Properties

Label 952.2.q.e.681.6
Level $952$
Weight $2$
Character 952.681
Analytic conductor $7.602$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(137,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 17 x^{12} - 18 x^{11} + 102 x^{10} - 59 x^{9} + 462 x^{8} - 28 x^{7} + 1148 x^{6} + \cdots + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 681.6
Root \(1.25290 + 2.17009i\) of defining polynomial
Character \(\chi\) \(=\) 952.681
Dual form 952.2.q.e.137.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25290 + 2.17009i) q^{3} +(-1.89712 + 3.28590i) q^{5} +(-2.54429 - 0.725680i) q^{7} +(-1.63954 + 2.83977i) q^{9} +(2.42361 + 4.19782i) q^{11} -2.44913 q^{13} -9.50763 q^{15} +(-0.500000 - 0.866025i) q^{17} +(3.49743 - 6.05772i) q^{19} +(-1.61295 - 6.43055i) q^{21} +(-2.10665 + 3.64882i) q^{23} +(-4.69811 - 8.13736i) q^{25} -0.699322 q^{27} +3.62181 q^{29} +(-1.59030 - 2.75449i) q^{31} +(-6.07310 + 10.5189i) q^{33} +(7.21132 - 6.98358i) q^{35} +(-2.00524 + 3.47317i) q^{37} +(-3.06852 - 5.31483i) q^{39} +4.63689 q^{41} -11.7265 q^{43} +(-6.22080 - 10.7747i) q^{45} +(-5.66509 + 9.81223i) q^{47} +(5.94678 + 3.69268i) q^{49} +(1.25290 - 2.17009i) q^{51} +(2.39539 + 4.14893i) q^{53} -18.3915 q^{55} +17.5278 q^{57} +(-4.87939 - 8.45135i) q^{59} +(4.77705 - 8.27409i) q^{61} +(6.23222 - 6.03540i) q^{63} +(4.64628 - 8.04759i) q^{65} +(6.54987 + 11.3447i) q^{67} -10.5577 q^{69} -0.382777 q^{71} +(0.295933 + 0.512572i) q^{73} +(11.7726 - 20.3907i) q^{75} +(-3.12008 - 12.4392i) q^{77} +(-4.39081 + 7.60510i) q^{79} +(4.04244 + 7.00171i) q^{81} -5.09035 q^{83} +3.79423 q^{85} +(4.53779 + 7.85968i) q^{87} +(-0.212764 + 0.368518i) q^{89} +(6.23127 + 1.77728i) q^{91} +(3.98500 - 6.90222i) q^{93} +(13.2701 + 22.9844i) q^{95} +1.02209 q^{97} -15.8944 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{3} - 2 q^{5} + 2 q^{7} - 4 q^{9} + 12 q^{11} + 4 q^{13} - 12 q^{15} - 7 q^{17} + 3 q^{19} + 18 q^{21} + 18 q^{23} - 15 q^{25} - 36 q^{27} + 10 q^{29} + 10 q^{31} - 21 q^{33} + 19 q^{35} - 11 q^{37}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.25290 + 2.17009i 0.723365 + 1.25290i 0.959644 + 0.281219i \(0.0907388\pi\)
−0.236279 + 0.971685i \(0.575928\pi\)
\(4\) 0 0
\(5\) −1.89712 + 3.28590i −0.848417 + 1.46950i 0.0342041 + 0.999415i \(0.489110\pi\)
−0.882621 + 0.470086i \(0.844223\pi\)
\(6\) 0 0
\(7\) −2.54429 0.725680i −0.961649 0.274281i
\(8\) 0 0
\(9\) −1.63954 + 2.83977i −0.546513 + 0.946589i
\(10\) 0 0
\(11\) 2.42361 + 4.19782i 0.730746 + 1.26569i 0.956565 + 0.291520i \(0.0941609\pi\)
−0.225819 + 0.974169i \(0.572506\pi\)
\(12\) 0 0
\(13\) −2.44913 −0.679265 −0.339633 0.940558i \(-0.610303\pi\)
−0.339633 + 0.940558i \(0.610303\pi\)
\(14\) 0 0
\(15\) −9.50763 −2.45486
\(16\) 0 0
\(17\) −0.500000 0.866025i −0.121268 0.210042i
\(18\) 0 0
\(19\) 3.49743 6.05772i 0.802365 1.38974i −0.115691 0.993285i \(-0.536908\pi\)
0.918056 0.396451i \(-0.129758\pi\)
\(20\) 0 0
\(21\) −1.61295 6.43055i −0.351975 1.40326i
\(22\) 0 0
\(23\) −2.10665 + 3.64882i −0.439266 + 0.760831i −0.997633 0.0687630i \(-0.978095\pi\)
0.558367 + 0.829594i \(0.311428\pi\)
\(24\) 0 0
\(25\) −4.69811 8.13736i −0.939621 1.62747i
\(26\) 0 0
\(27\) −0.699322 −0.134585
\(28\) 0 0
\(29\) 3.62181 0.672554 0.336277 0.941763i \(-0.390832\pi\)
0.336277 + 0.941763i \(0.390832\pi\)
\(30\) 0 0
\(31\) −1.59030 2.75449i −0.285627 0.494721i 0.687134 0.726531i \(-0.258869\pi\)
−0.972761 + 0.231810i \(0.925535\pi\)
\(32\) 0 0
\(33\) −6.07310 + 10.5189i −1.05719 + 1.83111i
\(34\) 0 0
\(35\) 7.21132 6.98358i 1.21894 1.18044i
\(36\) 0 0
\(37\) −2.00524 + 3.47317i −0.329659 + 0.570986i −0.982444 0.186557i \(-0.940267\pi\)
0.652785 + 0.757543i \(0.273600\pi\)
\(38\) 0 0
\(39\) −3.06852 5.31483i −0.491357 0.851055i
\(40\) 0 0
\(41\) 4.63689 0.724161 0.362080 0.932147i \(-0.382067\pi\)
0.362080 + 0.932147i \(0.382067\pi\)
\(42\) 0 0
\(43\) −11.7265 −1.78828 −0.894139 0.447790i \(-0.852211\pi\)
−0.894139 + 0.447790i \(0.852211\pi\)
\(44\) 0 0
\(45\) −6.22080 10.7747i −0.927342 1.60620i
\(46\) 0 0
\(47\) −5.66509 + 9.81223i −0.826339 + 1.43126i 0.0745531 + 0.997217i \(0.476247\pi\)
−0.900892 + 0.434044i \(0.857086\pi\)
\(48\) 0 0
\(49\) 5.94678 + 3.69268i 0.849539 + 0.527525i
\(50\) 0 0
\(51\) 1.25290 2.17009i 0.175442 0.303874i
\(52\) 0 0
\(53\) 2.39539 + 4.14893i 0.329032 + 0.569900i 0.982320 0.187210i \(-0.0599443\pi\)
−0.653288 + 0.757109i \(0.726611\pi\)
\(54\) 0 0
\(55\) −18.3915 −2.47991
\(56\) 0 0
\(57\) 17.5278 2.32161
\(58\) 0 0
\(59\) −4.87939 8.45135i −0.635242 1.10027i −0.986464 0.163980i \(-0.947567\pi\)
0.351221 0.936292i \(-0.385766\pi\)
\(60\) 0 0
\(61\) 4.77705 8.27409i 0.611638 1.05939i −0.379326 0.925263i \(-0.623844\pi\)
0.990964 0.134126i \(-0.0428226\pi\)
\(62\) 0 0
\(63\) 6.23222 6.03540i 0.785186 0.760388i
\(64\) 0 0
\(65\) 4.64628 8.04759i 0.576300 0.998181i
\(66\) 0 0
\(67\) 6.54987 + 11.3447i 0.800194 + 1.38598i 0.919488 + 0.393118i \(0.128603\pi\)
−0.119294 + 0.992859i \(0.538063\pi\)
\(68\) 0 0
\(69\) −10.5577 −1.27100
\(70\) 0 0
\(71\) −0.382777 −0.0454273 −0.0227136 0.999742i \(-0.507231\pi\)
−0.0227136 + 0.999742i \(0.507231\pi\)
\(72\) 0 0
