Properties

Label 9522.2.a.ca.1.5
Level $9522$
Weight $2$
Character 9522.1
Self dual yes
Analytic conductor $76.034$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9522,2,Mod(1,9522)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9522.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9522, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9522 = 2 \cdot 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9522.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,5,0,5,11,0,1,5,0,11,11,0,10,1,0,5,11,0,1,11,0,11,0,0,30,10, 0,1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.0335528047\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 138)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.830830\) of defining polynomial
Character \(\chi\) \(=\) 9522.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +4.42518 q^{5} -3.31686 q^{7} +1.00000 q^{8} +4.42518 q^{10} +2.02085 q^{11} +3.02509 q^{13} -3.31686 q^{14} +1.00000 q^{16} -3.00752 q^{17} +7.15484 q^{19} +4.42518 q^{20} +2.02085 q^{22} +14.5822 q^{25} +3.02509 q^{26} -3.31686 q^{28} -1.52483 q^{29} -5.78205 q^{31} +1.00000 q^{32} -3.00752 q^{34} -14.6777 q^{35} +1.84815 q^{37} +7.15484 q^{38} +4.42518 q^{40} +1.06389 q^{41} +1.88965 q^{43} +2.02085 q^{44} +0.748608 q^{47} +4.00158 q^{49} +14.5822 q^{50} +3.02509 q^{52} +12.7722 q^{53} +8.94261 q^{55} -3.31686 q^{56} -1.52483 q^{58} -1.79797 q^{59} -3.90918 q^{61} -5.78205 q^{62} +1.00000 q^{64} +13.3866 q^{65} +3.70249 q^{67} -3.00752 q^{68} -14.6777 q^{70} +4.00069 q^{71} -5.40077 q^{73} +1.84815 q^{74} +7.15484 q^{76} -6.70287 q^{77} -7.86224 q^{79} +4.42518 q^{80} +1.06389 q^{82} -4.03434 q^{83} -13.3088 q^{85} +1.88965 q^{86} +2.02085 q^{88} -5.59734 q^{89} -10.0338 q^{91} +0.748608 q^{94} +31.6614 q^{95} -13.2254 q^{97} +4.00158 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 5 q^{4} + 11 q^{5} + q^{7} + 5 q^{8} + 11 q^{10} + 11 q^{11} + 10 q^{13} + q^{14} + 5 q^{16} + 11 q^{17} + q^{19} + 11 q^{20} + 11 q^{22} + 30 q^{25} + 10 q^{26} + q^{28} - 3 q^{29}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 4.42518 1.97900 0.989501 0.144529i \(-0.0461666\pi\)
0.989501 + 0.144529i \(0.0461666\pi\)
\(6\) 0 0
\(7\) −3.31686 −1.25366 −0.626828 0.779157i \(-0.715647\pi\)
−0.626828 + 0.779157i \(0.715647\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 4.42518 1.39937
\(11\) 2.02085 0.609308 0.304654 0.952463i \(-0.401459\pi\)
0.304654 + 0.952463i \(0.401459\pi\)
\(12\) 0 0
\(13\) 3.02509 0.839010 0.419505 0.907753i \(-0.362204\pi\)
0.419505 + 0.907753i \(0.362204\pi\)
\(14\) −3.31686 −0.886469
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.00752 −0.729430 −0.364715 0.931119i \(-0.618834\pi\)
−0.364715 + 0.931119i \(0.618834\pi\)
\(18\) 0 0
\(19\) 7.15484 1.64143 0.820716 0.571337i \(-0.193575\pi\)
0.820716 + 0.571337i \(0.193575\pi\)
\(20\) 4.42518 0.989501
\(21\) 0 0
\(22\) 2.02085 0.430846
\(23\) 0 0
\(24\) 0 0
\(25\) 14.5822 2.91645
\(26\) 3.02509 0.593269
\(27\) 0 0
\(28\) −3.31686 −0.626828
\(29\) −1.52483 −0.283154 −0.141577 0.989927i \(-0.545217\pi\)
−0.141577 + 0.989927i \(0.545217\pi\)
\(30\) 0 0
\(31\) −5.78205 −1.03849 −0.519243 0.854626i \(-0.673786\pi\)
−0.519243 + 0.854626i \(0.673786\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.00752 −0.515785
\(35\) −14.6777 −2.48099
\(36\) 0 0
\(37\) 1.84815 0.303834 0.151917 0.988393i \(-0.451455\pi\)
0.151917 + 0.988393i \(0.451455\pi\)
\(38\) 7.15484 1.16067
\(39\) 0 0
\(40\) 4.42518 0.699683
\(41\) 1.06389 0.166152 0.0830758 0.996543i \(-0.473526\pi\)
0.0830758 + 0.996543i \(0.473526\pi\)
\(42\) 0 0
\(43\) 1.88965 0.288169 0.144084 0.989565i \(-0.453976\pi\)
0.144084 + 0.989565i \(0.453976\pi\)
\(44\) 2.02085 0.304654
\(45\) 0 0
\(46\) 0 0
\(47\) 0.748608 0.109196 0.0545978 0.998508i \(-0.482612\pi\)
0.0545978 + 0.998508i \(0.482612\pi\)
\(48\) 0 0
\(49\) 4.00158 0.571655
\(50\) 14.5822 2.06224
\(51\) 0 0
\(52\) 3.02509 0.419505
\(53\) 12.7722 1.75440 0.877201 0.480123i \(-0.159408\pi\)
0.877201 + 0.480123i \(0.159408\pi\)
\(54\) 0 0
\(55\) 8.94261 1.20582
\(56\) −3.31686 −0.443235
\(57\) 0 0
\(58\) −1.52483 −0.200220
\(59\) −1.79797 −0.234075 −0.117038 0.993127i \(-0.537340\pi\)
−0.117038 + 0.993127i \(0.537340\pi\)
\(60\) 0 0
\(61\) −3.90918 −0.500519 −0.250260 0.968179i \(-0.580516\pi\)
−0.250260 + 0.968179i \(0.580516\pi\)
\(62\) −5.78205 −0.734321
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 13.3866 1.66040
\(66\) 0 0
\(67\) 3.70249 0.452331 0.226166 0.974089i \(-0.427381\pi\)
