Newspace parameters
| Level: | \( N \) | \(=\) | \( 952 = 2^{3} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 952.s (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(7.60175827243\) |
| Analytic rank: | \(0\) |
| Dimension: | \(216\) |
| Relative dimension: | \(108\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 421.1 | −1.41171 | − | 0.0840655i | 0.875373 | − | 0.875373i | 1.98587 | + | 0.237353i | 2.76924 | − | 2.76924i | −1.30936 | + | 1.16219i | 0.707107 | − | 0.707107i | −2.78352 | − | 0.502017i | 1.46744i | −4.14218 | + | 3.67658i | ||
| 421.2 | −1.40876 | + | 0.124097i | −1.34257 | + | 1.34257i | 1.96920 | − | 0.349646i | 2.73870 | − | 2.73870i | 1.72475 | − | 2.05797i | −0.707107 | + | 0.707107i | −2.73074 | + | 0.736939i | − | 0.604996i | −3.51830 | + | 4.19802i | |
| 421.3 | −1.40841 | − | 0.127997i | 0.741274 | − | 0.741274i | 1.96723 | + | 0.360544i | −2.18213 | + | 2.18213i | −1.13890 | + | 0.949137i | −0.707107 | + | 0.707107i | −2.72452 | − | 0.759593i | 1.90102i | 3.35263 | − | 2.79402i | ||
| 421.4 | −1.40220 | + | 0.183965i | −0.228586 | + | 0.228586i | 1.93231 | − | 0.515911i | −1.81956 | + | 1.81956i | 0.278471 | − | 0.362574i | 0.707107 | − | 0.707107i | −2.61457 | + | 1.07889i | 2.89550i | 2.21664 | − | 2.88611i | ||
| 421.5 | −1.39987 | − | 0.200922i | 2.09682 | − | 2.09682i | 1.91926 | + | 0.562527i | 0.164543 | − | 0.164543i | −3.35657 | + | 2.51398i | 0.707107 | − | 0.707107i | −2.57369 | − | 1.17308i | − | 5.79332i | −0.263399 | + | 0.197278i | |
| 421.6 | −1.39898 | + | 0.207009i | 0.660275 | − | 0.660275i | 1.91429 | − | 0.579204i | 0.0855425 | − | 0.0855425i | −0.787029 | + | 1.06040i | −0.707107 | + | 0.707107i | −2.55816 | + | 1.20657i | 2.12807i | −0.101964 | + | 0.137380i | ||
| 421.7 | −1.39498 | + | 0.232457i | −1.18147 | + | 1.18147i | 1.89193 | − | 0.648545i | −2.00232 | + | 2.00232i | 1.37348 | − | 1.92276i | −0.707107 | + | 0.707107i | −2.48844 | + | 1.34450i | 0.208274i | 2.32774 | − | 3.25864i | ||
| 421.8 | −1.38700 | + | 0.276112i | −2.14609 | + | 2.14609i | 1.84752 | − | 0.765935i | 0.212977 | − | 0.212977i | 2.38406 | − | 3.56918i | 0.707107 | − | 0.707107i | −2.35103 | + | 1.57247i | − | 6.21139i | −0.236593 | + | 0.354204i | |
| 421.9 | −1.36959 | − | 0.352437i | 1.19854 | − | 1.19854i | 1.75158 | + | 0.965391i | −0.621263 | + | 0.621263i | −2.06392 | + | 1.21910i | 0.707107 | − | 0.707107i | −2.05871 | − | 1.93951i | 0.127012i | 1.06983 | − | 0.631922i | ||
| 421.10 | −1.36581 | − | 0.366847i | −1.09207 | + | 1.09207i | 1.73085 | + | 1.00208i | 0.248870 | − | 0.248870i | 1.89218 | − | 1.09093i | 0.707107 | − | 0.707107i | −1.99639 | − | 2.00360i | 0.614762i | −0.431206 | + | 0.248611i | ||
| 421.11 | −1.33788 | − | 0.458333i | 2.21425 | − | 2.21425i | 1.57986 | + | 1.22639i | −1.94010 | + | 1.94010i | −3.97728 | + | 1.94755i | −0.707107 | + | 0.707107i | −1.55158 | − | 2.36487i | − | 6.80584i | 3.48485 | − | 1.70642i | |
