Properties

Label 952.2.q.e.681.4
Level $952$
Weight $2$
Character 952.681
Analytic conductor $7.602$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(137,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 17 x^{12} - 18 x^{11} + 102 x^{10} - 59 x^{9} + 462 x^{8} - 28 x^{7} + 1148 x^{6} + \cdots + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 681.4
Root \(0.237215 + 0.410869i\) of defining polynomial
Character \(\chi\) \(=\) 952.681
Dual form 952.2.q.e.137.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.237215 + 0.410869i) q^{3} +(-0.817607 + 1.41614i) q^{5} +(2.62656 + 0.318109i) q^{7} +(1.38746 - 2.40315i) q^{9} +(0.120552 + 0.208801i) q^{11} +1.90325 q^{13} -0.775795 q^{15} +(-0.500000 - 0.866025i) q^{17} +(2.55706 - 4.42896i) q^{19} +(0.492358 + 1.15463i) q^{21} +(-1.83206 + 3.17323i) q^{23} +(1.16304 + 2.01444i) q^{25} +2.73980 q^{27} +2.50385 q^{29} +(1.20792 + 2.09217i) q^{31} +(-0.0571933 + 0.0990617i) q^{33} +(-2.59798 + 3.45948i) q^{35} +(-1.67756 + 2.90562i) q^{37} +(0.451479 + 0.781985i) q^{39} -9.52792 q^{41} +9.54468 q^{43} +(2.26879 + 3.92966i) q^{45} +(4.31973 - 7.48198i) q^{47} +(6.79761 + 1.67106i) q^{49} +(0.237215 - 0.410869i) q^{51} +(5.80792 + 10.0596i) q^{53} -0.394255 q^{55} +2.42629 q^{57} +(1.03546 + 1.79348i) q^{59} +(-5.33802 + 9.24572i) q^{61} +(4.40870 - 5.87064i) q^{63} +(-1.55611 + 2.69526i) q^{65} +(6.28311 + 10.8827i) q^{67} -1.73837 q^{69} +0.576299 q^{71} +(-7.77213 - 13.4617i) q^{73} +(-0.551780 + 0.955711i) q^{75} +(0.250214 + 0.586777i) q^{77} +(4.23303 - 7.33183i) q^{79} +(-3.51245 - 6.08375i) q^{81} +1.02923 q^{83} +1.63521 q^{85} +(0.593951 + 1.02875i) q^{87} +(-5.71344 + 9.89597i) q^{89} +(4.99899 + 0.605440i) q^{91} +(-0.573072 + 0.992590i) q^{93} +(4.18134 + 7.24229i) q^{95} -3.69602 q^{97} +0.669041 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{3} - 2 q^{5} + 2 q^{7} - 4 q^{9} + 12 q^{11} + 4 q^{13} - 12 q^{15} - 7 q^{17} + 3 q^{19} + 18 q^{21} + 18 q^{23} - 15 q^{25} - 36 q^{27} + 10 q^{29} + 10 q^{31} - 21 q^{33} + 19 q^{35} - 11 q^{37}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.237215 + 0.410869i 0.136956 + 0.237215i 0.926343 0.376681i \(-0.122935\pi\)
−0.789387 + 0.613896i \(0.789601\pi\)
\(4\) 0 0
\(5\) −0.817607 + 1.41614i −0.365645 + 0.633316i −0.988879 0.148719i \(-0.952485\pi\)
0.623234 + 0.782035i \(0.285818\pi\)
\(6\) 0 0
\(7\) 2.62656 + 0.318109i 0.992746 + 0.120234i
\(8\) 0 0
