Properties

Label 9522.2.a.bc.1.2
Level $9522$
Weight $2$
Character 9522.1
Self dual yes
Analytic conductor $76.034$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9522,2,Mod(1,9522)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9522, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9522.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9522 = 2 \cdot 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9522.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.0335528047\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 414)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 9522.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.64575 q^{5} -2.00000 q^{7} +1.00000 q^{8} +1.64575 q^{10} -1.64575 q^{11} +5.29150 q^{13} -2.00000 q^{14} +1.00000 q^{16} -3.29150 q^{17} -0.354249 q^{19} +1.64575 q^{20} -1.64575 q^{22} -2.29150 q^{25} +5.29150 q^{26} -2.00000 q^{28} -9.29150 q^{29} -1.29150 q^{31} +1.00000 q^{32} -3.29150 q^{34} -3.29150 q^{35} -6.93725 q^{37} -0.354249 q^{38} +1.64575 q^{40} -6.00000 q^{41} -0.354249 q^{43} -1.64575 q^{44} -6.00000 q^{47} -3.00000 q^{49} -2.29150 q^{50} +5.29150 q^{52} -1.64575 q^{53} -2.70850 q^{55} -2.00000 q^{56} -9.29150 q^{58} -0.354249 q^{61} -1.29150 q^{62} +1.00000 q^{64} +8.70850 q^{65} +14.9373 q^{67} -3.29150 q^{68} -3.29150 q^{70} +6.00000 q^{71} -7.29150 q^{73} -6.93725 q^{74} -0.354249 q^{76} +3.29150 q^{77} -8.58301 q^{79} +1.64575 q^{80} -6.00000 q^{82} -13.6458 q^{83} -5.41699 q^{85} -0.354249 q^{86} -1.64575 q^{88} -10.5830 q^{91} -6.00000 q^{94} -0.583005 q^{95} +1.29150 q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 2 q^{5} - 4 q^{7} + 2 q^{8} - 2 q^{10} + 2 q^{11} - 4 q^{14} + 2 q^{16} + 4 q^{17} - 6 q^{19} - 2 q^{20} + 2 q^{22} + 6 q^{25} - 4 q^{28} - 8 q^{29} + 8 q^{31} + 2 q^{32} + 4 q^{34}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.64575 0.736002 0.368001 0.929825i \(-0.380042\pi\)
0.368001 + 0.929825i \(0.380042\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.64575 0.520432
\(11\) −1.64575 −0.496213 −0.248106 0.968733i \(-0.579808\pi\)
−0.248106 + 0.968733i \(0.579808\pi\)
\(12\) 0 0
\(13\) 5.29150 1.46760 0.733799 0.679366i \(-0.237745\pi\)
0.733799 + 0.679366i \(0.237745\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.29150 −0.798307 −0.399153 0.916884i \(-0.630696\pi\)
−0.399153 + 0.916884i \(0.630696\pi\)
\(18\) 0 0
\(19\) −0.354249 −0.0812702 −0.0406351 0.999174i \(-0.512938\pi\)
−0.0406351 + 0.999174i \(0.512938\pi\)
\(20\) 1.64575 0.368001
\(21\) 0 0
\(22\) −1.64575 −0.350875
\(23\) 0 0
\(24\) 0 0
\(25\) −2.29150 −0.458301
\(26\) 5.29150 1.03775
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) −9.29150 −1.72539 −0.862694 0.505726i \(-0.831225\pi\)
−0.862694 + 0.505726i \(0.831225\pi\)
\(30\) 0 0
\(31\) −1.29150 −0.231961 −0.115980 0.993252i \(-0.537001\pi\)
−0.115980 + 0.993252i \(0.537001\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.29150 −0.564488
\(35\) −3.29150 −0.556365
\(36\) 0 0
\(37\) −6.93725 −1.14048 −0.570239 0.821479i \(-0.693149\pi\)
−0.570239 + 0.821479i \(0.693149\pi\)
\(38\) −0.354249 −0.0574667
\(39\) 0 0
\(40\) 1.64575 0.260216
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −0.354249 −0.0540224 −0.0270112 0.999635i \(-0.508599\pi\)
−0.0270112 + 0.999635i \(0.508599\pi\)
\(44\) −1.64575 −0.248106
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) −2.29150 −0.324067
\(51\) 0 0
\(52\) 5.29150 0.733799
\(53\) −1.64575 −0.226061 −0.113031 0.993592i \(-0.536056\pi\)
−0.113031 + 0.993592i \(0.536056\pi\)
\(54\) 0 0
\(55\) −2.70850 −0.365214
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) −9.29150 −1.22003
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −0.354249 −0.0453569 −0.0226784 0.999743i \(-0.507219\pi\)
−0.0226784 + 0.999743i \(0.507219\pi\)
\(62\) −1.29150 −0.164021
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 8.70850 1.08016
\(66\) 0 0
\(67\) 14.9373 1.82488 0.912438 0.409215i \(-0.134197\pi\)
0.912438 + 0.409215i \(0.134197\pi\)
\(68\) −3.29150 −0.399153
\(69\) 0 0
\(70\) −3.29150 −0.393410
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −7.29150 −0.853406 −0.426703 0.904392i \(-0.640325\pi\)
−0.426703 + 0.904392i \(0.640325\pi\)
\(74\) −6.93725 −0.806439
\(75\) 0 0