| 421.12 | −1.31525 | − | 0.519727i | 0.229425 | − | 0.229425i | 1.45977 | + | 1.36714i | 0.757209 | − | 0.757209i | −0.420991 | + | 0.182513i | −0.707107 | + | 0.707107i | −1.20942 | − | 2.55681i | 2.89473i | −1.38946 | + | 0.602378i | ||
| 421.13 | −1.30571 | + | 0.543253i | 0.265770 | − | 0.265770i | 1.40975 | − | 1.41866i | 1.57608 | − | 1.57608i | −0.202638 | + | 0.491399i | −0.707107 | + | 0.707107i | −1.07003 | + | 2.61821i | 2.85873i | −1.20169 | + | 2.91411i | ||
| 421.14 | −1.29470 | − | 0.568988i | −1.37745 | + | 1.37745i | 1.35251 | + | 1.47334i | −1.95944 | + | 1.95944i | 2.56714 | − | 0.999634i | −0.707107 | + | 0.707107i | −0.912778 | − | 2.67709i | − | 0.794737i | 3.65179 | − | 1.42199i | |
| 421.15 | −1.27820 | + | 0.605141i | −0.176712 | + | 0.176712i | 1.26761 | − | 1.54699i | 0.338110 | − | 0.338110i | 0.118938 | − | 0.332809i | 0.707107 | − | 0.707107i | −0.684114 | + | 2.74445i | 2.93755i | −0.227569 | + | 0.636778i | ||
| 421.16 | −1.26155 | + | 0.639135i | −1.75704 | + | 1.75704i | 1.18301 | − | 1.61260i | 2.35713 | − | 2.35713i | 1.09361 | − | 3.33959i | 0.707107 | − | 0.707107i | −0.461762 | + | 2.79048i | − | 3.17441i | −1.46711 | + | 4.48016i | |
| 421.17 | −1.22275 | + | 0.710547i | 1.87007 | − | 1.87007i | 0.990245 | − | 1.73765i | −1.87226 | + | 1.87226i | −0.957859 | + | 3.61541i | −0.707107 | + | 0.707107i | 0.0238547 | + | 2.82833i | − | 3.99433i | 0.958982 | − | 3.61964i | |
| 421.18 | −1.21076 | − | 0.730799i | 1.63412 | − | 1.63412i | 0.931865 | + | 1.76964i | 2.89515 | − | 2.89515i | −3.17274 | + | 0.784310i | −0.707107 | + | 0.707107i | 0.164990 | − | 2.82361i | − | 2.34072i | −5.62109 | + | 1.38955i | |
| 421.19 | −1.20590 | − | 0.738788i | 1.23543 | − | 1.23543i | 0.908383 | + | 1.78181i | −3.04729 | + | 3.04729i | −2.40252 | + | 0.577081i | 0.707107 | − | 0.707107i | 0.220961 | − | 2.81978i | − | 0.0525658i | 5.92602 | − | 1.42342i | |
| 421.20 | −1.19990 | + | 0.748495i | −1.76490 | + | 1.76490i | 0.879511 | − | 1.79623i | −1.06907 | + | 1.06907i | 0.796682 | − | 3.43872i | −0.707107 | + | 0.707107i | 0.289148 | + | 2.81361i | − | 3.22974i | 0.482581 | − | 2.08296i | |
| See next 80 embeddings (of 216 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 8.b | even | 2 | 1 | inner |
| 17.c | even | 4 | 1 | inner |
| 136.i | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 952.2.s.a | ✓ | 216 |
| 8.b | even | 2 | 1 | inner | 952.2.s.a | ✓ | 216 |
| 17.c | even | 4 | 1 | inner | 952.2.s.a | ✓ | 216 |
| 136.i | even | 4 | 1 | inner | 952.2.s.a | ✓ | 216 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 952.2.s.a | ✓ | 216 | 1.a | even | 1 | 1 | trivial |
| 952.2.s.a | ✓ | 216 | 8.b | even | 2 | 1 | inner |
| 952.2.s.a | ✓ | 216 | 17.c | even | 4 | 1 | inner |
| 952.2.s.a | ✓ | 216 | 136.i | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(952, [\chi])\).