\(73\) 0.295933 + 0.512572i 0.0346364 + 0.0599920i 0.882824 0.469704i \(-0.155639\pi\)
−0.848188 + 0.529696i \(0.822306\pi\)
\(74\) 0 0
\(75\) 11.7726 20.3907i 1.35938 2.35451i
\(76\) 0 0
\(77\) −3.12008 12.4392i −0.355566 1.41758i
\(78\) 0 0
\(79\) −4.39081 + 7.60510i −0.494004 + 0.855641i −0.999976 0.00690944i \(-0.997801\pi\)
0.505972 + 0.862550i \(0.331134\pi\)
\(80\) 0 0
\(81\) 4.04244 + 7.00171i 0.449160 + 0.777967i
\(82\) 0 0
\(83\) −5.09035 −0.558738 −0.279369 0.960184i \(-0.590125\pi\)
−0.279369 + 0.960184i \(0.590125\pi\)
\(84\) 0 0
\(85\) 3.79423 0.411542
\(86\) 0 0
\(87\) 4.53779 + 7.85968i 0.486502 + 0.842646i
\(88\) 0 0
\(89\) −0.212764 + 0.368518i −0.0225530 + 0.0390629i −0.877082 0.480341i \(-0.840513\pi\)
0.854529 + 0.519404i \(0.173846\pi\)
\(90\) 0 0
\(91\) 6.23127 + 1.77728i 0.653215 + 0.186310i
\(92\) 0 0
\(93\) 3.98500 6.90222i 0.413225 0.715727i
\(94\) 0 0
\(95\) 13.2701 + 22.9844i 1.36148 + 2.35815i
\(96\) 0 0
\(97\) 1.02209 0.103778 0.0518889 0.998653i \(-0.483476\pi\)
0.0518889 + 0.998653i \(0.483476\pi\)
\(98\) 0 0
\(99\) −15.8944 −1.59745
\(100\) 0 0
\(101\) 1.19287 + 2.06611i 0.118695 + 0.205586i 0.919251 0.393672i \(-0.128796\pi\)
−0.800556 + 0.599258i \(0.795462\pi\)
\(102\) 0 0
\(103\) 3.08448 5.34248i 0.303923 0.526410i −0.673098 0.739553i \(-0.735037\pi\)
0.977021 + 0.213143i \(0.0683701\pi\)
\(104\) 0 0
\(105\) 24.1901 + 6.89950i 2.36071 + 0.673322i
\(106\) 0 0
\(107\) −3.37802 + 5.85090i −0.326565 + 0.565628i −0.981828 0.189773i \(-0.939225\pi\)
0.655263 + 0.755401i \(0.272558\pi\)
\(108\) 0 0
\(109\) 5.62300 + 9.73932i 0.538586 + 0.932858i 0.998981 + 0.0451438i \(0.0143746\pi\)
−0.460395 + 0.887714i \(0.652292\pi\)
\(110\) 0 0
\(111\) −10.0495 −0.953855
\(112\) 0 0
\(113\) −12.2360 −1.15107 −0.575534 0.817778i \(-0.695206\pi\)
−0.575534 + 0.817778i \(0.695206\pi\)
\(114\) 0 0
\(115\) −7.99311 13.8445i −0.745361 1.29100i
\(116\) 0 0
\(117\) 4.01544 6.95495i 0.371228 0.642985i
\(118\) 0 0
\(119\) 0.643685 + 2.56626i 0.0590065 + 0.235248i
\(120\) 0 0
\(121\) −6.24777 + 10.8215i −0.567979 + 0.983769i
\(122\) 0 0
\(123\) 5.80958 + 10.0625i 0.523833 + 0.907305i
\(124\) 0 0
\(125\) 16.6803 1.49193
\(126\) 0 0
\(127\) 0.800731 0.0710534 0.0355267 0.999369i \(-0.488689\pi\)
0.0355267 + 0.999369i \(0.488689\pi\)
\(128\) 0 0
\(129\) −14.6922 25.4477i −1.29358 2.24054i
\(130\) 0 0
\(131\) −9.57796 + 16.5895i −0.836830 + 1.44943i 0.0557011 + 0.998447i \(0.482261\pi\)
−0.892531 + 0.450985i \(0.851073\pi\)
\(132\) 0 0
\(133\) −13.2944 + 12.8746i −1.15277 + 1.11637i
\(134\) 0 0
\(135\) 1.32670 2.29791i 0.114184 0.197772i
\(136\) 0 0
\(137\) 2.26621 + 3.92519i 0.193615 + 0.335352i 0.946446 0.322863i \(-0.104645\pi\)
−0.752830 + 0.658215i \(0.771312\pi\)
\(138\) 0 0
\(139\) −13.9470 −1.18297 −0.591483 0.806318i \(-0.701457\pi\)
−0.591483 + 0.806318i \(0.701457\pi\)
\(140\) 0 0
\(141\) −28.3913 −2.39098
\(142\) 0 0
\(143\) −5.93573 10.2810i −0.496370 0.859739i
\(144\) 0 0
\(145\) −6.87101 + 11.9009i −0.570606 + 0.988319i
\(146\) 0 0
\(147\) −0.562712 + 17.5316i −0.0464117 + 1.44599i
\(148\) 0 0
\(149\) 9.28211 16.0771i 0.760420 1.31709i −0.182215 0.983259i \(-0.558327\pi\)
0.942634 0.333827i \(-0.108340\pi\)
\(150\) 0 0
\(151\) 10.1905 + 17.6505i 0.829292 + 1.43638i 0.898595 + 0.438780i \(0.144589\pi\)
−0.0693029 + 0.997596i \(0.522078\pi\)
\(152\) 0 0
\(153\) 3.27908 0.265098
\(154\) 0 0
\(155\) 12.0680 0.969323
\(156\) 0 0
\(157\) −0.0958880 0.166083i −0.00765269 0.0132549i 0.862174 0.506613i \(-0.169103\pi\)
−0.869826 + 0.493358i \(0.835769\pi\)
\(158\) 0 0
\(159\) −6.00238 + 10.3964i −0.476020 + 0.824491i
\(160\) 0 0
\(161\) 8.00778 7.75488i 0.631102 0.611170i
\(162\) 0 0
\(163\) 7.22187 12.5086i 0.565660 0.979753i −0.431327 0.902195i \(-0.641955\pi\)
0.996988 0.0775572i \(-0.0247120\pi\)
\(164\) 0 0
\(165\) −23.0428 39.9113i −1.79388 3.10709i
\(166\) 0 0
\(167\) −0.601637 −0.0465561 −0.0232780 0.999729i \(-0.507410\pi\)
−0.0232780 + 0.999729i \(0.507410\pi\)
\(168\) 0 0
\(169\) −7.00178 −0.538599
\(170\) 0 0
\(171\) 11.4683 + 19.8638i 0.877006 + 1.51902i
\(172\) 0 0
\(173\) 2.94987 5.10933i 0.224275 0.388455i −0.731827 0.681491i \(-0.761332\pi\)
0.956102 + 0.293035i \(0.0946654\pi\)
\(174\) 0 0
\(175\) 6.04820 + 24.1131i 0.457201 + 1.82278i
\(176\) 0 0
\(177\) 12.2268 21.1775i 0.919024 1.59180i
\(178\) 0 0
\(179\) 4.46766 + 7.73822i 0.333929 + 0.578381i 0.983278 0.182109i \(-0.0582922\pi\)
−0.649350 + 0.760490i \(0.724959\pi\)
\(180\) 0 0
\(181\) 19.7947 1.47133 0.735663 0.677347i \(-0.236871\pi\)
0.735663 + 0.677347i \(0.236871\pi\)
\(182\) 0 0
\(183\) 23.9407 1.76975
\(184\) 0 0
\(185\) −7.60834 13.1780i −0.559376 0.968868i
\(186\) 0 0
\(187\) 2.42361 4.19782i 0.177232 0.306975i
\(188\) 0 0
\(189\) 1.77928 + 0.507485i 0.129423 + 0.0369141i
\(190\) 0 0
\(191\) −9.98992 + 17.3031i −0.722845 + 1.25200i 0.237009 + 0.971507i \(0.423833\pi\)
−0.959855 + 0.280497i \(0.909501\pi\)
\(192\) 0 0
\(193\) 10.7977 + 18.7022i 0.777237 + 1.34621i 0.933528 + 0.358503i \(0.116713\pi\)
−0.156291 + 0.987711i \(0.549954\pi\)
\(194\) 0 0
\(195\) 23.2854 1.66750
\(196\) 0 0
\(197\) 19.6358 1.39900 0.699498 0.714635i \(-0.253407\pi\)