\(76\) −0.354249 −0.0406351
\(77\) 3.29150 0.375102
\(78\) 0 0
\(79\) −8.58301 −0.965664 −0.482832 0.875713i \(-0.660392\pi\)
−0.482832 + 0.875713i \(0.660392\pi\)
\(80\) 1.64575 0.184001
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) −13.6458 −1.49782 −0.748908 0.662674i \(-0.769421\pi\)
−0.748908 + 0.662674i \(0.769421\pi\)
\(84\) 0 0
\(85\) −5.41699 −0.587556
\(86\) −0.354249 −0.0381996
\(87\) 0 0
\(88\) −1.64575 −0.175438
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −10.5830 −1.10940
\(92\) 0 0
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) −0.583005 −0.0598151
\(96\) 0 0
\(97\) 1.29150 0.131132 0.0655661 0.997848i \(-0.479115\pi\)
0.0655661 + 0.997848i \(0.479115\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) −2.29150 −0.229150
\(101\) −9.29150 −0.924539 −0.462270 0.886739i \(-0.652965\pi\)
−0.462270 + 0.886739i \(0.652965\pi\)
\(102\) 0 0
\(103\) 6.70850 0.661008 0.330504 0.943805i \(-0.392781\pi\)
0.330504 + 0.943805i \(0.392781\pi\)
\(104\) 5.29150 0.518875
\(105\) 0 0
\(106\) −1.64575 −0.159849
\(107\) −13.6458 −1.31918 −0.659592 0.751624i \(-0.729271\pi\)
−0.659592 + 0.751624i \(0.729271\pi\)
\(108\) 0 0
\(109\) 18.2288 1.74600 0.872999 0.487722i \(-0.162172\pi\)
0.872999 + 0.487722i \(0.162172\pi\)
\(110\) −2.70850 −0.258245
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 6.58301 0.619277 0.309639 0.950854i \(-0.399792\pi\)
0.309639 + 0.950854i \(0.399792\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −9.29150 −0.862694
\(117\) 0 0
\(118\) 0 0
\(119\) 6.58301 0.603463
\(120\) 0 0
\(121\) −8.29150 −0.753773
\(122\) −0.354249 −0.0320722
\(123\) 0 0
\(124\) −1.29150 −0.115980
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −10.5830 −0.939090 −0.469545 0.882909i \(-0.655582\pi\)
−0.469545 + 0.882909i \(0.655582\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 8.70850 0.763786
\(131\) 21.8745 1.91118 0.955592 0.294692i \(-0.0952170\pi\)
0.955592 + 0.294692i \(0.0952170\pi\)
\(132\) 0 0
\(133\) 0.708497 0.0614345
\(134\) 14.9373 1.29038
\(135\) 0 0
\(136\) −3.29150 −0.282244
\(137\) 21.8745 1.86887 0.934433 0.356140i \(-0.115907\pi\)
0.934433 + 0.356140i \(0.115907\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −3.29150 −0.278183
\(141\) 0 0
\(142\) 6.00000 0.503509
\(143\) −8.70850 −0.728241
\(144\) 0 0
\(145\) −15.2915 −1.26989
\(146\) −7.29150 −0.603449
\(147\) 0 0
\(148\) −6.93725 −0.570239
\(149\) 10.3542 0.848253 0.424127 0.905603i \(-0.360581\pi\)
0.424127 + 0.905603i \(0.360581\pi\)
\(150\) 0 0
\(151\) 17.2915 1.40716 0.703581 0.710615i \(-0.251583\pi\)
0.703581 + 0.710615i \(0.251583\pi\)
\(152\) −0.354249 −0.0287334
\(153\) 0 0
\(154\) 3.29150 0.265237
\(155\) −2.12549 −0.170724
\(156\) 0 0
\(157\) −3.64575 −0.290963 −0.145481 0.989361i \(-0.546473\pi\)
−0.145481 + 0.989361i \(0.546473\pi\)
\(158\) −8.58301 −0.682827
\(159\) 0 0
\(160\) 1.64575 0.130108
\(161\) 0 0
\(162\) 0 0
\(163\) −0.708497 −0.0554938 −0.0277469 0.999615i \(-0.508833\pi\)
−0.0277469 + 0.999615i \(0.508833\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −13.6458 −1.05912
\(167\) 19.1660 1.48311 0.741555 0.670892i \(-0.234089\pi\)
0.741555 + 0.670892i \(0.234089\pi\)
\(168\) 0 0
\(169\) 15.0000 1.15385
\(170\) −5.41699 −0.415465
\(171\) 0 0
\(172\) −0.354249 −0.0270112
\(173\) 15.8745 1.20692 0.603458 0.797395i \(-0.293789\pi\)
0.603458 + 0.797395i \(0.293789\pi\)
\(174\) 0 0
\(175\) 4.58301 0.346443
\(176\) −1.64575 −0.124053
\(177\) 0 0
\(178\) 0 0
\(179\) −15.2915 −1.14294 −0.571470 0.820623i \(-0.693627\pi\)
−0.571470 + 0.820623i \(0.693627\pi\)
\(180\) 0 0
\(181\) −15.6458 −1.16294 −0.581470 0.813568i \(-0.697522\pi\)
−0.581470 + 0.813568i \(0.697522\pi\)
\(182\) −10.5830 −0.784465
\(183\) 0 0
\(184\) 0 0
\(185\) −11.4170 −0.839394
\(186\) 0 0
\(187\) 5.41699 0.396130
\(188\) −6.00000 −0.437595
\(189\) 0 0
\(190\) −0.583005 −0.0422956
\(191\) 3.29150 0.238165 0.119082 0.992884i \(-0.462005\pi\)
0.119082 + 0.992884i \(0.462005\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 1.29150 0.0927245
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) −2.29150 −0.162034
\(201\) 0 0
\(202\) −9.29150 −0.653748
\(203\) 18.5830 1.30427
\(204\) 0 0
\(205\) −9.87451 −0.689666
\(206\) 6.70850 0.467403
\(207\) 0 0