0.226166 + 0.974089i \(0.427381\pi\)
\(68\) −3.00752 −0.364715
\(69\) 0 0
\(70\) −14.6777 −1.75432
\(71\) 4.00069 0.474794 0.237397 0.971413i \(-0.423706\pi\)
0.237397 + 0.971413i \(0.423706\pi\)
\(72\) 0 0
\(73\) −5.40077 −0.632113 −0.316056 0.948740i \(-0.602359\pi\)
−0.316056 + 0.948740i \(0.602359\pi\)
\(74\) 1.84815 0.214843
\(75\) 0 0
\(76\) 7.15484 0.820716
\(77\) −6.70287 −0.763863
\(78\) 0 0
\(79\) −7.86224 −0.884571 −0.442286 0.896874i \(-0.645832\pi\)
−0.442286 + 0.896874i \(0.645832\pi\)
\(80\) 4.42518 0.494750
\(81\) 0 0
\(82\) 1.06389 0.117487
\(83\) −4.03434 −0.442826 −0.221413 0.975180i \(-0.571067\pi\)
−0.221413 + 0.975180i \(0.571067\pi\)
\(84\) 0 0
\(85\) −13.3088 −1.44354
\(86\) 1.88965 0.203766
\(87\) 0 0
\(88\) 2.02085 0.215423
\(89\) −5.59734 −0.593317 −0.296658 0.954984i \(-0.595872\pi\)
−0.296658 + 0.954984i \(0.595872\pi\)
\(90\) 0 0
\(91\) −10.0338 −1.05183
\(92\) 0 0
\(93\) 0 0
\(94\) 0.748608 0.0772130
\(95\) 31.6614 3.24840
\(96\) 0 0
\(97\) −13.2254 −1.34283 −0.671417 0.741080i \(-0.734314\pi\)
−0.671417 + 0.741080i \(0.734314\pi\)
\(98\) 4.00158 0.404221
\(99\) 0 0
\(100\) 14.5822 1.45822
\(101\) 12.7657 1.27023 0.635116 0.772416i \(-0.280952\pi\)
0.635116 + 0.772416i \(0.280952\pi\)
\(102\) 0 0
\(103\) 1.98374 0.195464 0.0977318 0.995213i \(-0.468841\pi\)
0.0977318 + 0.995213i \(0.468841\pi\)
\(104\) 3.02509 0.296635
\(105\) 0 0
\(106\) 12.7722 1.24055
\(107\) −6.19856 −0.599238 −0.299619 0.954059i \(-0.596859\pi\)
−0.299619 + 0.954059i \(0.596859\pi\)
\(108\) 0 0
\(109\) 6.05725 0.580179 0.290090 0.956999i \(-0.406315\pi\)
0.290090 + 0.956999i \(0.406315\pi\)
\(110\) 8.94261 0.852645
\(111\) 0 0
\(112\) −3.31686 −0.313414
\(113\) −3.36712 −0.316752 −0.158376 0.987379i \(-0.550626\pi\)
−0.158376 + 0.987379i \(0.550626\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.52483 −0.141577
\(117\) 0 0
\(118\) −1.79797 −0.165516
\(119\) 9.97552 0.914454
\(120\) 0 0
\(121\) −6.91618 −0.628743
\(122\) −3.90918 −0.353921
\(123\) 0 0
\(124\) −5.78205 −0.519243
\(125\) 42.4031 3.79265
\(126\) 0 0
\(127\) 10.5994 0.940545 0.470273 0.882521i \(-0.344156\pi\)
0.470273 + 0.882521i \(0.344156\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 13.3866 1.17408
\(131\) 5.96669 0.521312 0.260656 0.965432i \(-0.416061\pi\)
0.260656 + 0.965432i \(0.416061\pi\)
\(132\) 0 0
\(133\) −23.7316 −2.05779
\(134\) 3.70249 0.319846
\(135\) 0 0
\(136\) −3.00752 −0.257892
\(137\) 10.3203 0.881721 0.440861 0.897576i \(-0.354673\pi\)
0.440861 + 0.897576i \(0.354673\pi\)
\(138\) 0 0
\(139\) −13.4382 −1.13982 −0.569908 0.821709i \(-0.693021\pi\)
−0.569908 + 0.821709i \(0.693021\pi\)
\(140\) −14.6777 −1.24049
\(141\) 0 0
\(142\) 4.00069 0.335730
\(143\) 6.11325 0.511215
\(144\) 0 0
\(145\) −6.74765 −0.560362
\(146\) −5.40077 −0.446971
\(147\) 0 0
\(148\) 1.84815 0.151917
\(149\) 20.8450 1.70769 0.853844 0.520528i \(-0.174265\pi\)
0.853844 + 0.520528i \(0.174265\pi\)
\(150\) 0 0
\(151\) −8.70135 −0.708106 −0.354053 0.935225i \(-0.615197\pi\)
−0.354053 + 0.935225i \(0.615197\pi\)
\(152\) 7.15484 0.580334
\(153\) 0 0
\(154\) −6.70287 −0.540133
\(155\) −25.5866 −2.05517
\(156\) 0 0
\(157\) 22.6874 1.81065 0.905327 0.424716i \(-0.139626\pi\)
0.905327 + 0.424716i \(0.139626\pi\)
\(158\) −7.86224 −0.625486
\(159\) 0 0
\(160\) 4.42518 0.349841
\(161\) 0 0
\(162\) 0 0
\(163\) −7.06329 −0.553240 −0.276620 0.960979i \(-0.589214\pi\)
−0.276620 + 0.960979i \(0.589214\pi\)
\(164\) 1.06389 0.0830758
\(165\) 0 0
\(166\) −4.03434 −0.313125
\(167\) −4.71519 −0.364872 −0.182436 0.983218i \(-0.558398\pi\)
−0.182436 + 0.983218i \(0.558398\pi\)
\(168\) 0 0
\(169\) −3.84882 −0.296063
\(170\) −13.3088 −1.02074
\(171\) 0 0
\(172\) 1.88965 0.144084
\(173\) 13.4700 1.02411 0.512053 0.858954i \(-0.328885\pi\)
0.512053 + 0.858954i \(0.328885\pi\)
\(174\) 0 0
\(175\) −48.3673 −3.65622
\(176\) 2.02085 0.152327
\(177\) 0 0
\(178\) −5.59734 −0.419538
\(179\) −18.3384 −1.37068 −0.685338 0.728225i \(-0.740346\pi\)
−0.685338 + 0.728225i \(0.740346\pi\)
\(180\) 0 0
\(181\) 19.7867 1.47074 0.735368 0.677668i \(-0.237009\pi\)
0.735368 + 0.677668i \(0.237009\pi\)
\(182\) −10.0338 −0.743756
\(183\) 0 0
\(184\) 0 0
\(185\) 8.17840 0.601288
\(186\) 0 0
\(187\) −6.07773 −0.444448
\(188\) 0.748608 0.0545978
\(189\) 0 0
\(190\) 31.6614 2.29696
\(191\) −17.1492 −1.24087 −0.620437 0.784256i \(-0.713045\pi\)
−0.620437 + 0.784256i \(0.713045\pi\)
\(192\) 0 0
\(193\) −12.6863 −0.913178 −0.456589 0.889678i \(-0.650929\pi\)