0.699498 + 0.714635i \(0.253407\pi\)
\(198\) 0 0
\(199\) −10.1784 17.6295i −0.721529 1.24973i −0.960387 0.278670i \(-0.910106\pi\)
0.238858 0.971055i \(-0.423227\pi\)
\(200\) 0 0
\(201\) −16.4127 + 28.4277i −1.15766 + 2.00513i
\(202\) 0 0
\(203\) −9.21493 2.62828i −0.646761 0.184469i
\(204\) 0 0
\(205\) −8.79673 + 15.2364i −0.614390 + 1.06415i
\(206\) 0 0
\(207\) −6.90786 11.9648i −0.480130 0.831609i
\(208\) 0 0
\(209\) 33.9056 2.34530
\(210\) 0 0
\(211\) −8.61581 −0.593137 −0.296569 0.955012i \(-0.595842\pi\)
−0.296569 + 0.955012i \(0.595842\pi\)
\(212\) 0 0
\(213\) −0.479583 0.830663i −0.0328605 0.0569161i
\(214\) 0 0
\(215\) 22.2466 38.5322i 1.51720 2.62787i
\(216\) 0 0
\(217\) 2.04731 + 8.16226i 0.138981 + 0.554090i
\(218\) 0 0
\(219\) −0.741553 + 1.28441i −0.0501095 + 0.0867922i
\(220\) 0 0
\(221\) 1.22456 + 2.12101i 0.0823730 + 0.142674i
\(222\) 0 0
\(223\) −11.1008 −0.743366 −0.371683 0.928360i \(-0.621219\pi\)
−0.371683 + 0.928360i \(0.621219\pi\)
\(224\) 0 0
\(225\) 30.8109 2.05406
\(226\) 0 0
\(227\) 11.9154 + 20.6381i 0.790854 + 1.36980i 0.925439 + 0.378897i \(0.123697\pi\)
−0.134584 + 0.990902i \(0.542970\pi\)
\(228\) 0 0
\(229\) −3.26882 + 5.66176i −0.216010 + 0.374140i −0.953584 0.301126i \(-0.902638\pi\)
0.737575 + 0.675266i \(0.235971\pi\)
\(230\) 0 0
\(231\) 23.0851 22.3560i 1.51889 1.47092i
\(232\) 0 0
\(233\) 10.3810 17.9803i 0.680079 1.17793i −0.294877 0.955535i \(-0.595279\pi\)
0.974956 0.222397i \(-0.0713880\pi\)
\(234\) 0 0
\(235\) −21.4947 37.2299i −1.40216 2.42861i
\(236\) 0 0
\(237\) −22.0050 −1.42938
\(238\) 0 0
\(239\) −12.1185 −0.783884 −0.391942 0.919990i \(-0.628197\pi\)
−0.391942 + 0.919990i \(0.628197\pi\)
\(240\) 0 0
\(241\) 9.29257 + 16.0952i 0.598587 + 1.03678i 0.993030 + 0.117862i \(0.0376042\pi\)
−0.394443 + 0.918920i \(0.629063\pi\)
\(242\) 0 0
\(243\) −11.1786 + 19.3618i −0.717105 + 1.24206i
\(244\) 0 0
\(245\) −23.4155 + 12.5351i −1.49596 + 0.800838i
\(246\) 0 0
\(247\) −8.56564 + 14.8361i −0.545018 + 0.944000i
\(248\) 0 0
\(249\) −6.37772 11.0465i −0.404172 0.700046i
\(250\) 0 0
\(251\) 21.3552 1.34793 0.673966 0.738763i \(-0.264590\pi\)
0.673966 + 0.738763i \(0.264590\pi\)
\(252\) 0 0
\(253\) −20.4228 −1.28397
\(254\) 0 0
\(255\) 4.75381 + 8.23385i 0.297695 + 0.515624i
\(256\) 0 0
\(257\) 1.37406 2.37994i 0.0857113 0.148456i −0.819983 0.572388i \(-0.806017\pi\)
0.905694 + 0.423932i \(0.139350\pi\)
\(258\) 0 0
\(259\) 7.62231 7.38158i 0.473627 0.458669i
\(260\) 0 0
\(261\) −5.93811 + 10.2851i −0.367560 + 0.636632i
\(262\) 0 0
\(263\) −2.11910 3.67040i −0.130670 0.226326i 0.793265 0.608876i \(-0.208379\pi\)
−0.923935 + 0.382550i \(0.875046\pi\)
\(264\) 0 0
\(265\) −18.1773 −1.11662
\(266\) 0 0
\(267\) −1.06629 −0.0652561
\(268\) 0 0
\(269\) 1.39595 + 2.41785i 0.0851123 + 0.147419i 0.905439 0.424476i \(-0.139542\pi\)
−0.820327 + 0.571895i \(0.806208\pi\)
\(270\) 0 0
\(271\) 14.1315 24.4765i 0.858428 1.48684i −0.0150004 0.999887i \(-0.504775\pi\)
0.873428 0.486953i \(-0.161892\pi\)
\(272\) 0 0
\(273\) 3.95032 + 15.7492i 0.239084 + 0.953186i
\(274\) 0 0
\(275\) 22.7728 39.4436i 1.37325 2.37854i
\(276\) 0 0
\(277\) 1.50831 + 2.61247i 0.0906256 + 0.156968i 0.907775 0.419458i \(-0.137780\pi\)
−0.817149 + 0.576427i \(0.804447\pi\)
\(278\) 0 0
\(279\) 10.4295 0.624396
\(280\) 0 0
\(281\) −7.02716 −0.419205 −0.209602 0.977787i \(-0.567217\pi\)
−0.209602 + 0.977787i \(0.567217\pi\)
\(282\) 0 0
\(283\) 4.25950 + 7.37767i 0.253201 + 0.438557i 0.964405 0.264428i \(-0.0851833\pi\)
−0.711204 + 0.702985i \(0.751850\pi\)
\(284\) 0 0
\(285\) −33.2522 + 57.5945i −1.96969 + 3.41161i
\(286\) 0 0
\(287\) −11.7976 3.36490i −0.696389 0.198624i
\(288\) 0 0
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) 1.28058 + 2.21804i 0.0750692 + 0.130024i
\(292\) 0 0
\(293\) 6.99134 0.408438 0.204219 0.978925i \(-0.434534\pi\)
0.204219 + 0.978925i \(0.434534\pi\)
\(294\) 0 0
\(295\) 37.0271 2.15580
\(296\) 0 0
\(297\) −1.69488 2.93563i −0.0983472 0.170342i
\(298\) 0 0
\(299\) 5.15944 8.93641i 0.298378 0.516806i
\(300\) 0 0
\(301\) 29.8356 + 8.50970i 1.71970 + 0.490491i
\(302\) 0 0
\(303\) −2.98911 + 5.17728i −0.171720 + 0.297427i
\(304\) 0 0
\(305\) 18.1252 + 31.3938i 1.03785 + 1.79761i
\(306\) 0 0
\(307\) 29.8285 1.70240 0.851201 0.524840i \(-0.175875\pi\)
0.851201 + 0.524840i \(0.175875\pi\)
\(308\) 0 0
\(309\) 15.4582 0.879389
\(310\) 0 0
\(311\) −4.38236 7.59047i −0.248501 0.430416i 0.714609 0.699524i \(-0.246605\pi\)
−0.963110 + 0.269108i \(0.913271\pi\)
\(312\) 0 0
\(313\) −3.91210 + 6.77596i −0.221125 + 0.383000i −0.955150 0.296123i \(-0.904306\pi\)
0.734025 + 0.679123i \(0.237640\pi\)
\(314\) 0 0
\(315\) 8.00847 + 31.9283i 0.451226 + 1.79896i
\(316\) 0 0
\(317\) 7.98415 13.8290i 0.448435 0.776711i −0.549850 0.835264i \(-0.685315\pi\)
0.998284 + 0.0585522i \(0.0186484\pi\)
\(318\) 0 0
\(319\) 8.77787 + 15.2037i 0.491466 + 0.851244i
\(320\) 0 0
\(321\) −16.9293 −0.944903
\(322\) 0 0
\(323\) −6.99485 −0.389204
\(324\) 0 0
\(325\) 11.5063 + 19.9294i 0.638252 + 1.10549i
\(326\) 0 0
\(327\) −14.0902 + 24.4049i −0.779188 + 1.34959i
\(328\) 0 0
\(329\) 21.5342 20.8541i 1.18722 1.14972i
\(330\) 0 0