\(208\) 5.29150 0.366900
\(209\) 0.583005 0.0403273
\(210\) 0 0
\(211\) 11.2915 0.777339 0.388670 0.921377i \(-0.372935\pi\)
0.388670 + 0.921377i \(0.372935\pi\)
\(212\) −1.64575 −0.113031
\(213\) 0 0
\(214\) −13.6458 −0.932804
\(215\) −0.583005 −0.0397606
\(216\) 0 0
\(217\) 2.58301 0.175346
\(218\) 18.2288 1.23461
\(219\) 0 0
\(220\) −2.70850 −0.182607
\(221\) −17.4170 −1.17159
\(222\) 0 0
\(223\) −19.8745 −1.33090 −0.665448 0.746444i \(-0.731759\pi\)
−0.665448 + 0.746444i \(0.731759\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 6.58301 0.437895
\(227\) −7.06275 −0.468771 −0.234385 0.972144i \(-0.575308\pi\)
−0.234385 + 0.972144i \(0.575308\pi\)
\(228\) 0 0
\(229\) −9.06275 −0.598883 −0.299442 0.954115i \(-0.596800\pi\)
−0.299442 + 0.954115i \(0.596800\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −9.29150 −0.610017
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −9.87451 −0.644142
\(236\) 0 0
\(237\) 0 0
\(238\) 6.58301 0.426713
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −5.29150 −0.340856 −0.170428 0.985370i \(-0.554515\pi\)
−0.170428 + 0.985370i \(0.554515\pi\)
\(242\) −8.29150 −0.532998
\(243\) 0 0
\(244\) −0.354249 −0.0226784
\(245\) −4.93725 −0.315430
\(246\) 0 0
\(247\) −1.87451 −0.119272
\(248\) −1.29150 −0.0820105
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) −25.6458 −1.61875 −0.809373 0.587295i \(-0.800193\pi\)
−0.809373 + 0.587295i \(0.800193\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −10.5830 −0.664037
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −24.5830 −1.53345 −0.766723 0.641978i \(-0.778114\pi\)
−0.766723 + 0.641978i \(0.778114\pi\)
\(258\) 0 0
\(259\) 13.8745 0.862120
\(260\) 8.70850 0.540078
\(261\) 0 0
\(262\) 21.8745 1.35141
\(263\) −30.5830 −1.88583 −0.942914 0.333035i \(-0.891927\pi\)
−0.942914 + 0.333035i \(0.891927\pi\)
\(264\) 0 0
\(265\) −2.70850 −0.166382
\(266\) 0.708497 0.0434408
\(267\) 0 0
\(268\) 14.9373 0.912438
\(269\) 11.4170 0.696106 0.348053 0.937475i \(-0.386843\pi\)
0.348053 + 0.937475i \(0.386843\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) −3.29150 −0.199577
\(273\) 0 0
\(274\) 21.8745 1.32149
\(275\) 3.77124 0.227415
\(276\) 0 0
\(277\) 5.29150 0.317936 0.158968 0.987284i \(-0.449183\pi\)
0.158968 + 0.987284i \(0.449183\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) −3.29150 −0.196705
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 21.5203 1.27925 0.639623 0.768689i \(-0.279090\pi\)
0.639623 + 0.768689i \(0.279090\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) −8.70850 −0.514944
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) −6.16601 −0.362706
\(290\) −15.2915 −0.897948
\(291\) 0 0
\(292\) −7.29150 −0.426703
\(293\) −32.2288 −1.88282 −0.941412 0.337259i \(-0.890500\pi\)
−0.941412 + 0.337259i \(0.890500\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.93725 −0.403220
\(297\) 0 0
\(298\) 10.3542 0.599806
\(299\) 0 0
\(300\) 0 0
\(301\) 0.708497 0.0408371
\(302\) 17.2915 0.995014
\(303\) 0 0
\(304\) −0.354249 −0.0203176
\(305\) −0.583005 −0.0333828
\(306\) 0 0
\(307\) 29.8745 1.70503 0.852514 0.522704i \(-0.175077\pi\)
0.852514 + 0.522704i \(0.175077\pi\)
\(308\) 3.29150 0.187551
\(309\) 0 0
\(310\) −2.12549 −0.120720
\(311\) −13.1660 −0.746576 −0.373288 0.927716i \(-0.621770\pi\)
−0.373288 + 0.927716i \(0.621770\pi\)
\(312\) 0 0
\(313\) −5.29150 −0.299093 −0.149547 0.988755i \(-0.547781\pi\)
−0.149547 + 0.988755i \(0.547781\pi\)
\(314\) −3.64575 −0.205742
\(315\) 0 0
\(316\) −8.58301 −0.482832
\(317\) −21.2915 −1.19585 −0.597925 0.801552i \(-0.704008\pi\)
−0.597925 + 0.801552i \(0.704008\pi\)
\(318\) 0 0
\(319\) 15.2915 0.856160
\(320\) 1.64575 0.0920003
\(321\) 0 0
\(322\) 0 0
\(323\) 1.16601 0.0648786
\(324\) 0 0
\(325\) −12.1255 −0.672601
\(326\) −0.708497 −0.0392400
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −25.8745 −1.42219 −0.711096 0.703095i \(-0.751801\pi\)
−0.711096 + 0.703095i \(0.751801\pi\)
\(332\) −13.6458 −0.748908
\(333\) 0 0
\(334\) 19.1660 1.04872
\(335\) 24.5830 1.34311
\(336\) 0 0
\(337\) −15.1660 −0.826145 −0.413073 0.910698i \(-0.635544\pi\)
−0.413073 + 0.910698i \(0.635544\pi\)
\(338\) 15.0000 0.815892
\(339\) 0 0
\(340\) −5.41699 −0.293778
\(341\) 2.12549 0.115102