−0.456589 + 0.889678i \(0.650929\pi\)
\(194\) −13.2254 −0.949527
\(195\) 0 0
\(196\) 4.00158 0.285827
\(197\) 4.96665 0.353859 0.176929 0.984224i \(-0.443384\pi\)
0.176929 + 0.984224i \(0.443384\pi\)
\(198\) 0 0
\(199\) 4.13451 0.293088 0.146544 0.989204i \(-0.453185\pi\)
0.146544 + 0.989204i \(0.453185\pi\)
\(200\) 14.5822 1.03112
\(201\) 0 0
\(202\) 12.7657 0.898190
\(203\) 5.05765 0.354978
\(204\) 0 0
\(205\) 4.70790 0.328814
\(206\) 1.98374 0.138214
\(207\) 0 0
\(208\) 3.02509 0.209752
\(209\) 14.4588 1.00014
\(210\) 0 0
\(211\) −3.98791 −0.274539 −0.137269 0.990534i \(-0.543833\pi\)
−0.137269 + 0.990534i \(0.543833\pi\)
\(212\) 12.7722 0.877201
\(213\) 0 0
\(214\) −6.19856 −0.423725
\(215\) 8.36204 0.570286
\(216\) 0 0
\(217\) 19.1783 1.30191
\(218\) 6.05725 0.410249
\(219\) 0 0
\(220\) 8.94261 0.602911
\(221\) −9.09801 −0.611999
\(222\) 0 0
\(223\) −1.62025 −0.108500 −0.0542500 0.998527i \(-0.517277\pi\)
−0.0542500 + 0.998527i \(0.517277\pi\)
\(224\) −3.31686 −0.221617
\(225\) 0 0
\(226\) −3.36712 −0.223977
\(227\) 22.7548 1.51029 0.755143 0.655560i \(-0.227567\pi\)
0.755143 + 0.655560i \(0.227567\pi\)
\(228\) 0 0
\(229\) 3.35007 0.221379 0.110689 0.993855i \(-0.464694\pi\)
0.110689 + 0.993855i \(0.464694\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.52483 −0.100110
\(233\) −19.5046 −1.27779 −0.638895 0.769294i \(-0.720608\pi\)
−0.638895 + 0.769294i \(0.720608\pi\)
\(234\) 0 0
\(235\) 3.31273 0.216098
\(236\) −1.79797 −0.117038
\(237\) 0 0
\(238\) 9.97552 0.646617
\(239\) −15.0600 −0.974153 −0.487076 0.873359i \(-0.661937\pi\)
−0.487076 + 0.873359i \(0.661937\pi\)
\(240\) 0 0
\(241\) 19.7786 1.27405 0.637024 0.770844i \(-0.280165\pi\)
0.637024 + 0.770844i \(0.280165\pi\)
\(242\) −6.91618 −0.444589
\(243\) 0 0
\(244\) −3.90918 −0.250260
\(245\) 17.7077 1.13131
\(246\) 0 0
\(247\) 21.6440 1.37718
\(248\) −5.78205 −0.367161
\(249\) 0 0
\(250\) 42.4031 2.68181
\(251\) 28.0277 1.76909 0.884547 0.466451i \(-0.154468\pi\)
0.884547 + 0.466451i \(0.154468\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 10.5994 0.665066
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.57881 −0.347996 −0.173998 0.984746i \(-0.555669\pi\)
−0.173998 + 0.984746i \(0.555669\pi\)
\(258\) 0 0
\(259\) −6.13006 −0.380904
\(260\) 13.3866 0.830200
\(261\) 0 0
\(262\) 5.96669 0.368623
\(263\) −12.4571 −0.768136 −0.384068 0.923305i \(-0.625477\pi\)
−0.384068 + 0.923305i \(0.625477\pi\)
\(264\) 0 0
\(265\) 56.5195 3.47197
\(266\) −23.7316 −1.45508
\(267\) 0 0
\(268\) 3.70249 0.226166
\(269\) −13.2204 −0.806064 −0.403032 0.915186i \(-0.632044\pi\)
−0.403032 + 0.915186i \(0.632044\pi\)
\(270\) 0 0
\(271\) −25.1967 −1.53059 −0.765294 0.643681i \(-0.777406\pi\)
−0.765294 + 0.643681i \(0.777406\pi\)
\(272\) −3.00752 −0.182357
\(273\) 0 0
\(274\) 10.3203 0.623471
\(275\) 29.4685 1.77701
\(276\) 0 0
\(277\) 23.9555 1.43934 0.719672 0.694314i \(-0.244292\pi\)
0.719672 + 0.694314i \(0.244292\pi\)
\(278\) −13.4382 −0.805971
\(279\) 0 0
\(280\) −14.6777 −0.877162
\(281\) 23.3815 1.39482 0.697412 0.716670i \(-0.254335\pi\)
0.697412 + 0.716670i \(0.254335\pi\)
\(282\) 0 0
\(283\) 15.2174 0.904583 0.452292 0.891870i \(-0.350607\pi\)
0.452292 + 0.891870i \(0.350607\pi\)
\(284\) 4.00069 0.237397
\(285\) 0 0
\(286\) 6.11325 0.361484
\(287\) −3.52877 −0.208297
\(288\) 0 0
\(289\) −7.95485 −0.467932
\(290\) −6.74765 −0.396236
\(291\) 0 0
\(292\) −5.40077 −0.316056
\(293\) 5.62259 0.328475 0.164237 0.986421i \(-0.447484\pi\)
0.164237 + 0.986421i \(0.447484\pi\)
\(294\) 0 0
\(295\) −7.95633 −0.463235
\(296\) 1.84815 0.107422
\(297\) 0 0
\(298\) 20.8450 1.20752
\(299\) 0 0
\(300\) 0 0
\(301\) −6.26771 −0.361265
\(302\) −8.70135 −0.500707
\(303\) 0 0
\(304\) 7.15484 0.410358
\(305\) −17.2988 −0.990529
\(306\) 0 0
\(307\) 2.53280 0.144554 0.0722772 0.997385i \(-0.476973\pi\)
0.0722772 + 0.997385i \(0.476973\pi\)
\(308\) −6.70287 −0.381932
\(309\) 0 0
\(310\) −25.5866 −1.45322
\(311\) 12.3489 0.700241 0.350120 0.936705i \(-0.386141\pi\)
0.350120 + 0.936705i \(0.386141\pi\)
\(312\) 0 0
\(313\) 8.90037 0.503078 0.251539 0.967847i \(-0.419063\pi\)
0.251539 + 0.967847i \(0.419063\pi\)
\(314\) 22.6874 1.28033
\(315\) 0 0
\(316\) −7.86224 −0.442286
\(317\) −7.04733 −0.395818 −0.197909 0.980220i \(-0.563415\pi\)
−0.197909 + 0.980220i \(0.563415\pi\)
\(318\) 0 0
\(319\) −3.08145 −0.172528
\(320\) 4.42518 0.247375
\(321\) 0 0
\(322\) 0 0
\(323\) −21.5183 −1.19731
\(324\) 0 0
\(325\) 44.1126 2.44693