\(9\) 1.38746 2.40315i 0.462486 0.801049i
\(10\) 0 0
\(11\) 0.120552 + 0.208801i 0.0363477 + 0.0629560i 0.883627 0.468192i \(-0.155094\pi\)
−0.847279 + 0.531148i \(0.821761\pi\)
\(12\) 0 0
\(13\) 1.90325 0.527866 0.263933 0.964541i \(-0.414980\pi\)
0.263933 + 0.964541i \(0.414980\pi\)
\(14\) 0 0
\(15\) −0.775795 −0.200310
\(16\) 0 0
\(17\) −0.500000 0.866025i −0.121268 0.210042i
\(18\) 0 0
\(19\) 2.55706 4.42896i 0.586630 1.01607i −0.408041 0.912964i \(-0.633788\pi\)
0.994670 0.103108i \(-0.0328789\pi\)
\(20\) 0 0
\(21\) 0.492358 + 1.15463i 0.107441 + 0.251961i
\(22\) 0 0
\(23\) −1.83206 + 3.17323i −0.382012 + 0.661663i −0.991350 0.131247i \(-0.958102\pi\)
0.609338 + 0.792910i \(0.291435\pi\)
\(24\) 0 0
\(25\) 1.16304 + 2.01444i 0.232607 + 0.402888i
\(26\) 0 0
\(27\) 2.73980 0.527274
\(28\) 0 0
\(29\) 2.50385 0.464953 0.232477 0.972602i \(-0.425317\pi\)
0.232477 + 0.972602i \(0.425317\pi\)
\(30\) 0 0
\(31\) 1.20792 + 2.09217i 0.216948 + 0.375765i 0.953873 0.300209i \(-0.0970564\pi\)
−0.736925 + 0.675974i \(0.763723\pi\)
\(32\) 0 0
\(33\) −0.0571933 + 0.0990617i −0.00995608 + 0.0172444i
\(34\) 0 0
\(35\) −2.59798 + 3.45948i −0.439139 + 0.584759i
\(36\) 0 0
\(37\) −1.67756 + 2.90562i −0.275789 + 0.477681i −0.970334 0.241768i \(-0.922273\pi\)
0.694545 + 0.719450i \(0.255606\pi\)
\(38\) 0 0
\(39\) 0.451479 + 0.781985i 0.0722945 + 0.125218i
\(40\) 0 0
\(41\) −9.52792 −1.48801 −0.744006 0.668173i \(-0.767076\pi\)
−0.744006 + 0.668173i \(0.767076\pi\)
\(42\) 0 0
\(43\) 9.54468 1.45555 0.727775 0.685816i \(-0.240555\pi\)
0.727775 + 0.685816i \(0.240555\pi\)
\(44\) 0 0
\(45\) 2.26879 + 3.92966i 0.338211 + 0.585799i
\(46\) 0 0
\(47\) 4.31973 7.48198i 0.630097 1.09136i −0.357435 0.933938i \(-0.616349\pi\)
0.987532 0.157421i \(-0.0503181\pi\)
\(48\) 0 0
\(49\) 6.79761 + 1.67106i 0.971088 + 0.238723i
\(50\) 0 0
\(51\) 0.237215 0.410869i 0.0332168 0.0575331i
\(52\) 0 0
\(53\) 5.80792 + 10.0596i 0.797779 + 1.38179i 0.921059 + 0.389423i \(0.127325\pi\)
−0.123280 + 0.992372i \(0.539341\pi\)
\(54\) 0 0
\(55\) −0.394255 −0.0531614
\(56\) 0 0
\(57\) 2.42629 0.321370
\(58\) 0 0
\(59\) 1.03546 + 1.79348i 0.134806 + 0.233491i 0.925523 0.378691i \(-0.123626\pi\)
−0.790717 + 0.612181i \(0.790292\pi\)
\(60\) 0 0
\(61\) −5.33802 + 9.24572i −0.683463 + 1.18379i 0.290454 + 0.956889i \(0.406194\pi\)
−0.973917 + 0.226904i \(0.927140\pi\)
\(62\) 0 0
\(63\) 4.40870 5.87064i 0.555444 0.739632i
