Properties

Label 9522.2.a.bw
Level $9522$
Weight $2$
Character orbit 9522.a
Self dual yes
Analytic conductor $76.034$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9522,2,Mod(1,9522)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9522, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9522.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9522 = 2 \cdot 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9522.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,5,0,5,-2,0,9,5,0,-2,-1,0,1,9,0,5,1,0,10,-2,0,-1,0,0,-11,1, 0,9,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.0335528047\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + ( - \beta_{3} - \beta_1) q^{5} + (2 \beta_{4} - \beta_{3} + \beta_{2} + \cdots + 3) q^{7} + q^{8} + ( - \beta_{3} - \beta_1) q^{10} + ( - 2 \beta_{4} + \beta_{3} + \beta_1 - 1) q^{11}+ \cdots + (6 \beta_{4} - 7 \beta_{3} + 3 \beta_{2} + \cdots + 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 5 q^{4} - 2 q^{5} + 9 q^{7} + 5 q^{8} - 2 q^{10} - q^{11} + q^{13} + 9 q^{14} + 5 q^{16} + q^{17} + 10 q^{19} - 2 q^{20} - q^{22} - 11 q^{25} + q^{26} + 9 q^{28} - 10 q^{29} + 5 q^{32}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{22} + \zeta_{22}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.91899
−0.830830
1.30972
0.284630
−1.68251
1.00000 0 1.00000 −3.22871 0 1.19647 1.00000 0 −3.22871
1.2 1.00000 0 1.00000 −1.08816 0 0.863693 1.00000 0 −1.08816
1.3 1.00000 0 1.00000 0.372786 0 −2.05954 1.00000 0 0.372786
1.4 1.00000 0 1.00000 0.546200 0 4.70760 1.00000 0 0.546200
1.5 1.00000 0 1.00000 1.39788 0 4.29177 1.00000 0 1.39788
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9522.2.a.bw 5
3.b odd 2 1 1058.2.a.k 5
12.b even 2 1 8464.2.a.bv 5
23.b odd 2 1 9522.2.a.bz 5
23.d odd 22 2 414.2.i.c 10
69.c even 2 1 1058.2.a.j 5
69.g even 22 2 46.2.c.b 10
276.h odd 2 1 8464.2.a.bu 5
276.j odd 22 2 368.2.m.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
46.2.c.b 10 69.g even 22 2
368.2.m.a 10 276.j odd 22 2
414.2.i.c 10 23.d odd 22 2
1058.2.a.j 5 69.c even 2 1
1058.2.a.k 5 3.b odd 2 1
8464.2.a.bu 5 276.h odd 2 1
8464.2.a.bv 5 12.b even 2 1
9522.2.a.bw 5 1.a even 1 1 trivial
9522.2.a.bz 5 23.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9522))\):

\( T_{5}^{5} + 2T_{5}^{4} - 5T_{5}^{3} - 2T_{5}^{2} + 4T_{5} - 1 \) Copy content Toggle raw display
\( T_{7}^{5} - 9T_{7}^{4} + 17T_{7}^{3} + 31T_{7}^{2} - 84T_{7} + 43 \) Copy content Toggle raw display
\( T_{11}^{5} + T_{11}^{4} - 15T_{11}^{3} + 19T_{11}^{2} - 8T_{11} + 1 \) Copy content Toggle raw display
\( T_{29}^{5} + 10T_{29}^{4} + 7T_{29}^{3} - 129T_{29}^{2} - 239T_{29} - 23 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 2 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( T^{5} - 9 T^{4} + \cdots + 43 \) Copy content Toggle raw display
$11$ \( T^{5} + T^{4} - 15 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{5} - T^{4} + \cdots - 661 \) Copy content Toggle raw display
$17$ \( T^{5} - T^{4} - 37 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$19$ \( T^{5} - 10 T^{4} + \cdots - 373 \) Copy content Toggle raw display
$23$ \( T^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + 10 T^{4} + \cdots - 23 \) Copy content Toggle raw display
$31$ \( T^{5} - 66 T^{3} + \cdots + 1441 \) Copy content Toggle raw display
$37$ \( T^{5} - 20 T^{4} + \cdots + 3827 \) Copy content Toggle raw display
$41$ \( T^{5} - 3 T^{4} + \cdots - 1409 \) Copy content Toggle raw display
$43$ \( T^{5} - 27 T^{4} + \cdots + 7303 \) Copy content Toggle raw display
$47$ \( T^{5} - 11 T^{4} + \cdots - 3883 \) Copy content Toggle raw display
$53$ \( T^{5} - 2 T^{4} + \cdots - 43 \) Copy content Toggle raw display
$59$ \( T^{5} - 17 T^{4} + \cdots - 2881 \) Copy content Toggle raw display
$61$ \( T^{5} - 7 T^{4} + \cdots + 23 \) Copy content Toggle raw display
$67$ \( T^{5} - 28 T^{4} + \cdots + 397 \) Copy content Toggle raw display
$71$ \( T^{5} - 66 T^{3} + \cdots + 1441 \) Copy content Toggle raw display
$73$ \( T^{5} - 8 T^{4} + \cdots + 5897 \) Copy content Toggle raw display
$79$ \( T^{5} - 16 T^{4} + \cdots - 10891 \) Copy content Toggle raw display
$83$ \( T^{5} + 18 T^{4} + \cdots - 30383 \) Copy content Toggle raw display
$89$ \( T^{5} - 14 T^{4} + \cdots - 617 \) Copy content Toggle raw display
$97$ \( T^{5} - 47 T^{4} + \cdots - 28073 \) Copy content Toggle raw display
show more
show less