\(326\) −7.06329 −0.391200
\(327\) 0 0
\(328\) 1.06389 0.0587434
\(329\) −2.48303 −0.136894
\(330\) 0 0
\(331\) 33.7157 1.85318 0.926592 0.376068i \(-0.122724\pi\)
0.926592 + 0.376068i \(0.122724\pi\)
\(332\) −4.03434 −0.221413
\(333\) 0 0
\(334\) −4.71519 −0.258004
\(335\) 16.3842 0.895164
\(336\) 0 0
\(337\) −22.3614 −1.21810 −0.609052 0.793130i \(-0.708450\pi\)
−0.609052 + 0.793130i \(0.708450\pi\)
\(338\) −3.84882 −0.209348
\(339\) 0 0
\(340\) −13.3088 −0.721771
\(341\) −11.6846 −0.632759
\(342\) 0 0
\(343\) 9.94534 0.536998
\(344\) 1.88965 0.101883
\(345\) 0 0
\(346\) 13.4700 0.724152
\(347\) 21.1909 1.13759 0.568793 0.822481i \(-0.307411\pi\)
0.568793 + 0.822481i \(0.307411\pi\)
\(348\) 0 0
\(349\) −33.2345 −1.77900 −0.889500 0.456936i \(-0.848947\pi\)
−0.889500 + 0.456936i \(0.848947\pi\)
\(350\) −48.3673 −2.58534
\(351\) 0 0
\(352\) 2.02085 0.107712
\(353\) −6.43611 −0.342559 −0.171280 0.985222i \(-0.554790\pi\)
−0.171280 + 0.985222i \(0.554790\pi\)
\(354\) 0 0
\(355\) 17.7038 0.939618
\(356\) −5.59734 −0.296658
\(357\) 0 0
\(358\) −18.3384 −0.969215
\(359\) −5.24896 −0.277029 −0.138515 0.990360i \(-0.544233\pi\)
−0.138515 + 0.990360i \(0.544233\pi\)
\(360\) 0 0
\(361\) 32.1917 1.69430
\(362\) 19.7867 1.03997
\(363\) 0 0
\(364\) −10.0338 −0.525915
\(365\) −23.8994 −1.25095
\(366\) 0 0
\(367\) −3.12177 −0.162955 −0.0814775 0.996675i \(-0.525964\pi\)
−0.0814775 + 0.996675i \(0.525964\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 8.17840 0.425175
\(371\) −42.3638 −2.19942
\(372\) 0 0
\(373\) −30.8738 −1.59858 −0.799292 0.600943i \(-0.794792\pi\)
−0.799292 + 0.600943i \(0.794792\pi\)
\(374\) −6.07773 −0.314272
\(375\) 0 0
\(376\) 0.748608 0.0386065
\(377\) −4.61275 −0.237569
\(378\) 0 0
\(379\) −35.5941 −1.82835 −0.914173 0.405324i \(-0.867159\pi\)
−0.914173 + 0.405324i \(0.867159\pi\)
\(380\) 31.6614 1.62420
\(381\) 0 0
\(382\) −17.1492 −0.877430
\(383\) 22.4350 1.14638 0.573189 0.819424i \(-0.305706\pi\)
0.573189 + 0.819424i \(0.305706\pi\)
\(384\) 0 0
\(385\) −29.6614 −1.51169
\(386\) −12.6863 −0.645714
\(387\) 0 0
\(388\) −13.2254 −0.671417
\(389\) 13.7277 0.696023 0.348012 0.937490i \(-0.386857\pi\)
0.348012 + 0.937490i \(0.386857\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 4.00158 0.202110
\(393\) 0 0
\(394\) 4.96665 0.250216
\(395\) −34.7918 −1.75057
\(396\) 0 0
\(397\) −17.5006 −0.878332 −0.439166 0.898406i \(-0.644726\pi\)
−0.439166 + 0.898406i \(0.644726\pi\)
\(398\) 4.13451 0.207244
\(399\) 0 0
\(400\) 14.5822 0.729111
\(401\) 11.9524 0.596875 0.298438 0.954429i \(-0.403535\pi\)
0.298438 + 0.954429i \(0.403535\pi\)
\(402\) 0 0
\(403\) −17.4912 −0.871300
\(404\) 12.7657 0.635116
\(405\) 0 0
\(406\) 5.05765 0.251007
\(407\) 3.73483 0.185129
\(408\) 0 0
\(409\) −5.25400 −0.259794 −0.129897 0.991528i \(-0.541465\pi\)
−0.129897 + 0.991528i \(0.541465\pi\)
\(410\) 4.70790 0.232507
\(411\) 0 0
\(412\) 1.98374 0.0977318
\(413\) 5.96361 0.293450
\(414\) 0 0
\(415\) −17.8527 −0.876354
\(416\) 3.02509 0.148317
\(417\) 0 0
\(418\) 14.4588 0.707204
\(419\) 4.77675 0.233359 0.116680 0.993170i \(-0.462775\pi\)
0.116680 + 0.993170i \(0.462775\pi\)
\(420\) 0 0
\(421\) −27.6947 −1.34976 −0.674880 0.737928i \(-0.735804\pi\)
−0.674880 + 0.737928i \(0.735804\pi\)
\(422\) −3.98791 −0.194128
\(423\) 0 0
\(424\) 12.7722 0.620275
\(425\) −43.8563 −2.12734
\(426\) 0 0
\(427\) 12.9662 0.627479
\(428\) −6.19856 −0.299619
\(429\) 0 0
\(430\) 8.36204 0.403253
\(431\) 1.52326 0.0733729 0.0366864 0.999327i \(-0.488320\pi\)
0.0366864 + 0.999327i \(0.488320\pi\)
\(432\) 0 0
\(433\) −28.3747 −1.36360 −0.681800 0.731539i \(-0.738803\pi\)
−0.681800 + 0.731539i \(0.738803\pi\)
\(434\) 19.1783 0.920586
\(435\) 0 0
\(436\) 6.05725 0.290090
\(437\) 0 0
\(438\) 0 0
\(439\) −24.9684 −1.19168 −0.595839 0.803104i \(-0.703180\pi\)
−0.595839 + 0.803104i \(0.703180\pi\)
\(440\) 8.94261 0.426322
\(441\) 0 0
\(442\) −9.09801 −0.432748
\(443\) 18.2215 0.865728 0.432864 0.901459i \(-0.357503\pi\)
0.432864 + 0.901459i \(0.357503\pi\)
\(444\) 0 0
\(445\) −24.7692 −1.17417
\(446\) −1.62025 −0.0767211
\(447\) 0 0
\(448\) −3.31686 −0.156707
\(449\) 9.60417 0.453249 0.226624 0.973982i \(-0.427231\pi\)
0.226624 + 0.973982i \(0.427231\pi\)
\(450\) 0 0
\(451\) 2.14996 0.101237
\(452\) −3.36712 −0.158376
\(453\) 0 0
\(454\) 22.7548 1.06793
\(455\) −44.4015 −2.08157
\(456\) 0 0
\(457\) −18.0768 −0.845597 −0.422798 0.906224i \(-0.638952\pi\)
−0.422798 + 0.906224i \(0.638952\pi\)
\(458\) 3.35007 0.156538
\(459\) 0 0