\(64\) 0 0
\(65\) −1.55611 + 2.69526i −0.193012 + 0.334306i
\(66\) 0 0
\(67\) 6.28311 + 10.8827i 0.767604 + 1.32953i 0.938859 + 0.344303i \(0.111885\pi\)
−0.171254 + 0.985227i \(0.554782\pi\)
\(68\) 0 0
\(69\) −1.73837 −0.209275
\(70\) 0 0
\(71\) 0.576299 0.0683942 0.0341971 0.999415i \(-0.489113\pi\)
0.0341971 + 0.999415i \(0.489113\pi\)
\(72\) 0 0
\(73\) −7.77213 13.4617i −0.909659 1.57558i −0.814538 0.580111i \(-0.803009\pi\)
−0.0951216 0.995466i \(-0.530324\pi\)
\(74\) 0 0
\(75\) −0.551780 + 0.955711i −0.0637141 + 0.110356i
\(76\) 0 0
\(77\) 0.250214 + 0.586777i 0.0285145 + 0.0668695i
\(78\) 0 0
\(79\) 4.23303 7.33183i 0.476253 0.824895i −0.523377 0.852102i \(-0.675328\pi\)
0.999630 + 0.0272066i \(0.00866120\pi\)
\(80\) 0 0
\(81\) −3.51245 6.08375i −0.390273 0.675972i
\(82\) 0 0
\(83\) 1.02923 0.112972 0.0564862 0.998403i \(-0.482010\pi\)
0.0564862 + 0.998403i \(0.482010\pi\)
\(84\) 0 0
\(85\) 1.63521 0.177364
\(86\) 0 0
\(87\) 0.593951 + 1.02875i 0.0636782 + 0.110294i
\(88\) 0 0
\(89\) −5.71344 + 9.89597i −0.605624 + 1.04897i 0.386329 + 0.922361i \(0.373743\pi\)
−0.991953 + 0.126610i \(0.959590\pi\)
\(90\) 0 0
\(91\) 4.99899 + 0.605440i 0.524037 + 0.0634674i
\(92\) 0 0
\(93\) −0.573072 + 0.992590i −0.0594248 + 0.102927i
\(94\) 0 0
\(95\) 4.18134 + 7.24229i 0.428996 + 0.743044i
\(96\) 0 0
\(97\) −3.69602 −0.375274 −0.187637 0.982238i \(-0.560083\pi\)
−0.187637 + 0.982238i \(0.560083\pi\)
\(98\) 0 0
\(99\) 0.669041 0.0672411
\(100\) 0 0
\(101\) −4.34060 7.51814i −0.431906 0.748083i 0.565132 0.825001i \(-0.308825\pi\)
−0.997037 + 0.0769181i \(0.975492\pi\)
\(102\) 0 0
\(103\) 7.05600 12.2213i 0.695248 1.20421i −0.274849 0.961487i \(-0.588628\pi\)
0.970097 0.242718i \(-0.0780389\pi\)
\(104\) 0 0
\(105\) −2.03767 0.246787i −0.198856 0.0240840i
\(106\) 0 0
\(107\) 6.92645 11.9970i 0.669605 1.15979i −0.308410 0.951254i \(-0.599797\pi\)
0.978015 0.208536i \(-0.0668699\pi\)
\(108\) 0 0
\(109\) 3.13370 + 5.42772i 0.300154 + 0.519882i 0.976171 0.217005i \(-0.0696287\pi\)
−0.676017 + 0.736886i \(0.736295\pi\)
\(110\) 0 0
\(111\) −1.59177 −0.151084
\(112\) 0 0
\(113\) −14.5983 −1.37329 −0.686644 0.726993i \(-0.740917\pi\)
−0.686644 + 0.726993i \(0.740917\pi\)
\(114\) 0 0
\(115\) −2.99582 5.18891i −0.279361 0.483868i
\(116\) 0 0
\(117\) 2.64068 4.57378i 0.244131 0.422847i
\(118\) 0 0
\(119\) −1.03779 2.43372i −0.0951339 0.223099i
\(120\) 0 0
\(121\) 5.47093 9.47594i 0.497358 0.861449i