\(331\) 8.67544 15.0263i 0.476845 0.825920i −0.522803 0.852454i \(-0.675114\pi\)
0.999648 + 0.0265335i \(0.00844686\pi\)
\(332\) 0 0
\(333\) −6.57533 11.3888i −0.360326 0.624103i
\(334\) 0 0
\(335\) −49.7035 −2.71559
\(336\) 0 0
\(337\) 28.3325 1.54337 0.771685 0.636005i \(-0.219414\pi\)
0.771685 + 0.636005i \(0.219414\pi\)
\(338\) 0 0
\(339\) −15.3306 26.5533i −0.832642 1.44218i
\(340\) 0 0
\(341\) 7.70856 13.3516i 0.417442 0.723030i
\(342\) 0 0
\(343\) −12.4506 13.7107i −0.672269 0.740307i
\(344\) 0 0
\(345\) 20.0292 34.6916i 1.07834 1.86773i
\(346\) 0 0
\(347\) −5.68798 9.85188i −0.305347 0.528876i 0.671992 0.740559i \(-0.265439\pi\)
−0.977339 + 0.211682i \(0.932106\pi\)
\(348\) 0 0
\(349\) −22.5889 −1.20915 −0.604577 0.796547i \(-0.706658\pi\)
−0.604577 + 0.796547i \(0.706658\pi\)
\(350\) 0 0
\(351\) 1.71273 0.0914187
\(352\) 0 0
\(353\) −5.35720 9.27894i −0.285135 0.493868i 0.687507 0.726178i \(-0.258705\pi\)
−0.972642 + 0.232310i \(0.925372\pi\)
\(354\) 0 0
\(355\) 0.726173 1.25777i 0.0385413 0.0667554i
\(356\) 0 0
\(357\) −4.76254 + 4.61213i −0.252060 + 0.244100i
\(358\) 0 0
\(359\) 17.1649 29.7304i 0.905928 1.56911i 0.0862609 0.996273i \(-0.472508\pi\)
0.819667 0.572840i \(-0.194159\pi\)
\(360\) 0 0
\(361\) −14.9640 25.9184i −0.787578 1.36412i
\(362\) 0 0
\(363\) −31.3114 −1.64342
\(364\) 0 0
\(365\) −2.24568 −0.117544
\(366\) 0 0
\(367\) 9.55179 + 16.5442i 0.498599 + 0.863599i 0.999999 0.00161682i \(-0.000514651\pi\)
−0.501400 + 0.865216i \(0.667181\pi\)
\(368\) 0 0
\(369\) −7.60237 + 13.1677i −0.395764 + 0.685483i
\(370\) 0 0
\(371\) −3.08375 12.2944i −0.160100 0.638291i
\(372\) 0 0
\(373\) 7.94904 13.7681i 0.411585 0.712887i −0.583478 0.812129i \(-0.698309\pi\)
0.995063 + 0.0992421i \(0.0316418\pi\)
\(374\) 0 0
\(375\) 20.8988 + 36.1978i 1.07921 + 1.86924i
\(376\) 0 0
\(377\) −8.87028 −0.456843
\(378\) 0 0
\(379\) −15.4844 −0.795382 −0.397691 0.917519i \(-0.630188\pi\)
−0.397691 + 0.917519i \(0.630188\pi\)
\(380\) 0 0
\(381\) 1.00324 + 1.73766i 0.0513975 + 0.0890231i
\(382\) 0 0
\(383\) 5.33007 9.23195i 0.272354 0.471730i −0.697110 0.716964i \(-0.745531\pi\)
0.969464 + 0.245233i \(0.0788646\pi\)
\(384\) 0 0
\(385\) 46.7932 + 13.3463i 2.38480 + 0.680193i
\(386\) 0 0
\(387\) 19.2261 33.3006i 0.977317 1.69276i
\(388\) 0 0
\(389\) 4.51583 + 7.82165i 0.228962 + 0.396573i 0.957501 0.288431i \(-0.0931336\pi\)
−0.728539 + 0.685004i \(0.759800\pi\)
\(390\) 0 0
\(391\) 4.21329 0.213075
\(392\) 0 0
\(393\) −48.0011 −2.42133
\(394\) 0 0
\(395\) −16.6597 28.8555i −0.838243 1.45188i
\(396\) 0 0
\(397\) 3.78845 6.56178i 0.190137 0.329326i −0.755159 0.655542i \(-0.772440\pi\)
0.945295 + 0.326216i \(0.105774\pi\)
\(398\) 0 0
\(399\) −44.5956 12.7196i −2.23257 0.636774i
\(400\) 0 0
\(401\) −3.01951 + 5.22994i −0.150787 + 0.261171i −0.931517 0.363698i \(-0.881514\pi\)
0.780730 + 0.624869i \(0.214847\pi\)
\(402\) 0 0
\(403\) 3.89486 + 6.74609i 0.194017 + 0.336047i
\(404\) 0 0
\(405\) −30.6759 −1.52430
\(406\) 0 0
\(407\) −19.4396 −0.963587
\(408\) 0 0
\(409\) 5.68422 + 9.84536i 0.281067 + 0.486822i 0.971648 0.236433i \(-0.0759785\pi\)
−0.690581 + 0.723255i \(0.742645\pi\)
\(410\) 0 0
\(411\) −5.67869 + 9.83578i −0.280109 + 0.485163i
\(412\) 0 0
\(413\) 6.28158 + 25.0435i 0.309096 + 1.23231i
\(414\) 0 0
\(415\) 9.65699 16.7264i 0.474043 0.821067i
\(416\) 0 0
\(417\) −17.4742 30.2662i −0.855716 1.48214i
\(418\) 0 0
\(419\) −7.81481 −0.381778 −0.190889 0.981612i \(-0.561137\pi\)
−0.190889 + 0.981612i \(0.561137\pi\)
\(420\) 0 0
\(421\) −10.9355 −0.532964 −0.266482 0.963840i \(-0.585861\pi\)
−0.266482 + 0.963840i \(0.585861\pi\)
\(422\) 0 0
\(423\) −18.5763 32.1751i −0.903210 1.56441i
\(424\) 0 0
\(425\) −4.69811 + 8.13736i −0.227892 + 0.394720i
\(426\) 0 0
\(427\) −18.1585 + 17.5850i −0.878752 + 0.851000i
\(428\) 0 0
\(429\) 14.8738 25.7622i 0.718114 1.24381i
\(430\) 0 0
\(431\) 9.48300 + 16.4250i 0.456780 + 0.791166i 0.998789 0.0492067i \(-0.0156693\pi\)
−0.542009 + 0.840373i \(0.682336\pi\)
\(432\) 0 0
\(433\) −2.06964 −0.0994607 −0.0497304 0.998763i \(-0.515836\pi\)
−0.0497304 + 0.998763i \(0.515836\pi\)
\(434\) 0 0
\(435\) −34.4349 −1.65103
\(436\) 0 0
\(437\) 14.7357 + 25.5229i 0.704903 + 1.22093i
\(438\) 0 0
\(439\) 16.9081 29.2858i 0.806981 1.39773i −0.107964 0.994155i \(-0.534433\pi\)
0.914945 0.403578i \(-0.132234\pi\)
\(440\) 0 0
\(441\) −20.2363 + 10.8332i −0.963634 + 0.515865i
\(442\) 0 0
\(443\) −4.48752 + 7.77261i −0.213208 + 0.369288i −0.952717 0.303859i \(-0.901725\pi\)
0.739508 + 0.673147i \(0.235058\pi\)
\(444\) 0 0
\(445\) −0.807277 1.39824i −0.0382686 0.0662832i
\(446\) 0 0
\(447\) 46.5184 2.20024
\(448\) 0 0
\(449\) −17.8245 −0.841190 −0.420595 0.907249i \(-0.638179\pi\)
−0.420595 + 0.907249i \(0.638179\pi\)
\(450\) 0 0
\(451\) 11.2380 + 19.4648i 0.529178 + 0.916562i
\(452\) 0 0
\(453\) −25.5355 + 44.2287i −1.19976 + 2.07805i
\(454\) 0 0
\(455\) −17.6614 + 17.1037i −0.827981 + 0.801832i
\(456\) 0 0
\(457\) −8.90163 + 15.4181i −0.416401 + 0.721227i −0.995574 0.0939771i \(-0.970042\pi\)
0.579174 + 0.815204i \(0.303375\pi\)
\(458\) 0 0
\(459\) 0.349661 + 0.605631i 0.0163208 + 0.0282684i
\(460\) 0 0
\(461\) −1.49574 −0.0696634 −0.0348317 0.999393i \(-0.511090\pi\)