\(460\) 0 0
\(461\) −4.37457 −0.203744 −0.101872 0.994798i \(-0.532483\pi\)
−0.101872 + 0.994798i \(0.532483\pi\)
\(462\) 0 0
\(463\) −11.6481 −0.541333 −0.270667 0.962673i \(-0.587244\pi\)
−0.270667 + 0.962673i \(0.587244\pi\)
\(464\) −1.52483 −0.0707885
\(465\) 0 0
\(466\) −19.5046 −0.903534
\(467\) −15.4915 −0.716860 −0.358430 0.933557i \(-0.616688\pi\)
−0.358430 + 0.933557i \(0.616688\pi\)
\(468\) 0 0
\(469\) −12.2807 −0.567068
\(470\) 3.31273 0.152805
\(471\) 0 0
\(472\) −1.79797 −0.0827581
\(473\) 3.81869 0.175584
\(474\) 0 0
\(475\) 104.333 4.78715
\(476\) 9.97552 0.457227
\(477\) 0 0
\(478\) −15.0600 −0.688830
\(479\) −9.31270 −0.425508 −0.212754 0.977106i \(-0.568243\pi\)
−0.212754 + 0.977106i \(0.568243\pi\)
\(480\) 0 0
\(481\) 5.59082 0.254920
\(482\) 19.7786 0.900889
\(483\) 0 0
\(484\) −6.91618 −0.314372
\(485\) −58.5247 −2.65747
\(486\) 0 0
\(487\) 11.0014 0.498523 0.249261 0.968436i \(-0.419812\pi\)
0.249261 + 0.968436i \(0.419812\pi\)
\(488\) −3.90918 −0.176960
\(489\) 0 0
\(490\) 17.7077 0.799954
\(491\) 31.6556 1.42860 0.714299 0.699840i \(-0.246746\pi\)
0.714299 + 0.699840i \(0.246746\pi\)
\(492\) 0 0
\(493\) 4.58595 0.206541
\(494\) 21.6440 0.973811
\(495\) 0 0
\(496\) −5.78205 −0.259622
\(497\) −13.2697 −0.595229
\(498\) 0 0
\(499\) −16.3698 −0.732813 −0.366406 0.930455i \(-0.619412\pi\)
−0.366406 + 0.930455i \(0.619412\pi\)
\(500\) 42.4031 1.89632
\(501\) 0 0
\(502\) 28.0277 1.25094
\(503\) −19.2404 −0.857886 −0.428943 0.903331i \(-0.641114\pi\)
−0.428943 + 0.903331i \(0.641114\pi\)
\(504\) 0 0
\(505\) 56.4905 2.51379
\(506\) 0 0
\(507\) 0 0
\(508\) 10.5994 0.470273
\(509\) 12.1389 0.538046 0.269023 0.963134i \(-0.413299\pi\)
0.269023 + 0.963134i \(0.413299\pi\)
\(510\) 0 0
\(511\) 17.9136 0.792452
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −5.57881 −0.246071
\(515\) 8.77840 0.386823
\(516\) 0 0
\(517\) 1.51282 0.0665338
\(518\) −6.13006 −0.269339
\(519\) 0 0
\(520\) 13.3866 0.587040
\(521\) −6.80323 −0.298055 −0.149027 0.988833i \(-0.547614\pi\)
−0.149027 + 0.988833i \(0.547614\pi\)
\(522\) 0 0
\(523\) −30.6583 −1.34060 −0.670298 0.742092i \(-0.733834\pi\)
−0.670298 + 0.742092i \(0.733834\pi\)
\(524\) 5.96669 0.260656
\(525\) 0 0
\(526\) −12.4571 −0.543155
\(527\) 17.3896 0.757503
\(528\) 0 0
\(529\) 0 0
\(530\) 56.5195 2.45505
\(531\) 0 0
\(532\) −23.7316 −1.02890
\(533\) 3.21836 0.139403
\(534\) 0 0
\(535\) −27.4298 −1.18589
\(536\) 3.70249 0.159923
\(537\) 0 0
\(538\) −13.2204 −0.569973
\(539\) 8.08659 0.348314
\(540\) 0 0
\(541\) −5.12829 −0.220482 −0.110241 0.993905i \(-0.535162\pi\)
−0.110241 + 0.993905i \(0.535162\pi\)
\(542\) −25.1967 −1.08229
\(543\) 0 0
\(544\) −3.00752 −0.128946
\(545\) 26.8044 1.14818
\(546\) 0 0
\(547\) −40.2374 −1.72043 −0.860214 0.509933i \(-0.829670\pi\)
−0.860214 + 0.509933i \(0.829670\pi\)
\(548\) 10.3203 0.440861
\(549\) 0 0
\(550\) 29.4685 1.25654
\(551\) −10.9099 −0.464778
\(552\) 0 0
\(553\) 26.0780 1.10895
\(554\) 23.9555 1.01777
\(555\) 0 0
\(556\) −13.4382 −0.569908
\(557\) −30.7873 −1.30450 −0.652249 0.758004i \(-0.726175\pi\)
−0.652249 + 0.758004i \(0.726175\pi\)
\(558\) 0 0
\(559\) 5.71636 0.241776
\(560\) −14.6777 −0.620247
\(561\) 0 0
\(562\) 23.3815 0.986290
\(563\) −26.3809 −1.11182 −0.555912 0.831241i \(-0.687631\pi\)
−0.555912 + 0.831241i \(0.687631\pi\)
\(564\) 0 0
\(565\) −14.9001 −0.626853
\(566\) 15.2174 0.639637
\(567\) 0 0
\(568\) 4.00069 0.167865
\(569\) 28.9473 1.21353 0.606766 0.794880i \(-0.292466\pi\)
0.606766 + 0.794880i \(0.292466\pi\)
\(570\) 0 0
\(571\) −16.0061 −0.669833 −0.334917 0.942248i \(-0.608708\pi\)
−0.334917 + 0.942248i \(0.608708\pi\)
\(572\) 6.11325 0.255608
\(573\) 0 0
\(574\) −3.52877 −0.147288
\(575\) 0 0
\(576\) 0 0
\(577\) 18.4542 0.768260 0.384130 0.923279i \(-0.374501\pi\)
0.384130 + 0.923279i \(0.374501\pi\)
\(578\) −7.95485 −0.330878
\(579\) 0 0
\(580\) −6.74765 −0.280181
\(581\) 13.3814 0.555152
\(582\) 0 0
\(583\) 25.8108 1.06897
\(584\) −5.40077 −0.223486
\(585\) 0 0
\(586\) 5.62259 0.232267
\(587\) 15.6808 0.647217 0.323609 0.946191i \(-0.395104\pi\)
0.323609 + 0.946191i \(0.395104\pi\)
\(588\) 0 0
\(589\) −41.3696 −1.70461
\(590\) −7.95633 −0.327557
\(591\) 0 0
\(592\) 1.84815 0.0759585
\(593\) −4.78133 −0.196346 −0.0981729 0.995169i \(-0.531300\pi\)
−0.0981729 + 0.995169i \(0.531300\pi\)
\(594\) 0 0
\(595\) 44.1435 1.80971
\(596\) 20.8450 0.853844
\(597\) 0 0
\(598\) 0 0
\(599\) −25.8095 −1.05455 −0.527273 0.849696i \(-0.676786\pi\)