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) −0.354249 −0.0190998
\(345\) 0 0
\(346\) 15.8745 0.853419
\(347\) −15.2915 −0.820891 −0.410445 0.911885i \(-0.634627\pi\)
−0.410445 + 0.911885i \(0.634627\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 4.58301 0.244972
\(351\) 0 0
\(352\) −1.64575 −0.0877188
\(353\) 6.58301 0.350378 0.175189 0.984535i \(-0.443946\pi\)
0.175189 + 0.984535i \(0.443946\pi\)
\(354\) 0 0
\(355\) 9.87451 0.524084
\(356\) 0 0
\(357\) 0 0
\(358\) −15.2915 −0.808181
\(359\) −21.8745 −1.15449 −0.577246 0.816570i \(-0.695873\pi\)
−0.577246 + 0.816570i \(0.695873\pi\)
\(360\) 0 0
\(361\) −18.8745 −0.993395
\(362\) −15.6458 −0.822322
\(363\) 0 0
\(364\) −10.5830 −0.554700
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) 11.1660 0.582861 0.291431 0.956592i \(-0.405869\pi\)
0.291431 + 0.956592i \(0.405869\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −11.4170 −0.593541
\(371\) 3.29150 0.170886
\(372\) 0 0
\(373\) 26.9373 1.39476 0.697379 0.716702i \(-0.254349\pi\)
0.697379 + 0.716702i \(0.254349\pi\)
\(374\) 5.41699 0.280106
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) −49.1660 −2.53218
\(378\) 0 0
\(379\) 33.5203 1.72182 0.860910 0.508757i \(-0.169895\pi\)
0.860910 + 0.508757i \(0.169895\pi\)
\(380\) −0.583005 −0.0299075
\(381\) 0 0
\(382\) 3.29150 0.168408
\(383\) 31.7490 1.62230 0.811149 0.584839i \(-0.198842\pi\)
0.811149 + 0.584839i \(0.198842\pi\)
\(384\) 0 0
\(385\) 5.41699 0.276076
\(386\) −22.0000 −1.11977
\(387\) 0 0
\(388\) 1.29150 0.0655661
\(389\) −7.06275 −0.358095 −0.179048 0.983840i \(-0.557302\pi\)
−0.179048 + 0.983840i \(0.557302\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.00000 −0.151523
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) −14.1255 −0.710731
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) −14.0000 −0.701757
\(399\) 0 0
\(400\) −2.29150 −0.114575
\(401\) 9.87451 0.493109 0.246555 0.969129i \(-0.420701\pi\)
0.246555 + 0.969129i \(0.420701\pi\)
\(402\) 0 0
\(403\) −6.83399 −0.340425
\(404\) −9.29150 −0.462270
\(405\) 0 0
\(406\) 18.5830 0.922259
\(407\) 11.4170 0.565919
\(408\) 0 0
\(409\) 15.1660 0.749911 0.374955 0.927043i \(-0.377658\pi\)
0.374955 + 0.927043i \(0.377658\pi\)
\(410\) −9.87451 −0.487667
\(411\) 0 0
\(412\) 6.70850 0.330504
\(413\) 0 0
\(414\) 0 0
\(415\) −22.4575 −1.10240
\(416\) 5.29150 0.259437
\(417\) 0 0
\(418\) 0.583005 0.0285157
\(419\) 16.9373 0.827439 0.413720 0.910404i \(-0.364229\pi\)
0.413720 + 0.910404i \(0.364229\pi\)
\(420\) 0 0
\(421\) −22.2288 −1.08336 −0.541682 0.840584i \(-0.682212\pi\)
−0.541682 + 0.840584i \(0.682212\pi\)
\(422\) 11.2915 0.549662
\(423\) 0 0
\(424\) −1.64575 −0.0799247
\(425\) 7.54249 0.365864
\(426\) 0 0
\(427\) 0.708497 0.0342866
\(428\) −13.6458 −0.659592
\(429\) 0 0
\(430\) −0.583005 −0.0281150
\(431\) −33.8745 −1.63168 −0.815839 0.578279i \(-0.803724\pi\)
−0.815839 + 0.578279i \(0.803724\pi\)
\(432\) 0 0
\(433\) 18.7085 0.899073 0.449537 0.893262i \(-0.351589\pi\)
0.449537 + 0.893262i \(0.351589\pi\)
\(434\) 2.58301 0.123988
\(435\) 0 0
\(436\) 18.2288 0.872999
\(437\) 0 0
\(438\) 0 0
\(439\) 27.7490 1.32439 0.662194 0.749332i \(-0.269625\pi\)
0.662194 + 0.749332i \(0.269625\pi\)
\(440\) −2.70850 −0.129123
\(441\) 0 0
\(442\) −17.4170 −0.828442
\(443\) −25.1660 −1.19567 −0.597837 0.801618i \(-0.703973\pi\)
−0.597837 + 0.801618i \(0.703973\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −19.8745 −0.941085
\(447\) 0 0
\(448\) −2.00000 −0.0944911
\(449\) −11.4170 −0.538801 −0.269401 0.963028i \(-0.586826\pi\)
−0.269401 + 0.963028i \(0.586826\pi\)
\(450\) 0 0
\(451\) 9.87451 0.464972
\(452\) 6.58301 0.309639
\(453\) 0 0
\(454\) −7.06275 −0.331471
\(455\) −17.4170 −0.816521
\(456\) 0 0
\(457\) 0.125492 0.00587027 0.00293514 0.999996i \(-0.499066\pi\)
0.00293514 + 0.999996i \(0.499066\pi\)
\(458\) −9.06275 −0.423474
\(459\) 0 0
\(460\) 0 0
\(461\) −25.7490 −1.19925 −0.599626 0.800281i \(-0.704684\pi\)
−0.599626 + 0.800281i \(0.704684\pi\)
\(462\) 0 0
\(463\) 21.1660 0.983668 0.491834 0.870689i \(-0.336327\pi\)
0.491834 + 0.870689i \(0.336327\pi\)
\(464\) −9.29150 −0.431347
\(465\) 0 0
\(466\) 0 0
\(467\) 13.6458 0.631450 0.315725 0.948851i \(-0.397752\pi\)
0.315725 + 0.948851i \(0.397752\pi\)
\(468\) 0 0
\(469\) −29.8745 −1.37948