−0.0348317 + 0.999393i \(0.511090\pi\)
\(462\) 0 0
\(463\) −18.5747 −0.863238 −0.431619 0.902056i \(-0.642057\pi\)
−0.431619 + 0.902056i \(0.642057\pi\)
\(464\) 0 0
\(465\) 15.1200 + 26.1887i 0.701174 + 1.21447i
\(466\) 0 0
\(467\) −3.76900 + 6.52810i −0.174408 + 0.302084i −0.939956 0.341295i \(-0.889135\pi\)
0.765548 + 0.643379i \(0.222468\pi\)
\(468\) 0 0
\(469\) −8.43211 33.6173i −0.389359 1.55230i
\(470\) 0 0
\(471\) 0.240277 0.416172i 0.0110714 0.0191762i
\(472\) 0 0
\(473\) −28.4205 49.2258i −1.30678 2.26340i
\(474\) 0 0
\(475\) −65.7251 −3.01568
\(476\) 0 0
\(477\) −15.7093 −0.719281
\(478\) 0 0
\(479\) 17.3354 + 30.0257i 0.792073 + 1.37191i 0.924681 + 0.380742i \(0.124332\pi\)
−0.132608 + 0.991169i \(0.542335\pi\)
\(480\) 0 0
\(481\) 4.91108 8.50623i 0.223926 0.387851i
\(482\) 0 0
\(483\) 26.8618 + 7.66152i 1.22225 + 0.348611i
\(484\) 0 0
\(485\) −1.93903 + 3.35850i −0.0880468 + 0.152501i
\(486\) 0 0
\(487\) −6.84046 11.8480i −0.309971 0.536886i 0.668385 0.743816i \(-0.266986\pi\)
−0.978356 + 0.206930i \(0.933653\pi\)
\(488\) 0 0
\(489\) 36.1933 1.63672
\(490\) 0 0
\(491\) 37.3533 1.68573 0.842865 0.538124i \(-0.180867\pi\)
0.842865 + 0.538124i \(0.180867\pi\)
\(492\) 0 0
\(493\) −1.81091 3.13658i −0.0815592 0.141265i
\(494\) 0 0
\(495\) 30.1536 52.2275i 1.35530 2.34745i
\(496\) 0 0
\(497\) 0.973894 + 0.277774i 0.0436851 + 0.0124599i
\(498\) 0 0
\(499\) −4.34280 + 7.52195i −0.194410 + 0.336729i −0.946707 0.322096i \(-0.895613\pi\)
0.752297 + 0.658825i \(0.228946\pi\)
\(500\) 0 0
\(501\) −0.753794 1.30561i −0.0336770 0.0583304i
\(502\) 0 0
\(503\) −15.1280 −0.674523 −0.337261 0.941411i \(-0.609501\pi\)
−0.337261 + 0.941411i \(0.609501\pi\)
\(504\) 0 0
\(505\) −9.05206 −0.402811
\(506\) 0 0
\(507\) −8.77257 15.1945i −0.389603 0.674813i
\(508\) 0 0
\(509\) −3.06228 + 5.30403i −0.135733 + 0.235097i −0.925877 0.377824i \(-0.876672\pi\)
0.790144 + 0.612921i \(0.210006\pi\)
\(510\) 0 0
\(511\) −0.380976 1.51888i −0.0168534 0.0671914i
\(512\) 0 0
\(513\) −2.44583 + 4.23630i −0.107986 + 0.187037i
\(514\) 0 0
\(515\) 11.7032 + 20.2706i 0.515706 + 0.893230i
\(516\) 0 0
\(517\) −54.9199 −2.41537
\(518\) 0 0
\(519\) 14.7836 0.648930
\(520\) 0 0
\(521\) −5.98786 10.3713i −0.262333 0.454374i 0.704528 0.709676i \(-0.251159\pi\)
−0.966861 + 0.255302i \(0.917825\pi\)
\(522\) 0 0
\(523\) −18.1217 + 31.3876i −0.792405 + 1.37249i 0.132069 + 0.991241i \(0.457838\pi\)
−0.924474 + 0.381245i \(0.875495\pi\)
\(524\) 0 0
\(525\) −44.7499 + 43.3366i −1.95304 + 1.89136i
\(526\) 0 0
\(527\) −1.59030 + 2.75449i −0.0692748 + 0.119987i
\(528\) 0 0
\(529\) 2.62409 + 4.54505i 0.114091 + 0.197611i
\(530\) 0 0
\(531\) 31.9998 1.38867
\(532\) 0 0
\(533\) −11.3563 −0.491897
\(534\) 0 0
\(535\) −12.8170 22.1997i −0.554127 0.959776i
\(536\) 0 0
\(537\) −11.1951 + 19.3905i −0.483104 + 0.836761i
\(538\) 0 0
\(539\) −1.08851 + 33.9131i −0.0468853 + 1.46074i
\(540\) 0 0
\(541\) −6.09082 + 10.5496i −0.261865 + 0.453563i −0.966737 0.255771i \(-0.917671\pi\)
0.704873 + 0.709334i \(0.251004\pi\)
\(542\) 0 0
\(543\) 24.8008 + 42.9563i 1.06431 + 1.84343i
\(544\) 0 0
\(545\) −42.6700 −1.82778
\(546\) 0 0
\(547\) −32.7211 −1.39905 −0.699526 0.714607i \(-0.746605\pi\)
−0.699526 + 0.714607i \(0.746605\pi\)
\(548\) 0 0
\(549\) 15.6643 + 27.1314i 0.668537 + 1.15794i
\(550\) 0 0
\(551\) 12.6670 21.9399i 0.539634 0.934673i
\(552\) 0 0
\(553\) 16.6903 16.1632i 0.709745 0.687330i
\(554\) 0 0
\(555\) 19.0650 33.0216i 0.809266 1.40169i
\(556\) 0 0
\(557\) −12.8868 22.3207i −0.546033 0.945757i −0.998541 0.0539964i \(-0.982804\pi\)
0.452508 0.891760i \(-0.350529\pi\)
\(558\) 0 0
\(559\) 28.7197 1.21471
\(560\) 0 0
\(561\) 12.1462 0.512813
\(562\) 0 0
\(563\) −18.7259 32.4342i −0.789202 1.36694i −0.926456 0.376402i \(-0.877161\pi\)
0.137254 0.990536i \(-0.456172\pi\)
\(564\) 0 0
\(565\) 23.2132 40.2064i 0.976585 1.69149i
\(566\) 0 0
\(567\) −5.20411 20.7479i −0.218552 0.871328i
\(568\) 0 0
\(569\) −21.3286 + 36.9423i −0.894143 + 1.54870i −0.0592815 + 0.998241i \(0.518881\pi\)
−0.834862 + 0.550460i \(0.814452\pi\)
\(570\) 0 0
\(571\) −6.22898 10.7889i −0.260675 0.451502i 0.705747 0.708464i \(-0.250612\pi\)
−0.966421 + 0.256963i \(0.917278\pi\)
\(572\) 0 0
\(573\) −50.0657 −2.09152
\(574\) 0 0
\(575\) 39.5890 1.65098
\(576\) 0 0
\(577\) 19.8446 + 34.3718i 0.826141 + 1.43092i 0.901044 + 0.433727i \(0.142802\pi\)
−0.0749035 + 0.997191i \(0.523865\pi\)
\(578\) 0 0
\(579\) −27.0570 + 46.8642i −1.12445 + 1.94761i
\(580\) 0 0
\(581\) 12.9513 + 3.69397i 0.537311 + 0.153252i
\(582\) 0 0
\(583\) −11.6110 + 20.1108i −0.480877 + 0.832904i
\(584\) 0 0
\(585\) 15.2355 + 26.3887i 0.629911 + 1.09104i
\(586\) 0 0
\(587\) 9.17691 0.378772 0.189386 0.981903i \(-0.439350\pi\)
0.189386 + 0.981903i \(0.439350\pi\)
\(588\) 0 0
\(589\) −22.2479 −0.916708
\(590\) 0 0
\(591\) 24.6018 + 42.6116i 1.01198 + 1.75281i
\(592\) 0 0
\(593\) 12.4274 21.5249i 0.510332 0.883921i −0.489596 0.871949i \(-0.662856\pi\)
0.999928 0.0119716i \(-0.00381078\pi\)
\(594\) 0 0
\(595\) −9.65362 2.75340i −0.395760 0.112878i
\(596\) 0 0
\(597\) 25.5052 44.1763i 1.04386 1.80801i
\(598\) 0 0
