ck \(\chi_{9537}(16, \cdot)\) n/a 39168 64
9537.2.cl \(\chi_{9537}(50, \cdot)\) n/a 78080 64
9537.2.co \(\chi_{9537}(23, \cdot)\) n/a 130560 128
9537.2.cp \(\chi_{9537}(10, \cdot)\) n/a 78336 128
9537.2.cq \(\chi_{9537}(140, \cdot)\) n/a 156160 128
9537.2.cr \(\chi_{9537}(4, \cdot)\) n/a 78336 128
9537.2.cv \(\chi_{9537}(25, \cdot)\) n/a 156672 256
9537.2.cx \(\chi_{9537}(2, \cdot)\) n/a 312320 256
9537.2.cy \(\chi_{9537}(7, \cdot)\) n/a 313344 512
9537.2.cz \(\chi_{9537}(5, \cdot)\) n/a 624640 512

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(9537))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(9537)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(187))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(289))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(561))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(867))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3179))\)\(^{\oplus 2}\)