\(470\) −9.87451 −0.455477
\(471\) 0 0
\(472\) 0 0
\(473\) 0.583005 0.0268066
\(474\) 0 0
\(475\) 0.811762 0.0372462
\(476\) 6.58301 0.301732
\(477\) 0 0
\(478\) −24.0000 −1.09773
\(479\) 42.5830 1.94567 0.972834 0.231506i \(-0.0743651\pi\)
0.972834 + 0.231506i \(0.0743651\pi\)
\(480\) 0 0
\(481\) −36.7085 −1.67376
\(482\) −5.29150 −0.241021
\(483\) 0 0
\(484\) −8.29150 −0.376886
\(485\) 2.12549 0.0965136
\(486\) 0 0
\(487\) 21.1660 0.959123 0.479562 0.877508i \(-0.340796\pi\)
0.479562 + 0.877508i \(0.340796\pi\)
\(488\) −0.354249 −0.0160361
\(489\) 0 0
\(490\) −4.93725 −0.223042
\(491\) 21.8745 0.987183 0.493591 0.869694i \(-0.335684\pi\)
0.493591 + 0.869694i \(0.335684\pi\)
\(492\) 0 0
\(493\) 30.5830 1.37739
\(494\) −1.87451 −0.0843381
\(495\) 0 0
\(496\) −1.29150 −0.0579902
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 31.0405 1.38956 0.694782 0.719220i \(-0.255501\pi\)
0.694782 + 0.719220i \(0.255501\pi\)
\(500\) −12.0000 −0.536656
\(501\) 0 0
\(502\) −25.6458 −1.14463
\(503\) −2.12549 −0.0947710 −0.0473855 0.998877i \(-0.515089\pi\)
−0.0473855 + 0.998877i \(0.515089\pi\)
\(504\) 0 0
\(505\) −15.2915 −0.680463
\(506\) 0 0
\(507\) 0 0
\(508\) −10.5830 −0.469545
\(509\) 27.8745 1.23552 0.617758 0.786368i \(-0.288041\pi\)
0.617758 + 0.786368i \(0.288041\pi\)
\(510\) 0 0
\(511\) 14.5830 0.645114
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −24.5830 −1.08431
\(515\) 11.0405 0.486503
\(516\) 0 0
\(517\) 9.87451 0.434280
\(518\) 13.8745 0.609611
\(519\) 0 0
\(520\) 8.70850 0.381893
\(521\) −28.4575 −1.24675 −0.623373 0.781925i \(-0.714238\pi\)
−0.623373 + 0.781925i \(0.714238\pi\)
\(522\) 0 0
\(523\) 5.06275 0.221378 0.110689 0.993855i \(-0.464694\pi\)
0.110689 + 0.993855i \(0.464694\pi\)
\(524\) 21.8745 0.955592
\(525\) 0 0
\(526\) −30.5830 −1.33348
\(527\) 4.25098 0.185176
\(528\) 0 0
\(529\) 0 0
\(530\) −2.70850 −0.117650
\(531\) 0 0
\(532\) 0.708497 0.0307173
\(533\) −31.7490 −1.37520
\(534\) 0 0
\(535\) −22.4575 −0.970923
\(536\) 14.9373 0.645191
\(537\) 0 0
\(538\) 11.4170 0.492222
\(539\) 4.93725 0.212663
\(540\) 0 0
\(541\) 20.5830 0.884933 0.442466 0.896785i \(-0.354104\pi\)
0.442466 + 0.896785i \(0.354104\pi\)
\(542\) 20.0000 0.859074
\(543\) 0 0
\(544\) −3.29150 −0.141122
\(545\) 30.0000 1.28506
\(546\) 0 0
\(547\) 16.7085 0.714404 0.357202 0.934027i \(-0.383731\pi\)
0.357202 + 0.934027i \(0.383731\pi\)
\(548\) 21.8745 0.934433
\(549\) 0 0
\(550\) 3.77124 0.160806
\(551\) 3.29150 0.140223
\(552\) 0 0
\(553\) 17.1660 0.729973
\(554\) 5.29150 0.224814
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −42.1033 −1.78397 −0.891986 0.452062i \(-0.850688\pi\)
−0.891986 + 0.452062i \(0.850688\pi\)
\(558\) 0 0
\(559\) −1.87451 −0.0792832
\(560\) −3.29150 −0.139091
\(561\) 0 0
\(562\) 0 0
\(563\) 45.3948 1.91316 0.956581 0.291468i \(-0.0941436\pi\)
0.956581 + 0.291468i \(0.0941436\pi\)
\(564\) 0 0
\(565\) 10.8340 0.455789
\(566\) 21.5203 0.904564
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −8.70850 −0.365079 −0.182540 0.983199i \(-0.558432\pi\)
−0.182540 + 0.983199i \(0.558432\pi\)
\(570\) 0 0
\(571\) −18.9373 −0.792499 −0.396250 0.918143i \(-0.629689\pi\)
−0.396250 + 0.918143i \(0.629689\pi\)
\(572\) −8.70850 −0.364121
\(573\) 0 0
\(574\) 12.0000 0.500870
\(575\) 0 0
\(576\) 0 0
\(577\) 28.7085 1.19515 0.597575 0.801813i \(-0.296131\pi\)
0.597575 + 0.801813i \(0.296131\pi\)
\(578\) −6.16601 −0.256472
\(579\) 0 0
\(580\) −15.2915 −0.634945
\(581\) 27.2915 1.13224
\(582\) 0 0
\(583\) 2.70850 0.112174
\(584\) −7.29150 −0.301725
\(585\) 0 0
\(586\) −32.2288 −1.33136
\(587\) 20.7085 0.854731 0.427366 0.904079i \(-0.359442\pi\)
0.427366 + 0.904079i \(0.359442\pi\)
\(588\) 0 0
\(589\) 0.457513 0.0188515
\(590\) 0 0
\(591\) 0 0
\(592\) −6.93725 −0.285119
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 10.8340 0.444150
\(596\) 10.3542 0.424127
\(597\) 0 0
\(598\) 0 0
\(599\) −30.5830 −1.24959 −0.624794 0.780790i \(-0.714817\pi\)
−0.624794 + 0.780790i \(0.714817\pi\)
\(600\) 0 0
\(601\) −32.4575 −1.32397 −0.661985 0.749517i \(-0.730286\pi\)
−0.661985 + 0.749517i \(0.730286\pi\)
\(602\) 0.708497 0.0288762
\(603\) 0 0
\(604\) 17.2915 0.703581
\(605\) −13.6458 −0.554779
\(606\) 0 0
\(607\) 35.8745 1.45610 0.728051 0.685523i \(-0.240427\pi\)