\(599\) 2.22606 + 3.85564i 0.0909542 + 0.157537i 0.907913 0.419159i \(-0.137675\pi\)
−0.816959 + 0.576696i \(0.804342\pi\)
\(600\) 0 0
\(601\) −36.3507 −1.48277 −0.741387 0.671077i \(-0.765832\pi\)
−0.741387 + 0.671077i \(0.765832\pi\)
\(602\) 0 0
\(603\) −42.9551 −1.74927
\(604\) 0 0
\(605\) −23.7055 41.0591i −0.963766 1.66929i
\(606\) 0 0
\(607\) −7.73025 + 13.3892i −0.313761 + 0.543451i −0.979173 0.203026i \(-0.934923\pi\)
0.665412 + 0.746476i \(0.268256\pi\)
\(608\) 0 0
\(609\) −5.84181 23.2903i −0.236722 0.943769i
\(610\) 0 0
\(611\) 13.8745 24.0314i 0.561303 0.972206i
\(612\) 0 0
\(613\) −4.47856 7.75709i −0.180887 0.313306i 0.761296 0.648405i \(-0.224564\pi\)
−0.942183 + 0.335099i \(0.891230\pi\)
\(614\) 0 0
\(615\) −44.0858 −1.77771
\(616\) 0 0
\(617\) 37.4791 1.50885 0.754427 0.656384i \(-0.227915\pi\)
0.754427 + 0.656384i \(0.227915\pi\)
\(618\) 0 0
\(619\) 13.2390 + 22.9306i 0.532120 + 0.921659i 0.999297 + 0.0374948i \(0.0119378\pi\)
−0.467177 + 0.884164i \(0.654729\pi\)
\(620\) 0 0
\(621\) 1.47322 2.55170i 0.0591185 0.102396i
\(622\) 0 0
\(623\) 0.808759 0.783217i 0.0324023 0.0313789i
\(624\) 0 0
\(625\) −8.15389 + 14.1229i −0.326155 + 0.564918i
\(626\) 0 0
\(627\) 42.4805 + 73.5783i 1.69651 + 2.93844i
\(628\) 0 0
\(629\) 4.01047 0.159908
\(630\) 0 0
\(631\) 12.7300 0.506774 0.253387 0.967365i \(-0.418455\pi\)
0.253387 + 0.967365i \(0.418455\pi\)
\(632\) 0 0
\(633\) −10.7948 18.6971i −0.429054 0.743144i
\(634\) 0 0
\(635\) −1.51908 + 2.63113i −0.0602829 + 0.104413i
\(636\) 0 0
\(637\) −14.5644 9.04383i −0.577063 0.358329i
\(638\) 0 0
\(639\) 0.627579 1.08700i 0.0248266 0.0430010i
\(640\) 0 0
\(641\) 4.92340 + 8.52758i 0.194463 + 0.336819i 0.946724 0.322045i \(-0.104370\pi\)
−0.752262 + 0.658865i \(0.771037\pi\)
\(642\) 0 0
\(643\) 19.3523 0.763182 0.381591 0.924331i \(-0.375376\pi\)
0.381591 + 0.924331i \(0.375376\pi\)
\(644\) 0 0
\(645\) 111.491 4.38997
\(646\) 0 0
\(647\) −13.6119 23.5765i −0.535140 0.926889i −0.999157 0.0410629i \(-0.986926\pi\)
0.464017 0.885826i \(-0.346408\pi\)
\(648\) 0 0
\(649\) 23.6515 40.9656i 0.928402 1.60804i
\(650\) 0 0
\(651\) −15.1478 + 14.6694i −0.593688 + 0.574939i
\(652\) 0 0
\(653\) −14.1783 + 24.5575i −0.554838 + 0.961008i 0.443078 + 0.896483i \(0.353886\pi\)
−0.997916 + 0.0645246i \(0.979447\pi\)
\(654\) 0 0
\(655\) −36.3410 62.9445i −1.41996 2.45945i
\(656\) 0 0
\(657\) −1.94078 −0.0757170
\(658\) 0 0
\(659\) 28.5156 1.11081 0.555405 0.831580i \(-0.312563\pi\)
0.555405 + 0.831580i \(0.312563\pi\)
\(660\) 0 0
\(661\) 3.97422 + 6.88355i 0.154579 + 0.267739i 0.932906 0.360121i \(-0.117264\pi\)
−0.778326 + 0.627860i \(0.783931\pi\)
\(662\) 0 0
\(663\) −3.06852 + 5.31483i −0.119171 + 0.206411i
\(664\) 0 0
\(665\) −17.0835 68.1087i −0.662469 2.64114i
\(666\) 0 0
\(667\) −7.62988 + 13.2153i −0.295430 + 0.511700i
\(668\) 0 0
\(669\) −13.9083 24.0898i −0.537725 0.931367i
\(670\) 0 0
\(671\) 46.3108 1.78781
\(672\) 0 0
\(673\) 43.0255 1.65851 0.829255 0.558870i \(-0.188765\pi\)
0.829255 + 0.558870i \(0.188765\pi\)
\(674\) 0 0
\(675\) 3.28549 + 5.69064i 0.126459 + 0.219033i
\(676\) 0 0
\(677\) 4.28728 7.42579i 0.164774 0.285396i −0.771801 0.635864i \(-0.780644\pi\)
0.936575 + 0.350468i \(0.113977\pi\)
\(678\) 0 0
\(679\) −2.60049 0.741712i −0.0997978 0.0284643i
\(680\) 0 0
\(681\) −29.8578 + 51.7152i −1.14415 + 1.98173i
\(682\) 0 0
\(683\) 16.0291 + 27.7632i 0.613337 + 1.06233i 0.990674 + 0.136255i \(0.0435066\pi\)
−0.377337 + 0.926076i \(0.623160\pi\)
\(684\) 0 0
\(685\) −17.1971 −0.657066
\(686\) 0 0
\(687\) −16.3821 −0.625015
\(688\) 0 0
\(689\) −5.86661 10.1613i −0.223500 0.387113i
\(690\) 0 0
\(691\) 15.2241 26.3689i 0.579151 1.00312i −0.416426 0.909170i \(-0.636718\pi\)
0.995577 0.0939491i \(-0.0299491\pi\)
\(692\) 0 0
\(693\) 40.4400 + 11.5343i 1.53619 + 0.438151i
\(694\) 0 0
\(695\) 26.4590 45.8284i 1.00365 1.73837i
\(696\) 0 0
\(697\) −2.31845 4.01567i −0.0878174 0.152104i
\(698\) 0 0
\(699\) 52.0254 1.96778
\(700\) 0 0
\(701\) −5.57614 −0.210608 −0.105304 0.994440i \(-0.533582\pi\)
−0.105304 + 0.994440i \(0.533582\pi\)
\(702\) 0 0
\(703\) 14.0263 + 24.2943i 0.529013 + 0.916278i
\(704\) 0 0
\(705\) 53.8616 93.2910i 2.02855 3.51354i
\(706\) 0 0
\(707\) −1.53567 6.12242i −0.0577547 0.230257i
\(708\) 0 0
\(709\) 17.5955 30.4763i 0.660814 1.14456i −0.319588 0.947556i \(-0.603545\pi\)
0.980402 0.197007i \(-0.0631220\pi\)
\(710\) 0 0
\(711\) −14.3978 24.9377i −0.539960 0.935238i
\(712\) 0 0
\(713\) 13.4008 0.501865
\(714\) 0 0
\(715\) 45.0431 1.68452
\(716\) 0 0
\(717\) −15.1834 26.2984i −0.567034 0.982132i
\(718\) 0 0
\(719\) 3.13525 5.43041i 0.116925 0.202520i −0.801623 0.597830i \(-0.796030\pi\)
0.918548 + 0.395310i \(0.129363\pi\)
\(720\) 0 0
\(721\) −11.7247 + 11.3544i −0.436652 + 0.422861i
\(722\) 0 0
\(723\) −23.2854 + 40.3315i −0.865993 + 1.49994i
\(724\) 0 0
\(725\) −17.0157 29.4720i −0.631946 1.09456i
\(726\) 0 0
\(727\) −11.3407 −0.420603 −0.210301 0.977637i \(-0.567444\pi\)
−0.210301 + 0.977637i \(0.567444\pi\)
\(728\) 0 0
\(729\) −31.7681 −1.17659
\(730\) 0 0
\(731\) 5.86326 + 10.1555i 0.216860 + 0.375613i
\(732\) 0 0
\(733\) 17.0272 29.4920i 0.628915 1.08931i −0.358855 0.933393i \(-0.616833\pi\)