−0.527273 + 0.849696i \(0.676786\pi\)
\(600\) 0 0
\(601\) 9.94049 0.405481 0.202741 0.979232i \(-0.435015\pi\)
0.202741 + 0.979232i \(0.435015\pi\)
\(602\) −6.26771 −0.255453
\(603\) 0 0
\(604\) −8.70135 −0.354053
\(605\) −30.6053 −1.24428
\(606\) 0 0
\(607\) −39.8420 −1.61714 −0.808569 0.588402i \(-0.799757\pi\)
−0.808569 + 0.588402i \(0.799757\pi\)
\(608\) 7.15484 0.290167
\(609\) 0 0
\(610\) −17.2988 −0.700409
\(611\) 2.26461 0.0916162
\(612\) 0 0
\(613\) 33.9706 1.37206 0.686031 0.727573i \(-0.259352\pi\)
0.686031 + 0.727573i \(0.259352\pi\)
\(614\) 2.53280 0.102215
\(615\) 0 0
\(616\) −6.70287 −0.270066
\(617\) 16.6267 0.669365 0.334682 0.942331i \(-0.391371\pi\)
0.334682 + 0.942331i \(0.391371\pi\)
\(618\) 0 0
\(619\) −17.1181 −0.688033 −0.344017 0.938964i \(-0.611788\pi\)
−0.344017 + 0.938964i \(0.611788\pi\)
\(620\) −25.5866 −1.02758
\(621\) 0 0
\(622\) 12.3489 0.495145
\(623\) 18.5656 0.743815
\(624\) 0 0
\(625\) 114.730 4.58921
\(626\) 8.90037 0.355730
\(627\) 0 0
\(628\) 22.6874 0.905327
\(629\) −5.55834 −0.221626
\(630\) 0 0
\(631\) −24.2818 −0.966645 −0.483322 0.875442i \(-0.660570\pi\)
−0.483322 + 0.875442i \(0.660570\pi\)
\(632\) −7.86224 −0.312743
\(633\) 0 0
\(634\) −7.04733 −0.279885
\(635\) 46.9043 1.86134
\(636\) 0 0
\(637\) 12.1052 0.479624
\(638\) −3.08145 −0.121996
\(639\) 0 0
\(640\) 4.42518 0.174921
\(641\) 48.1244 1.90080 0.950399 0.311033i \(-0.100675\pi\)
0.950399 + 0.311033i \(0.100675\pi\)
\(642\) 0 0
\(643\) 26.9065 1.06109 0.530545 0.847657i \(-0.321987\pi\)
0.530545 + 0.847657i \(0.321987\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −21.5183 −0.846625
\(647\) −26.7555 −1.05187 −0.525934 0.850525i \(-0.676284\pi\)
−0.525934 + 0.850525i \(0.676284\pi\)
\(648\) 0 0
\(649\) −3.63342 −0.142624
\(650\) 44.1126 1.73024
\(651\) 0 0
\(652\) −7.06329 −0.276620
\(653\) 46.7047 1.82770 0.913848 0.406055i \(-0.133096\pi\)
0.913848 + 0.406055i \(0.133096\pi\)
\(654\) 0 0
\(655\) 26.4037 1.03168
\(656\) 1.06389 0.0415379
\(657\) 0 0
\(658\) −2.48303 −0.0967986
\(659\) 3.52871 0.137459 0.0687296 0.997635i \(-0.478105\pi\)
0.0687296 + 0.997635i \(0.478105\pi\)
\(660\) 0 0
\(661\) 18.7448 0.729090 0.364545 0.931186i \(-0.381225\pi\)
0.364545 + 0.931186i \(0.381225\pi\)
\(662\) 33.7157 1.31040
\(663\) 0 0
\(664\) −4.03434 −0.156563
\(665\) −105.017 −4.07237
\(666\) 0 0
\(667\) 0 0
\(668\) −4.71519 −0.182436
\(669\) 0 0
\(670\) 16.3842 0.632976
\(671\) −7.89986 −0.304971
\(672\) 0 0
\(673\) 5.07479 0.195619 0.0978094 0.995205i \(-0.468816\pi\)
0.0978094 + 0.995205i \(0.468816\pi\)
\(674\) −22.3614 −0.861330
\(675\) 0 0
\(676\) −3.84882 −0.148032
\(677\) 32.6832 1.25612 0.628059 0.778166i \(-0.283850\pi\)
0.628059 + 0.778166i \(0.283850\pi\)
\(678\) 0 0
\(679\) 43.8668 1.68345
\(680\) −13.3088 −0.510369
\(681\) 0 0
\(682\) −11.6846 −0.447428
\(683\) −49.2763 −1.88551 −0.942754 0.333490i \(-0.891774\pi\)
−0.942754 + 0.333490i \(0.891774\pi\)
\(684\) 0 0
\(685\) 45.6691 1.74493
\(686\) 9.94534 0.379715
\(687\) 0 0
\(688\) 1.88965 0.0720422
\(689\) 38.6372 1.47196
\(690\) 0 0
\(691\) −36.7082 −1.39645 −0.698223 0.715880i \(-0.746026\pi\)
−0.698223 + 0.715880i \(0.746026\pi\)
\(692\) 13.4700 0.512053
\(693\) 0 0
\(694\) 21.1909 0.804395
\(695\) −59.4666 −2.25570
\(696\) 0 0
\(697\) −3.19966 −0.121196
\(698\) −33.2345 −1.25794
\(699\) 0 0
\(700\) −48.3673 −1.82811
\(701\) −3.19304 −0.120599 −0.0602997 0.998180i \(-0.519206\pi\)
−0.0602997 + 0.998180i \(0.519206\pi\)
\(702\) 0 0
\(703\) 13.2232 0.498723
\(704\) 2.02085 0.0761635
\(705\) 0 0
\(706\) −6.43611 −0.242226
\(707\) −42.3420 −1.59244
\(708\) 0 0
\(709\) 6.24454 0.234519 0.117259 0.993101i \(-0.462589\pi\)
0.117259 + 0.993101i \(0.462589\pi\)
\(710\) 17.7038 0.664410
\(711\) 0 0
\(712\) −5.59734 −0.209769
\(713\) 0 0
\(714\) 0 0
\(715\) 27.0522 1.01170
\(716\) −18.3384 −0.685338
\(717\) 0 0
\(718\) −5.24896 −0.195889
\(719\) −36.8046 −1.37258 −0.686289 0.727329i \(-0.740762\pi\)
−0.686289 + 0.727329i \(0.740762\pi\)
\(720\) 0 0
\(721\) −6.57979 −0.245044
\(722\) 32.1917 1.19805
\(723\) 0 0
\(724\) 19.7867 0.735368
\(725\) −22.2354 −0.825803
\(726\) 0 0
\(727\) 37.1423 1.37753 0.688765 0.724985i \(-0.258153\pi\)
0.688765 + 0.724985i \(0.258153\pi\)
\(728\) −10.0338 −0.371878
\(729\) 0 0
\(730\) −23.8994 −0.884557
\(731\) −5.68315 −0.210199
\(732\) 0 0
\(733\) −21.1315 −0.780508 −0.390254 0.920707i \(-0.627613\pi\)
−0.390254 + 0.920707i \(0.627613\pi\)
\(734\) −3.12177 −0.115227
\(735\) 0 0
\(736\) 0 0
\(737\) 7.48217 0.275609