0.728051 + 0.685523i \(0.240427\pi\)
\(608\) −0.354249 −0.0143667
\(609\) 0 0
\(610\) −0.583005 −0.0236052
\(611\) −31.7490 −1.28443
\(612\) 0 0
\(613\) 2.93725 0.118635 0.0593173 0.998239i \(-0.481108\pi\)
0.0593173 + 0.998239i \(0.481108\pi\)
\(614\) 29.8745 1.20564
\(615\) 0 0
\(616\) 3.29150 0.132618
\(617\) 12.0000 0.483102 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(618\) 0 0
\(619\) −12.3542 −0.496559 −0.248280 0.968688i \(-0.579865\pi\)
−0.248280 + 0.968688i \(0.579865\pi\)
\(620\) −2.12549 −0.0853618
\(621\) 0 0
\(622\) −13.1660 −0.527909
\(623\) 0 0
\(624\) 0 0
\(625\) −8.29150 −0.331660
\(626\) −5.29150 −0.211491
\(627\) 0 0
\(628\) −3.64575 −0.145481
\(629\) 22.8340 0.910451
\(630\) 0 0
\(631\) −23.8745 −0.950429 −0.475215 0.879870i \(-0.657630\pi\)
−0.475215 + 0.879870i \(0.657630\pi\)
\(632\) −8.58301 −0.341414
\(633\) 0 0
\(634\) −21.2915 −0.845594
\(635\) −17.4170 −0.691172
\(636\) 0 0
\(637\) −15.8745 −0.628971
\(638\) 15.2915 0.605396
\(639\) 0 0
\(640\) 1.64575 0.0650540
\(641\) −28.4575 −1.12400 −0.562002 0.827136i \(-0.689969\pi\)
−0.562002 + 0.827136i \(0.689969\pi\)
\(642\) 0 0
\(643\) −24.3542 −0.960438 −0.480219 0.877149i \(-0.659443\pi\)
−0.480219 + 0.877149i \(0.659443\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.16601 0.0458761
\(647\) −13.1660 −0.517609 −0.258805 0.965930i \(-0.583329\pi\)
−0.258805 + 0.965930i \(0.583329\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −12.1255 −0.475601
\(651\) 0 0
\(652\) −0.708497 −0.0277469
\(653\) 15.8745 0.621217 0.310609 0.950538i \(-0.399467\pi\)
0.310609 + 0.950538i \(0.399467\pi\)
\(654\) 0 0
\(655\) 36.0000 1.40664
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) 12.0000 0.467809
\(659\) 7.06275 0.275126 0.137563 0.990493i \(-0.456073\pi\)
0.137563 + 0.990493i \(0.456073\pi\)
\(660\) 0 0
\(661\) −27.6458 −1.07530 −0.537648 0.843170i \(-0.680687\pi\)
−0.537648 + 0.843170i \(0.680687\pi\)
\(662\) −25.8745 −1.00564
\(663\) 0 0
\(664\) −13.6458 −0.529558
\(665\) 1.16601 0.0452159
\(666\) 0 0
\(667\) 0 0
\(668\) 19.1660 0.741555
\(669\) 0 0
\(670\) 24.5830 0.949724
\(671\) 0.583005 0.0225067
\(672\) 0 0
\(673\) −12.7085 −0.489877 −0.244938 0.969539i \(-0.578768\pi\)
−0.244938 + 0.969539i \(0.578768\pi\)
\(674\) −15.1660 −0.584173
\(675\) 0 0
\(676\) 15.0000 0.576923
\(677\) −7.06275 −0.271443 −0.135722 0.990747i \(-0.543335\pi\)
−0.135722 + 0.990747i \(0.543335\pi\)
\(678\) 0 0
\(679\) −2.58301 −0.0991266
\(680\) −5.41699 −0.207732
\(681\) 0 0
\(682\) 2.12549 0.0813893
\(683\) 33.8745 1.29617 0.648086 0.761567i \(-0.275570\pi\)
0.648086 + 0.761567i \(0.275570\pi\)
\(684\) 0 0
\(685\) 36.0000 1.37549
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) −0.354249 −0.0135056
\(689\) −8.70850 −0.331767
\(690\) 0 0
\(691\) 17.8745 0.679978 0.339989 0.940429i \(-0.389577\pi\)
0.339989 + 0.940429i \(0.389577\pi\)
\(692\) 15.8745 0.603458
\(693\) 0 0
\(694\) −15.2915 −0.580458
\(695\) −6.58301 −0.249708
\(696\) 0 0
\(697\) 19.7490 0.748047
\(698\) 2.00000 0.0757011
\(699\) 0 0
\(700\) 4.58301 0.173221
\(701\) −19.0627 −0.719990 −0.359995 0.932954i \(-0.617222\pi\)
−0.359995 + 0.932954i \(0.617222\pi\)
\(702\) 0 0
\(703\) 2.45751 0.0926869
\(704\) −1.64575 −0.0620266
\(705\) 0 0
\(706\) 6.58301 0.247755
\(707\) 18.5830 0.698886
\(708\) 0 0
\(709\) 38.9373 1.46232 0.731160 0.682206i \(-0.238979\pi\)
0.731160 + 0.682206i \(0.238979\pi\)
\(710\) 9.87451 0.370584
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −14.3320 −0.535987
\(716\) −15.2915 −0.571470
\(717\) 0 0
\(718\) −21.8745 −0.816349
\(719\) 19.7490 0.736514 0.368257 0.929724i \(-0.379955\pi\)
0.368257 + 0.929724i \(0.379955\pi\)
\(720\) 0 0
\(721\) −13.4170 −0.499675
\(722\) −18.8745 −0.702436
\(723\) 0 0
\(724\) −15.6458 −0.581470
\(725\) 21.2915 0.790747
\(726\) 0 0
\(727\) −40.3320 −1.49583 −0.747916 0.663793i \(-0.768945\pi\)
−0.747916 + 0.663793i \(0.768945\pi\)
\(728\) −10.5830 −0.392232
\(729\) 0 0
\(730\) −12.0000 −0.444140
\(731\) 1.16601 0.0431265
\(732\) 0 0
\(733\) 31.3948 1.15959 0.579796 0.814762i \(-0.303132\pi\)
0.579796 + 0.814762i \(0.303132\pi\)
\(734\) 11.1660 0.412145
\(735\) 0 0
\(736\) 0 0
\(737\) −24.5830 −0.905527
\(738\) 0 0
\(739\) −10.5830 −0.389302 −0.194651 0.980873i \(-0.562357\pi\)