\(122\) 0 0
\(123\) −2.26017 3.91472i −0.203792 0.352979i
\(124\) 0 0
\(125\) −11.9797 −1.07150
\(126\) 0 0
\(127\) −14.9323 −1.32502 −0.662512 0.749052i \(-0.730510\pi\)
−0.662512 + 0.749052i \(0.730510\pi\)
\(128\) 0 0
\(129\) 2.26414 + 3.92161i 0.199347 + 0.345278i
\(130\) 0 0
\(131\) −4.61868 + 7.99979i −0.403536 + 0.698945i −0.994150 0.108010i \(-0.965552\pi\)
0.590614 + 0.806954i \(0.298886\pi\)
\(132\) 0 0
\(133\) 8.12515 10.8195i 0.704540 0.938169i
\(134\) 0 0
\(135\) −2.24008 + 3.87993i −0.192795 + 0.333931i
\(136\) 0 0
\(137\) 0.100997 + 0.174931i 0.00862872 + 0.0149454i 0.870308 0.492509i \(-0.163920\pi\)
−0.861679 + 0.507454i \(0.830587\pi\)
\(138\) 0 0
\(139\) −8.80733 −0.747028 −0.373514 0.927625i \(-0.621847\pi\)
−0.373514 + 0.927625i \(0.621847\pi\)
\(140\) 0 0
\(141\) 4.09882 0.345183
\(142\) 0 0
\(143\) 0.229439 + 0.397401i 0.0191867 + 0.0332323i
\(144\) 0 0
\(145\) −2.04716 + 3.54579i −0.170008 + 0.294462i
\(146\) 0 0
\(147\) 0.925910 + 3.18933i 0.0763677 + 0.263051i
\(148\) 0 0
\(149\) 2.45347 4.24953i 0.200996 0.348135i −0.747854 0.663864i \(-0.768916\pi\)
0.948850 + 0.315728i \(0.102249\pi\)
\(150\) 0 0
\(151\) 1.51957 + 2.63197i 0.123661 + 0.214186i 0.921209 0.389069i \(-0.127203\pi\)
−0.797548 + 0.603255i \(0.793870\pi\)
\(152\) 0 0
\(153\) −2.77492 −0.224339
\(154\) 0 0
\(155\) −3.95040 −0.317304
\(156\) 0 0
\(157\) 9.95417 + 17.2411i 0.794429 + 1.37599i 0.923201 + 0.384317i \(0.125563\pi\)
−0.128772 + 0.991674i \(0.541104\pi\)
\(158\) 0 0
\(159\) −2.75545 + 4.77259i −0.218522 + 0.378491i
\(160\) 0 0
\(161\) −5.82145 + 7.75187i −0.458795 + 0.610933i
\(162\) 0 0
\(163\) −2.77077 + 4.79912i −0.217024 + 0.375896i −0.953897 0.300135i \(-0.902968\pi\)
0.736873 + 0.676031i \(0.236302\pi\)
\(164\) 0 0
\(165\) −0.0935233 0.161987i −0.00728078 0.0126107i
\(166\) 0 0
\(167\) 3.42008 0.264654 0.132327 0.991206i \(-0.457755\pi\)
0.132327 + 0.991206i \(0.457755\pi\)
\(168\) 0 0
\(169\) −9.37765 −0.721358
\(170\) 0 0
\(171\) −7.09562 12.2900i −0.542616 0.939838i
\(172\) 0 0
\(173\) −5.67678 + 9.83247i −0.431598 + 0.747549i −0.997011 0.0772587i \(-0.975383\pi\)
0.565414 + 0.824808i \(0.308717\pi\)
\(174\) 0 0
\(175\) 2.41397 + 5.66101i 0.182479 + 0.427932i
\(176\) 0 0
\(177\) −0.491256 + 0.850880i −0.0369250 + 0.0639560i
\(178\) 0 0
\(179\) −7.38337 12.7884i −0.551859 0.955847i −0.998141 0.0609548i \(-0.980585\pi\)
0.446282 0.894892i \(-0.352748\pi\)