\(738\) 0 0
\(739\) −15.6691 −0.576396 −0.288198 0.957571i \(-0.593056\pi\)
−0.288198 + 0.957571i \(0.593056\pi\)
\(740\) 8.17840 0.300644
\(741\) 0 0
\(742\) −42.3638 −1.55522
\(743\) −0.814882 −0.0298951 −0.0149476 0.999888i \(-0.504758\pi\)
−0.0149476 + 0.999888i \(0.504758\pi\)
\(744\) 0 0
\(745\) 92.2429 3.37952
\(746\) −30.8738 −1.13037
\(747\) 0 0
\(748\) −6.07773 −0.222224
\(749\) 20.5598 0.751238
\(750\) 0 0
\(751\) 25.2171 0.920184 0.460092 0.887871i \(-0.347816\pi\)
0.460092 + 0.887871i \(0.347816\pi\)
\(752\) 0.748608 0.0272989
\(753\) 0 0
\(754\) −4.61275 −0.167987
\(755\) −38.5051 −1.40134
\(756\) 0 0
\(757\) −30.6339 −1.11341 −0.556704 0.830711i \(-0.687934\pi\)
−0.556704 + 0.830711i \(0.687934\pi\)
\(758\) −35.5941 −1.29284
\(759\) 0 0
\(760\) 31.6614 1.14848
\(761\) 16.2342 0.588488 0.294244 0.955730i \(-0.404932\pi\)
0.294244 + 0.955730i \(0.404932\pi\)
\(762\) 0 0
\(763\) −20.0911 −0.727345
\(764\) −17.1492 −0.620437
\(765\) 0 0
\(766\) 22.4350 0.810611
\(767\) −5.43901 −0.196391
\(768\) 0 0
\(769\) 35.7963 1.29085 0.645423 0.763825i \(-0.276681\pi\)
0.645423 + 0.763825i \(0.276681\pi\)
\(770\) −29.6614 −1.06892
\(771\) 0 0
\(772\) −12.6863 −0.456589
\(773\) −46.3148 −1.66583 −0.832913 0.553403i \(-0.813329\pi\)
−0.832913 + 0.553403i \(0.813329\pi\)
\(774\) 0 0
\(775\) −84.3152 −3.02869
\(776\) −13.2254 −0.474763
\(777\) 0 0
\(778\) 13.7277 0.492163
\(779\) 7.61195 0.272726
\(780\) 0 0
\(781\) 8.08477 0.289296
\(782\) 0 0
\(783\) 0 0
\(784\) 4.00158 0.142914
\(785\) 100.396 3.58328
\(786\) 0 0
\(787\) −0.264656 −0.00943397 −0.00471698 0.999989i \(-0.501501\pi\)
−0.00471698 + 0.999989i \(0.501501\pi\)
\(788\) 4.96665 0.176929
\(789\) 0 0
\(790\) −34.7918 −1.23784
\(791\) 11.1683 0.397098
\(792\) 0 0
\(793\) −11.8256 −0.419941
\(794\) −17.5006 −0.621074
\(795\) 0 0
\(796\) 4.13451 0.146544
\(797\) −18.3016 −0.648276 −0.324138 0.946010i \(-0.605074\pi\)
−0.324138 + 0.946010i \(0.605074\pi\)
\(798\) 0 0
\(799\) −2.25145 −0.0796506
\(800\) 14.5822 0.515560
\(801\) 0 0
\(802\) 11.9524 0.422055
\(803\) −10.9141 −0.385152
\(804\) 0 0
\(805\) 0 0
\(806\) −17.4912 −0.616102
\(807\) 0 0
\(808\) 12.7657 0.449095
\(809\) −9.92873 −0.349075 −0.174538 0.984650i \(-0.555843\pi\)
−0.174538 + 0.984650i \(0.555843\pi\)
\(810\) 0 0
\(811\) −19.6936 −0.691535 −0.345767 0.938320i \(-0.612381\pi\)
−0.345767 + 0.938320i \(0.612381\pi\)
\(812\) 5.05765 0.177489
\(813\) 0 0
\(814\) 3.73483 0.130906
\(815\) −31.2563 −1.09486
\(816\) 0 0
\(817\) 13.5201 0.473009
\(818\) −5.25400 −0.183702
\(819\) 0 0
\(820\) 4.70790 0.164407
\(821\) −41.2626 −1.44008 −0.720038 0.693935i \(-0.755875\pi\)
−0.720038 + 0.693935i \(0.755875\pi\)
\(822\) 0 0
\(823\) 29.7378 1.03659 0.518297 0.855201i \(-0.326566\pi\)
0.518297 + 0.855201i \(0.326566\pi\)
\(824\) 1.98374 0.0691068
\(825\) 0 0
\(826\) 5.96361 0.207501
\(827\) −39.0877 −1.35921 −0.679606 0.733577i \(-0.737849\pi\)
−0.679606 + 0.733577i \(0.737849\pi\)
\(828\) 0 0
\(829\) −49.3414 −1.71370 −0.856849 0.515568i \(-0.827581\pi\)
−0.856849 + 0.515568i \(0.827581\pi\)
\(830\) −17.8527 −0.619676
\(831\) 0 0
\(832\) 3.02509 0.104876
\(833\) −12.0348 −0.416982
\(834\) 0 0
\(835\) −20.8656 −0.722083
\(836\) 14.4588 0.500069
\(837\) 0 0
\(838\) 4.77675 0.165010
\(839\) 0.0380549 0.00131380 0.000656901 1.00000i \(-0.499791\pi\)
0.000656901 1.00000i \(0.499791\pi\)
\(840\) 0 0
\(841\) −26.6749 −0.919824
\(842\) −27.6947 −0.954424
\(843\) 0 0
\(844\) −3.98791 −0.137269
\(845\) −17.0317 −0.585909
\(846\) 0 0
\(847\) 22.9400 0.788228
\(848\) 12.7722 0.438601
\(849\) 0 0
\(850\) −43.8563 −1.50426
\(851\) 0 0
\(852\) 0 0
\(853\) 2.35009 0.0804655 0.0402328 0.999190i \(-0.487190\pi\)
0.0402328 + 0.999190i \(0.487190\pi\)
\(854\) 12.9662 0.443695
\(855\) 0 0
\(856\) −6.19856 −0.211862
\(857\) −8.89113 −0.303715 −0.151858 0.988402i \(-0.548525\pi\)
−0.151858 + 0.988402i \(0.548525\pi\)
\(858\) 0 0
\(859\) 26.2380 0.895228 0.447614 0.894227i \(-0.352274\pi\)
0.447614 + 0.894227i \(0.352274\pi\)
\(860\) 8.36204 0.285143
\(861\) 0 0
\(862\) 1.52326 0.0518824
\(863\) 55.3473 1.88404 0.942021 0.335553i \(-0.108923\pi\)
0.942021 + 0.335553i \(0.108923\pi\)
\(864\) 0 0
\(865\) 59.6072 2.02671
\(866\) −28.3747 −0.964211
\(867\) 0 0
\(868\) 19.1783 0.650953
\(869\) −15.8884 −0.538976
\(870\) 0 0
\(871\) 11.2004 0.379510
\(872\) 6.05725 0.205124
\(873\) 0 0
\(874\) 0 0
\(875\) −140.645 −4.75468
\(876\) 0 0
\(877\) 50.9910 1.72184 0.860922 0.508737i \(-0.169887\pi\)