−0.194651 + 0.980873i \(0.562357\pi\)
\(740\) −11.4170 −0.419697
\(741\) 0 0
\(742\) 3.29150 0.120835
\(743\) −19.7490 −0.724521 −0.362261 0.932077i \(-0.617995\pi\)
−0.362261 + 0.932077i \(0.617995\pi\)
\(744\) 0 0
\(745\) 17.0405 0.624316
\(746\) 26.9373 0.986243
\(747\) 0 0
\(748\) 5.41699 0.198065
\(749\) 27.2915 0.997210
\(750\) 0 0
\(751\) −42.4575 −1.54930 −0.774648 0.632392i \(-0.782073\pi\)
−0.774648 + 0.632392i \(0.782073\pi\)
\(752\) −6.00000 −0.218797
\(753\) 0 0
\(754\) −49.1660 −1.79052
\(755\) 28.4575 1.03567
\(756\) 0 0
\(757\) −5.77124 −0.209759 −0.104880 0.994485i \(-0.533446\pi\)
−0.104880 + 0.994485i \(0.533446\pi\)
\(758\) 33.5203 1.21751
\(759\) 0 0
\(760\) −0.583005 −0.0211478
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) −36.4575 −1.31985
\(764\) 3.29150 0.119082
\(765\) 0 0
\(766\) 31.7490 1.14714
\(767\) 0 0
\(768\) 0 0
\(769\) −25.0405 −0.902984 −0.451492 0.892275i \(-0.649108\pi\)
−0.451492 + 0.892275i \(0.649108\pi\)
\(770\) 5.41699 0.195215
\(771\) 0 0
\(772\) −22.0000 −0.791797
\(773\) −1.64575 −0.0591936 −0.0295968 0.999562i \(-0.509422\pi\)
−0.0295968 + 0.999562i \(0.509422\pi\)
\(774\) 0 0
\(775\) 2.95948 0.106308
\(776\) 1.29150 0.0463622
\(777\) 0 0
\(778\) −7.06275 −0.253212
\(779\) 2.12549 0.0761537
\(780\) 0 0
\(781\) −9.87451 −0.353338
\(782\) 0 0
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) −6.00000 −0.214149
\(786\) 0 0
\(787\) 44.3542 1.58106 0.790529 0.612424i \(-0.209806\pi\)
0.790529 + 0.612424i \(0.209806\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) −14.1255 −0.502562
\(791\) −13.1660 −0.468129
\(792\) 0 0
\(793\) −1.87451 −0.0665657
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) −14.0000 −0.496217
\(797\) −35.5203 −1.25819 −0.629096 0.777328i \(-0.716575\pi\)
−0.629096 + 0.777328i \(0.716575\pi\)
\(798\) 0 0
\(799\) 19.7490 0.698670
\(800\) −2.29150 −0.0810169
\(801\) 0 0
\(802\) 9.87451 0.348681
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) −6.83399 −0.240717
\(807\) 0 0
\(808\) −9.29150 −0.326874
\(809\) 12.0000 0.421898 0.210949 0.977497i \(-0.432345\pi\)
0.210949 + 0.977497i \(0.432345\pi\)
\(810\) 0 0
\(811\) 29.8745 1.04904 0.524518 0.851399i \(-0.324246\pi\)
0.524518 + 0.851399i \(0.324246\pi\)
\(812\) 18.5830 0.652136
\(813\) 0 0
\(814\) 11.4170 0.400165
\(815\) −1.16601 −0.0408436
\(816\) 0 0
\(817\) 0.125492 0.00439041
\(818\) 15.1660 0.530267
\(819\) 0 0
\(820\) −9.87451 −0.344833
\(821\) 8.12549 0.283582 0.141791 0.989897i \(-0.454714\pi\)
0.141791 + 0.989897i \(0.454714\pi\)
\(822\) 0 0
\(823\) −13.2915 −0.463313 −0.231656 0.972798i \(-0.574414\pi\)
−0.231656 + 0.972798i \(0.574414\pi\)
\(824\) 6.70850 0.233702
\(825\) 0 0
\(826\) 0 0
\(827\) −14.8118 −0.515055 −0.257528 0.966271i \(-0.582908\pi\)
−0.257528 + 0.966271i \(0.582908\pi\)
\(828\) 0 0
\(829\) −15.4170 −0.535454 −0.267727 0.963495i \(-0.586273\pi\)
−0.267727 + 0.963495i \(0.586273\pi\)
\(830\) −22.4575 −0.779512
\(831\) 0 0
\(832\) 5.29150 0.183450
\(833\) 9.87451 0.342131
\(834\) 0 0
\(835\) 31.5425 1.09157
\(836\) 0.583005 0.0201637
\(837\) 0 0
\(838\) 16.9373 0.585088
\(839\) 43.7490 1.51038 0.755192 0.655504i \(-0.227544\pi\)
0.755192 + 0.655504i \(0.227544\pi\)
\(840\) 0 0
\(841\) 57.3320 1.97697
\(842\) −22.2288 −0.766054
\(843\) 0 0
\(844\) 11.2915 0.388670
\(845\) 24.6863 0.849233
\(846\) 0 0
\(847\) 16.5830 0.569799
\(848\) −1.64575 −0.0565153
\(849\) 0 0
\(850\) 7.54249 0.258705
\(851\) 0 0
\(852\) 0 0
\(853\) 27.1660 0.930146 0.465073 0.885272i \(-0.346028\pi\)
0.465073 + 0.885272i \(0.346028\pi\)
\(854\) 0.708497 0.0242443
\(855\) 0 0
\(856\) −13.6458 −0.466402
\(857\) −36.0000 −1.22974 −0.614868 0.788630i \(-0.710791\pi\)
−0.614868 + 0.788630i \(0.710791\pi\)
\(858\) 0 0
\(859\) 13.4170 0.457782 0.228891 0.973452i \(-0.426490\pi\)
0.228891 + 0.973452i \(0.426490\pi\)
\(860\) −0.583005 −0.0198803
\(861\) 0 0
\(862\) −33.8745 −1.15377
\(863\) −10.8340 −0.368793 −0.184397 0.982852i \(-0.559033\pi\)
−0.184397 + 0.982852i \(0.559033\pi\)
\(864\) 0 0
\(865\) 26.1255 0.888293
\(866\) 18.7085 0.635741
\(867\) 0 0
\(868\) 2.58301 0.0876729
\(869\) 14.1255 0.479175
\(870\) 0 0
\(871\) 79.0405 2.67819
\(872\) 18.2288 0.617304
\(873\) 0 0
\(874\) 0 0