\(180\) 0 0
\(181\) 4.00555 0.297730 0.148865 0.988858i \(-0.452438\pi\)
0.148865 + 0.988858i \(0.452438\pi\)
\(182\) 0 0
\(183\) −5.06504 −0.374418
\(184\) 0 0
\(185\) −2.74317 4.75132i −0.201682 0.349324i
\(186\) 0 0
\(187\) 0.120552 0.208801i 0.00881560 0.0152691i
\(188\) 0 0
\(189\) 7.19623 + 0.871553i 0.523449 + 0.0633962i
\(190\) 0 0
\(191\) 10.8124 18.7276i 0.782357 1.35508i −0.148209 0.988956i \(-0.547351\pi\)
0.930565 0.366126i \(-0.119316\pi\)
\(192\) 0 0
\(193\) −7.76416 13.4479i −0.558877 0.968002i −0.997591 0.0693758i \(-0.977899\pi\)
0.438714 0.898627i \(-0.355434\pi\)
\(194\) 0 0
\(195\) −1.47653 −0.105737
\(196\) 0 0
\(197\) 0.389479 0.0277492 0.0138746 0.999904i \(-0.495583\pi\)
0.0138746 + 0.999904i \(0.495583\pi\)
\(198\) 0 0
\(199\) −1.53439 2.65763i −0.108770 0.188395i 0.806502 0.591231i \(-0.201358\pi\)
−0.915272 + 0.402836i \(0.868024\pi\)
\(200\) 0 0
\(201\) −2.98090 + 5.16307i −0.210256 + 0.364175i
\(202\) 0 0
\(203\) 6.57650 + 0.796497i 0.461580 + 0.0559031i
\(204\) 0 0
\(205\) 7.79010 13.4928i 0.544084 0.942381i
\(206\) 0 0
\(207\) 5.08382 + 8.80544i 0.353350 + 0.612020i
\(208\) 0 0
\(209\) 1.23303 0.0852904
\(210\) 0 0
\(211\) −16.8747 −1.16170 −0.580850 0.814010i \(-0.697280\pi\)
−0.580850 + 0.814010i \(0.697280\pi\)
\(212\) 0 0
\(213\) 0.136707 + 0.236783i 0.00936701 + 0.0162241i
\(214\) 0 0
\(215\) −7.80380 + 13.5166i −0.532214 + 0.921822i
\(216\) 0 0
\(217\) 2.50712 + 5.87946i 0.170195 + 0.399124i
\(218\) 0 0
\(219\) 3.68734 6.38665i 0.249167 0.431570i
\(220\) 0 0
\(221\) −0.951624 1.64826i −0.0640131 0.110874i
\(222\) 0 0
\(223\) −4.32590 −0.289683 −0.144842 0.989455i \(-0.546267\pi\)
−0.144842 + 0.989455i \(0.546267\pi\)
\(224\) 0 0
\(225\) 6.45466 0.430311
\(226\) 0 0
\(227\) −12.0610 20.8902i −0.800514 1.38653i −0.919278 0.393609i \(-0.871226\pi\)
0.118763 0.992923i \(-0.462107\pi\)
\(228\) 0 0
\(229\) 0.204077 0.353472i 0.0134858 0.0233581i −0.859204 0.511634i \(-0.829041\pi\)
0.872690 + 0.488275i \(0.162374\pi\)
\(230\) 0 0
\(231\) −0.181734 + 0.241998i −0.0119572 + 0.0159223i
\(232\) 0 0
\(233\) 0.787341 1.36371i 0.0515804 0.0893399i −0.839082 0.544004i \(-0.816907\pi\)
0.890663 + 0.454664i \(0.150241\pi\)
\(234\) 0 0
\(235\) 7.06368 + 12.2346i 0.460784 + 0.798101i
\(236\) 0 0
\(237\) 4.01656 0.260903
\(238\) 0 0
\(239\) −7.31831 −0.473382 −0.236691 0.971585i \(-0.576063\pi\)
−0.236691 + 0.971585i \(0.576063\pi\)
\(240\) 0 0