0.987770 0.155919i \(-0.0498338\pi\)
\(734\) 0 0
\(735\) −56.5397 35.1086i −2.08550 1.29500i
\(736\) 0 0
\(737\) −31.7487 + 54.9903i −1.16948 + 2.02559i
\(738\) 0 0
\(739\) 7.17361 + 12.4251i 0.263886 + 0.457063i 0.967271 0.253745i \(-0.0816625\pi\)
−0.703385 + 0.710809i \(0.748329\pi\)
\(740\) 0 0
\(741\) −42.9277 −1.57699
\(742\) 0 0
\(743\) 26.5838 0.975264 0.487632 0.873049i \(-0.337861\pi\)
0.487632 + 0.873049i \(0.337861\pi\)
\(744\) 0 0
\(745\) 35.2185 + 61.0002i 1.29031 + 2.23487i
\(746\) 0 0
\(747\) 8.34583 14.4554i 0.305358 0.528896i
\(748\) 0 0
\(749\) 12.8405 12.4350i 0.469182 0.454365i
\(750\) 0 0
\(751\) −2.51641 + 4.35856i −0.0918252 + 0.159046i −0.908279 0.418365i \(-0.862603\pi\)
0.816454 + 0.577411i \(0.195937\pi\)
\(752\) 0 0
\(753\) 26.7561 + 46.3429i 0.975046 + 1.68883i
\(754\) 0 0
\(755\) −77.3303 −2.81434
\(756\) 0 0
\(757\) −21.2568 −0.772592 −0.386296 0.922375i \(-0.626246\pi\)
−0.386296 + 0.922375i \(0.626246\pi\)
\(758\) 0 0
\(759\) −25.5878 44.3193i −0.928777 1.60869i
\(760\) 0 0
\(761\) 15.3007 26.5016i 0.554651 0.960684i −0.443280 0.896383i \(-0.646185\pi\)
0.997931 0.0643002i \(-0.0204815\pi\)
\(762\) 0 0
\(763\) −7.23888 28.8601i −0.262065 1.04481i
\(764\) 0 0
\(765\) −6.22080 + 10.7747i −0.224913 + 0.389562i
\(766\) 0 0
\(767\) 11.9502 + 20.6984i 0.431498 + 0.747377i
\(768\) 0 0
\(769\) 2.38477 0.0859971 0.0429986 0.999075i \(-0.486309\pi\)
0.0429986 + 0.999075i \(0.486309\pi\)
\(770\) 0 0
\(771\) 6.88625 0.248002
\(772\) 0 0
\(773\) 7.77011 + 13.4582i 0.279471 + 0.484059i 0.971253 0.238048i \(-0.0765074\pi\)
−0.691782 + 0.722106i \(0.743174\pi\)
\(774\) 0 0
\(775\) −14.9428 + 25.8818i −0.536763 + 0.929700i
\(776\) 0 0
\(777\) 25.5687 + 7.29271i 0.917274 + 0.261625i
\(778\) 0 0
\(779\) 16.2172 28.0890i 0.581041 1.00639i
\(780\) 0 0
\(781\) −0.927703 1.60683i −0.0331958 0.0574968i
\(782\) 0 0
\(783\) −2.53282 −0.0905155
\(784\) 0 0
\(785\) 0.727643 0.0259707
\(786\) 0 0
\(787\) −12.5593 21.7533i −0.447690 0.775422i 0.550545 0.834805i \(-0.314420\pi\)
−0.998235 + 0.0593835i \(0.981087\pi\)
\(788\) 0 0
\(789\) 5.31007 9.19731i 0.189044 0.327433i
\(790\) 0 0
\(791\) 31.1319 + 8.87944i 1.10692 + 0.315716i
\(792\) 0 0
\(793\) −11.6996 + 20.2643i −0.415465 + 0.719606i
\(794\) 0 0
\(795\) −22.7745 39.4465i −0.807727 1.39902i
\(796\) 0 0
\(797\) 21.0066 0.744093 0.372046 0.928214i \(-0.378656\pi\)
0.372046 + 0.928214i \(0.378656\pi\)
\(798\) 0 0
\(799\) 11.3302 0.400833
\(800\) 0 0
\(801\) −0.697671 1.20840i −0.0246510 0.0426968i
\(802\) 0 0
\(803\) −1.43445 + 2.48455i −0.0506208 + 0.0876778i
\(804\) 0 0
\(805\) 10.2901 + 41.0247i 0.362678 + 1.44593i
\(806\) 0 0
\(807\) −3.49797 + 6.05867i −0.123134 + 0.213275i
\(808\) 0 0
\(809\) 3.70147 + 6.41113i 0.130137 + 0.225403i 0.923729 0.383046i \(-0.125125\pi\)
−0.793592 + 0.608450i \(0.791792\pi\)
\(810\) 0 0
\(811\) 36.8579 1.29426 0.647128 0.762381i \(-0.275970\pi\)
0.647128 + 0.762381i \(0.275970\pi\)
\(812\) 0 0
\(813\) 70.8217 2.48383
\(814\) 0 0
\(815\) 27.4015 + 47.4607i 0.959831 + 1.66248i
\(816\) 0 0
\(817\) −41.0126 + 71.0360i −1.43485 + 2.48523i
\(818\) 0 0
\(819\) −15.2635 + 14.7814i −0.533350 + 0.516505i
\(820\) 0 0
\(821\) 16.7761 29.0570i 0.585489 1.01410i −0.409326 0.912388i \(-0.634236\pi\)
0.994814 0.101708i \(-0.0324307\pi\)
\(822\) 0 0
\(823\) 19.3302 + 33.4809i 0.673809 + 1.16707i 0.976815 + 0.214083i \(0.0686764\pi\)
−0.303006 + 0.952989i \(0.597990\pi\)
\(824\) 0 0
\(825\) 114.128 3.97344
\(826\) 0 0
\(827\) 6.04811 0.210314 0.105157 0.994456i \(-0.466466\pi\)
0.105157 + 0.994456i \(0.466466\pi\)
\(828\) 0 0
\(829\) −23.9268 41.4425i −0.831014 1.43936i −0.897235 0.441553i \(-0.854428\pi\)
0.0662215 0.997805i \(-0.478906\pi\)
\(830\) 0 0
\(831\) −3.77954 + 6.54636i −0.131111 + 0.227091i
\(832\) 0 0
\(833\) 0.224563 6.99640i 0.00778064 0.242411i
\(834\) 0 0
\(835\) 1.14138 1.97692i 0.0394990 0.0684142i
\(836\) 0 0
\(837\) 1.11214 + 1.92628i 0.0384410 + 0.0665818i
\(838\) 0 0
\(839\) −18.7792 −0.648329 −0.324165 0.946001i \(-0.605083\pi\)
−0.324165 + 0.946001i \(0.605083\pi\)
\(840\) 0 0
\(841\) −15.8825 −0.547671
\(842\) 0 0
\(843\) −8.80436 15.2496i −0.303238 0.525224i
\(844\) 0 0
\(845\) 13.2832 23.0072i 0.456956 0.791471i
\(846\) 0 0
\(847\) 23.7490 22.9990i 0.816026 0.790254i
\(848\) 0 0
\(849\) −10.6735 + 18.4870i −0.366313 + 0.634473i
\(850\) 0 0
\(851\) −8.44865 14.6335i −0.289616 0.501629i
\(852\) 0 0
\(853\) 5.42303 0.185681 0.0928404 0.995681i \(-0.470405\pi\)
0.0928404 + 0.995681i \(0.470405\pi\)
\(854\) 0 0
\(855\) −87.0272 −2.97627
\(856\) 0 0
\(857\) −9.80300 16.9793i −0.334864 0.580001i 0.648595 0.761134i \(-0.275357\pi\)
−0.983459 + 0.181132i \(0.942024\pi\)
\(858\) 0 0
\(859\) −10.3706 + 17.9624i −0.353839 + 0.612868i −0.986919 0.161219i \(-0.948457\pi\)
0.633079 + 0.774087i \(0.281791\pi\)
\(860\) 0 0
\(861\) −7.47908 29.8178i −0.254887 1.01619i
\(862\) 0 0
\(863\) 12.8605 22.2750i 0.437776 0.758249i −0.559742 0.828667i \(-0.689100\pi\)
0.997518 + 0.0704174i \(0.0224331\pi\)
\(864\) 0 0
\(865\) 11.1925 + 19.3860i 0.380557 + 0.659144i
\(866\) 0 0
\(867\) −2.50581 −0.0851017
\(868\) 0 0
\(869\) −42.5664 −1.44397