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) −13.2915 −0.448822 −0.224411 0.974495i \(-0.572046\pi\)
−0.224411 + 0.974495i \(0.572046\pi\)
\(878\) 27.7490 0.936484
\(879\) 0 0
\(880\) −2.70850 −0.0913034
\(881\) 31.7490 1.06965 0.534826 0.844962i \(-0.320377\pi\)
0.534826 + 0.844962i \(0.320377\pi\)
\(882\) 0 0
\(883\) −7.29150 −0.245379 −0.122689 0.992445i \(-0.539152\pi\)
−0.122689 + 0.992445i \(0.539152\pi\)
\(884\) −17.4170 −0.585797
\(885\) 0 0
\(886\) −25.1660 −0.845469
\(887\) −25.7490 −0.864567 −0.432284 0.901738i \(-0.642292\pi\)
−0.432284 + 0.901738i \(0.642292\pi\)
\(888\) 0 0
\(889\) 21.1660 0.709885
\(890\) 0 0
\(891\) 0 0
\(892\) −19.8745 −0.665448
\(893\) 2.12549 0.0711269
\(894\) 0 0
\(895\) −25.1660 −0.841207
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) −11.4170 −0.380990
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 5.41699 0.180466
\(902\) 9.87451 0.328785
\(903\) 0 0
\(904\) 6.58301 0.218947
\(905\) −25.7490 −0.855926
\(906\) 0 0
\(907\) 45.5203 1.51148 0.755738 0.654874i \(-0.227278\pi\)
0.755738 + 0.654874i \(0.227278\pi\)
\(908\) −7.06275 −0.234385
\(909\) 0 0
\(910\) −17.4170 −0.577368
\(911\) 3.29150 0.109052 0.0545262 0.998512i \(-0.482635\pi\)
0.0545262 + 0.998512i \(0.482635\pi\)
\(912\) 0 0
\(913\) 22.4575 0.743235
\(914\) 0.125492 0.00415091
\(915\) 0 0
\(916\) −9.06275 −0.299442
\(917\) −43.7490 −1.44472
\(918\) 0 0
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −25.7490 −0.847999
\(923\) 31.7490 1.04503
\(924\) 0 0
\(925\) 15.8967 0.522681
\(926\) 21.1660 0.695558
\(927\) 0 0
\(928\) −9.29150 −0.305009
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 1.06275 0.0348301
\(932\) 0 0
\(933\) 0 0
\(934\) 13.6458 0.446503
\(935\) 8.91503 0.291553
\(936\) 0 0
\(937\) 28.5830 0.933766 0.466883 0.884319i \(-0.345377\pi\)
0.466883 + 0.884319i \(0.345377\pi\)
\(938\) −29.8745 −0.975437
\(939\) 0 0
\(940\) −9.87451 −0.322071
\(941\) −26.8118 −0.874038 −0.437019 0.899452i \(-0.643966\pi\)
−0.437019 + 0.899452i \(0.643966\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0.583005 0.0189551
\(947\) −2.12549 −0.0690692 −0.0345346 0.999404i \(-0.510995\pi\)
−0.0345346 + 0.999404i \(0.510995\pi\)
\(948\) 0 0
\(949\) −38.5830 −1.25246
\(950\) 0.811762 0.0263370
\(951\) 0 0
\(952\) 6.58301 0.213356
\(953\) −23.0405 −0.746356 −0.373178 0.927760i \(-0.621732\pi\)
−0.373178 + 0.927760i \(0.621732\pi\)
\(954\) 0 0
\(955\) 5.41699 0.175290
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) 42.5830 1.37579
\(959\) −43.7490 −1.41273
\(960\) 0 0
\(961\) −29.3320 −0.946194
\(962\) −36.7085 −1.18353
\(963\) 0 0
\(964\) −5.29150 −0.170428
\(965\) −36.2065 −1.16553
\(966\) 0 0
\(967\) 23.8745 0.767752 0.383876 0.923385i \(-0.374589\pi\)
0.383876 + 0.923385i \(0.374589\pi\)
\(968\) −8.29150 −0.266499
\(969\) 0 0
\(970\) 2.12549 0.0682454
\(971\) −20.2288 −0.649172 −0.324586 0.945856i \(-0.605225\pi\)
−0.324586 + 0.945856i \(0.605225\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) 21.1660 0.678203
\(975\) 0 0
\(976\) −0.354249 −0.0113392
\(977\) −21.8745 −0.699828 −0.349914 0.936782i \(-0.613789\pi\)
−0.349914 + 0.936782i \(0.613789\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −4.93725 −0.157715
\(981\) 0 0
\(982\) 21.8745 0.698044
\(983\) −21.8745 −0.697688 −0.348844 0.937181i \(-0.613426\pi\)
−0.348844 + 0.937181i \(0.613426\pi\)
\(984\) 0 0
\(985\) 9.87451 0.314628
\(986\) 30.5830 0.973961
\(987\) 0 0
\(988\) −1.87451 −0.0596360
\(989\) 0 0
\(990\) 0 0
\(991\) −14.4575 −0.459258 −0.229629 0.973278i \(-0.573751\pi\)
−0.229629 + 0.973278i \(0.573751\pi\)
\(992\) −1.29150 −0.0410052
\(993\) 0 0
\(994\) −12.0000 −0.380617
\(995\) −23.0405 −0.730434
\(996\) 0 0
\(997\) −40.5830 −1.28528 −0.642638 0.766170i \(-0.722160\pi\)
−0.642638 + 0.766170i \(0.722160\pi\)
\(998\) 31.0405 0.982570
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9522.2.a.bc.1.2 2
3.2 odd 2 9522.2.a.bb.1.1 2
23.22 odd 2 414.2.a.g.1.1 yes 2
69.68 even 2 414.2.a.e.1.2 2
92.91 even 2 3312.2.a.z.1.1 2
276.275 odd 2 3312.2.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
414.2.a.e.1.2 2 69.68 even 2
414.2.a.g.1.1 yes 2 23.22 odd 2
3312.2.a.v.1.2 2 276.275 odd 2
3312.2.a.z.1.1 2 92.91 even 2
9522.2.a.bb.1.1 2 3.2 odd 2
9522.2.a.bc.1.2 2 1.1 even 1 trivial