0.860922 + 0.508737i \(0.169887\pi\)
\(878\) −24.9684 −0.842643
\(879\) 0 0
\(880\) 8.94261 0.301455
\(881\) 26.4450 0.890953 0.445477 0.895294i \(-0.353034\pi\)
0.445477 + 0.895294i \(0.353034\pi\)
\(882\) 0 0
\(883\) 20.6260 0.694120 0.347060 0.937843i \(-0.387180\pi\)
0.347060 + 0.937843i \(0.387180\pi\)
\(884\) −9.09801 −0.305999
\(885\) 0 0
\(886\) 18.2215 0.612162
\(887\) 12.7487 0.428061 0.214030 0.976827i \(-0.431341\pi\)
0.214030 + 0.976827i \(0.431341\pi\)
\(888\) 0 0
\(889\) −35.1568 −1.17912
\(890\) −24.7692 −0.830266
\(891\) 0 0
\(892\) −1.62025 −0.0542500
\(893\) 5.35617 0.179237
\(894\) 0 0
\(895\) −81.1508 −2.71257
\(896\) −3.31686 −0.110809
\(897\) 0 0
\(898\) 9.60417 0.320495
\(899\) 8.81664 0.294052
\(900\) 0 0
\(901\) −38.4127 −1.27971
\(902\) 2.14996 0.0715857
\(903\) 0 0
\(904\) −3.36712 −0.111989
\(905\) 87.5598 2.91059
\(906\) 0 0
\(907\) −15.3266 −0.508912 −0.254456 0.967084i \(-0.581896\pi\)
−0.254456 + 0.967084i \(0.581896\pi\)
\(908\) 22.7548 0.755143
\(909\) 0 0
\(910\) −44.4015 −1.47189
\(911\) −27.0655 −0.896720 −0.448360 0.893853i \(-0.647992\pi\)
−0.448360 + 0.893853i \(0.647992\pi\)
\(912\) 0 0
\(913\) −8.15278 −0.269818
\(914\) −18.0768 −0.597927
\(915\) 0 0
\(916\) 3.35007 0.110689
\(917\) −19.7907 −0.653546
\(918\) 0 0
\(919\) −4.93575 −0.162815 −0.0814076 0.996681i \(-0.525942\pi\)
−0.0814076 + 0.996681i \(0.525942\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −4.37457 −0.144069
\(923\) 12.1024 0.398357
\(924\) 0 0
\(925\) 26.9502 0.886115
\(926\) −11.6481 −0.382780
\(927\) 0 0
\(928\) −1.52483 −0.0500550
\(929\) −30.2582 −0.992741 −0.496370 0.868111i \(-0.665334\pi\)
−0.496370 + 0.868111i \(0.665334\pi\)
\(930\) 0 0
\(931\) 28.6307 0.938332
\(932\) −19.5046 −0.638895
\(933\) 0 0
\(934\) −15.4915 −0.506897
\(935\) −26.8951 −0.879562
\(936\) 0 0
\(937\) −12.4306 −0.406091 −0.203046 0.979169i \(-0.565084\pi\)
−0.203046 + 0.979169i \(0.565084\pi\)
\(938\) −12.2807 −0.400978
\(939\) 0 0
\(940\) 3.31273 0.108049
\(941\) 17.2277 0.561606 0.280803 0.959765i \(-0.409399\pi\)
0.280803 + 0.959765i \(0.409399\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.79797 −0.0585188
\(945\) 0 0
\(946\) 3.81869 0.124156
\(947\) 22.3831 0.727352 0.363676 0.931526i \(-0.381522\pi\)
0.363676 + 0.931526i \(0.381522\pi\)
\(948\) 0 0
\(949\) −16.3378 −0.530349
\(950\) 104.333 3.38502
\(951\) 0 0
\(952\) 9.97552 0.323308
\(953\) −32.0271 −1.03746 −0.518731 0.854938i \(-0.673595\pi\)
−0.518731 + 0.854938i \(0.673595\pi\)
\(954\) 0 0
\(955\) −75.8884 −2.45569
\(956\) −15.0600 −0.487076
\(957\) 0 0
\(958\) −9.31270 −0.300880
\(959\) −34.2310 −1.10538
\(960\) 0 0
\(961\) 2.43210 0.0784548
\(962\) 5.59082 0.180255
\(963\) 0 0
\(964\) 19.7786 0.637024
\(965\) −56.1390 −1.80718
\(966\) 0 0
\(967\) 34.6187 1.11326 0.556631 0.830760i \(-0.312094\pi\)
0.556631 + 0.830760i \(0.312094\pi\)
\(968\) −6.91618 −0.222294
\(969\) 0 0
\(970\) −58.5247 −1.87911
\(971\) 9.41932 0.302280 0.151140 0.988512i \(-0.451706\pi\)
0.151140 + 0.988512i \(0.451706\pi\)
\(972\) 0 0
\(973\) 44.5728 1.42894
\(974\) 11.0014 0.352509
\(975\) 0 0
\(976\) −3.90918 −0.125130
\(977\) 30.0128 0.960196 0.480098 0.877215i \(-0.340601\pi\)
0.480098 + 0.877215i \(0.340601\pi\)
\(978\) 0 0
\(979\) −11.3114 −0.361513
\(980\) 17.7077 0.565653
\(981\) 0 0
\(982\) 31.6556 1.01017
\(983\) 31.1346 0.993041 0.496521 0.868025i \(-0.334611\pi\)
0.496521 + 0.868025i \(0.334611\pi\)
\(984\) 0 0
\(985\) 21.9783 0.700287
\(986\) 4.58595 0.146046
\(987\) 0 0
\(988\) 21.6440 0.688588
\(989\) 0 0
\(990\) 0 0
\(991\) −33.6697 −1.06955 −0.534776 0.844994i \(-0.679604\pi\)
−0.534776 + 0.844994i \(0.679604\pi\)
\(992\) −5.78205 −0.183580
\(993\) 0 0
\(994\) −13.2697 −0.420890
\(995\) 18.2960 0.580021
\(996\) 0 0
\(997\) −28.0726 −0.889069 −0.444534 0.895762i \(-0.646631\pi\)
−0.444534 + 0.895762i \(0.646631\pi\)
\(998\) −16.3698 −0.518177
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9522.2.a.ca.1.5 5
3.2 odd 2 3174.2.a.y.1.1 5
23.5 odd 22 414.2.i.b.163.1 10
23.14 odd 22 414.2.i.b.127.1 10
23.22 odd 2 9522.2.a.bv.1.1 5
69.5 even 22 138.2.e.c.25.1 10
69.14 even 22 138.2.e.c.127.1 yes 10
69.68 even 2 3174.2.a.z.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
138.2.e.c.25.1 10 69.5 even 22
138.2.e.c.127.1 yes 10 69.14 even 22
414.2.i.b.127.1 10 23.14 odd 22
414.2.i.b.163.1 10 23.5 odd 22
3174.2.a.y.1.1 5 3.2 odd 2
3174.2.a.z.1.5 5 69.68 even 2
9522.2.a.bv.1.1 5 23.22 odd 2
9522.2.a.ca.1.5 5 1.1 even 1 trivial