\(870\) 0 0
\(871\) −16.0415 27.7846i −0.543544 0.941446i
\(872\) 0 0
\(873\) −1.67576 + 2.90250i −0.0567159 + 0.0982349i
\(874\) 0 0
\(875\) −42.4394 12.1045i −1.43471 0.409208i
\(876\) 0 0
\(877\) 28.6500 49.6233i 0.967443 1.67566i 0.264539 0.964375i \(-0.414780\pi\)
0.702904 0.711285i \(-0.251886\pi\)
\(878\) 0 0
\(879\) 8.75948 + 15.1719i 0.295450 + 0.511734i
\(880\) 0 0
\(881\) 36.9570 1.24511 0.622557 0.782575i \(-0.286094\pi\)
0.622557 + 0.782575i \(0.286094\pi\)
\(882\) 0 0
\(883\) −53.0813 −1.78633 −0.893165 0.449730i \(-0.851520\pi\)
−0.893165 + 0.449730i \(0.851520\pi\)
\(884\) 0 0
\(885\) 46.3914 + 80.3523i 1.55943 + 2.70101i
\(886\) 0 0
\(887\) −14.7980 + 25.6310i −0.496870 + 0.860604i −0.999993 0.00361058i \(-0.998851\pi\)
0.503124 + 0.864214i \(0.332184\pi\)
\(888\) 0 0
\(889\) −2.03729 0.581075i −0.0683285 0.0194886i
\(890\) 0 0
\(891\) −19.5946 + 33.9388i −0.656443 + 1.13699i
\(892\) 0 0
\(893\) 39.6265 + 68.6351i 1.32605 + 2.29679i
\(894\) 0 0
\(895\) −33.9027 −1.13324
\(896\) 0 0
\(897\) 25.8571 0.863345
\(898\) 0 0
\(899\) −5.75979 9.97625i −0.192100 0.332726i
\(900\) 0 0
\(901\) 2.39539 4.14893i 0.0798019 0.138221i
\(902\) 0 0
\(903\) 18.9143 + 75.4079i 0.629429 + 2.50942i
\(904\) 0 0
\(905\) −37.5528 + 65.0434i −1.24830 + 2.16212i
\(906\) 0 0
\(907\) −23.9859 41.5448i −0.796439 1.37947i −0.921921 0.387377i \(-0.873381\pi\)
0.125482 0.992096i \(-0.459952\pi\)
\(908\) 0 0
\(909\) −7.82304 −0.259474
\(910\) 0 0
\(911\) −18.1999 −0.602990 −0.301495 0.953468i \(-0.597486\pi\)
−0.301495 + 0.953468i \(0.597486\pi\)
\(912\) 0 0
\(913\) −12.3370 21.3683i −0.408296 0.707189i
\(914\) 0 0
\(915\) −45.4184 + 78.6670i −1.50149 + 2.60065i
\(916\) 0 0
\(917\) 36.4078 35.2579i 1.20229 1.16432i
\(918\) 0 0
\(919\) −15.1309 + 26.2074i −0.499121 + 0.864503i −0.999999 0.00101469i \(-0.999677\pi\)
0.500878 + 0.865518i \(0.333010\pi\)
\(920\) 0 0
\(921\) 37.3723 + 64.7306i 1.23146 + 2.13295i
\(922\) 0 0
\(923\) 0.937469 0.0308572
\(924\) 0 0
\(925\) 37.6833 1.23902
\(926\) 0 0
\(927\) 10.1143 + 17.5184i 0.332196 + 0.575380i
\(928\) 0 0
\(929\) −2.10196 + 3.64071i −0.0689631 + 0.119448i −0.898445 0.439086i \(-0.855302\pi\)
0.829482 + 0.558533i \(0.188636\pi\)
\(930\) 0 0
\(931\) 43.1676 23.1090i 1.41476 0.757368i
\(932\) 0 0
\(933\) 10.9814 19.0203i 0.359513 0.622695i
\(934\) 0 0
\(935\) 9.19574 + 15.9275i 0.300733 + 0.520885i
\(936\) 0 0
\(937\) −11.6210 −0.379643 −0.189822 0.981819i \(-0.560791\pi\)
−0.189822 + 0.981819i \(0.560791\pi\)
\(938\) 0 0
\(939\) −19.6060 −0.639816
\(940\) 0 0
\(941\) 24.0611 + 41.6750i 0.784368 + 1.35857i 0.929376 + 0.369135i \(0.120346\pi\)
−0.145007 + 0.989431i \(0.546321\pi\)
\(942\) 0 0
\(943\) −9.76829 + 16.9192i −0.318099 + 0.550964i
\(944\) 0 0
\(945\) −5.04304 + 4.88377i −0.164050 + 0.158869i
\(946\) 0 0
\(947\) −3.74681 + 6.48967i −0.121755 + 0.210886i −0.920460 0.390837i \(-0.872186\pi\)
0.798705 + 0.601723i \(0.205519\pi\)
\(948\) 0 0
\(949\) −0.724778 1.25535i −0.0235273 0.0407505i
\(950\) 0 0
\(951\) 40.0135 1.29753
\(952\) 0 0
\(953\) 38.4095 1.24421 0.622103 0.782935i \(-0.286278\pi\)
0.622103 + 0.782935i \(0.286278\pi\)
\(954\) 0 0
\(955\) −37.9041 65.6518i −1.22655 2.12444i
\(956\) 0 0
\(957\) −21.9957 + 38.0976i −0.711019 + 1.23152i
\(958\) 0 0
\(959\) −2.91745 11.6313i −0.0942094 0.375596i
\(960\) 0 0
\(961\) 10.4419 18.0858i 0.336834 0.583414i
\(962\) 0 0
\(963\) −11.0768 19.1856i −0.356945 0.618246i
\(964\) 0 0
\(965\) −81.9382 −2.63768
\(966\) 0 0
\(967\) −3.36687 −0.108271 −0.0541357 0.998534i \(-0.517240\pi\)
−0.0541357 + 0.998534i \(0.517240\pi\)
\(968\) 0 0
\(969\) −8.76388 15.1795i −0.281536 0.487636i
\(970\) 0 0
\(971\) 8.47530 14.6796i 0.271985 0.471092i −0.697385 0.716697i \(-0.745653\pi\)
0.969370 + 0.245605i \(0.0789865\pi\)
\(972\) 0 0
\(973\) 35.4850 + 10.1210i 1.13760 + 0.324465i
\(974\) 0 0
\(975\) −28.8325 + 49.9393i −0.923378 + 1.59934i
\(976\) 0 0
\(977\) 2.21229 + 3.83180i 0.0707775 + 0.122590i 0.899242 0.437451i \(-0.144119\pi\)
−0.828465 + 0.560041i \(0.810785\pi\)
\(978\) 0 0
\(979\) −2.06263 −0.0659219
\(980\) 0 0
\(981\) −36.8766 −1.17738
\(982\) 0 0
\(983\) 22.3910 + 38.7824i 0.714162 + 1.23697i 0.963282 + 0.268493i \(0.0865255\pi\)
−0.249119 + 0.968473i \(0.580141\pi\)
\(984\) 0 0
\(985\) −37.2515 + 64.5215i −1.18693 + 2.05583i
\(986\) 0 0
\(987\) 72.2355 + 20.6030i 2.29928 + 0.655801i
\(988\) 0 0
\(989\) 24.7036 42.7879i 0.785529 1.36058i
\(990\) 0 0
\(991\) −14.6544 25.3822i −0.465513 0.806292i 0.533711 0.845667i \(-0.320797\pi\)
−0.999225 + 0.0393743i \(0.987464\pi\)
\(992\) 0 0
\(993\) 43.4780 1.37973
\(994\) 0 0
\(995\) 77.2386 2.44863
\(996\) 0 0
\(997\) 11.0921 + 19.2121i 0.351290 + 0.608452i 0.986476 0.163907i \(-0.0524097\pi\)
−0.635186 + 0.772360i \(0.719076\pi\)
\(998\) 0 0
\(999\) 1.40231 2.42887i 0.0443670 0.0768460i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.q.e.681.6 yes 14
7.2 even 3 6664.2.a.v.1.2 7
7.4 even 3 inner 952.2.q.e.137.6 14
7.5 odd 6 6664.2.a.y.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.e.137.6 14 7.4 even 3 inner
952.2.q.e.681.6 yes 14 1.1 even 1 trivial
6664.2.a.v.1.2 7 7.2 even 3
6664.2.a.y.1.6 7 7.5 odd 6