\(241\) −6.53210 11.3139i −0.420770 0.728795i 0.575245 0.817981i \(-0.304907\pi\)
−0.996015 + 0.0891863i \(0.971573\pi\)
\(242\) 0 0
\(243\) 5.77611 10.0045i 0.370537 0.641790i
\(244\) 0 0
\(245\) −7.92423 + 8.26008i −0.506261 + 0.527717i
\(246\) 0 0
\(247\) 4.86672 8.42940i 0.309662 0.536350i
\(248\) 0 0
\(249\) 0.244149 + 0.422878i 0.0154723 + 0.0267988i
\(250\) 0 0
\(251\) −10.1335 −0.639619 −0.319810 0.947482i \(-0.603619\pi\)
−0.319810 + 0.947482i \(0.603619\pi\)
\(252\) 0 0
\(253\) −0.883432 −0.0555409
\(254\) 0 0
\(255\) 0.387898 + 0.671859i 0.0242911 + 0.0420734i
\(256\) 0 0
\(257\) −7.17544 + 12.4282i −0.447591 + 0.775251i −0.998229 0.0594936i \(-0.981051\pi\)
0.550637 + 0.834745i \(0.314385\pi\)
\(258\) 0 0
\(259\) −5.33052 + 7.09814i −0.331222 + 0.441057i
\(260\) 0 0
\(261\) 3.47398 6.01712i 0.215034 0.372450i
\(262\) 0 0
\(263\) 8.82134 + 15.2790i 0.543947 + 0.942144i 0.998672 + 0.0515119i \(0.0164040\pi\)
−0.454726 + 0.890632i \(0.650263\pi\)
\(264\) 0 0
\(265\) −18.9944 −1.16682
\(266\) 0 0
\(267\) −5.42126 −0.331776
\(268\) 0 0
\(269\) −4.50383 7.80086i −0.274603 0.475627i 0.695432 0.718592i \(-0.255213\pi\)
−0.970035 + 0.242966i \(0.921880\pi\)
\(270\) 0 0
\(271\) 9.75978 16.9044i 0.592864 1.02687i −0.400980 0.916087i \(-0.631330\pi\)
0.993844 0.110785i \(-0.0353364\pi\)
\(272\) 0 0
\(273\) 0.937080 + 2.19755i 0.0567147 + 0.133002i
\(274\) 0 0
\(275\) −0.280412 + 0.485687i −0.0169095 + 0.0292881i
\(276\) 0 0
\(277\) −13.1338 22.7483i −0.789131 1.36681i −0.926500 0.376294i \(-0.877198\pi\)
0.137370 0.990520i \(-0.456135\pi\)
\(278\) 0 0
\(279\) 6.70373 0.401342
\(280\) 0 0
\(281\) −0.117643 −0.00701798 −0.00350899 0.999994i \(-0.501117\pi\)
−0.00350899 + 0.999994i \(0.501117\pi\)
\(282\) 0 0
\(283\) 1.43448 + 2.48459i 0.0852708 + 0.147693i 0.905507 0.424332i \(-0.139491\pi\)
−0.820236 + 0.572026i \(0.806158\pi\)
\(284\) 0 0
\(285\) −1.98375 + 3.43596i −0.117507 + 0.203529i
\(286\) 0 0
\(287\) −25.0256 3.03092i −1.47722 0.178909i
\(288\) 0 0
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) −0.876751 1.51858i −0.0513961 0.0890206i
\(292\) 0 0
\(293\) −17.8039 −1.04011 −0.520057 0.854132i \(-0.674089\pi\)
−0.520057 + 0.854132i \(0.674089\pi\)
\(294\) 0 0
\(295\) −3.38641 −0.197164
\(296\) 0 0
\(297\) 0.330287 + 0.572073i 0.0191652 + 0.0331950i
\(298\) 0 0
\(299\) −3.48687 + 6.03943i −0.201651 + 0.349270i
\(300\) 0 0
\(301\) 25.0696 + 3.03625i 1.44499 + 0.175006i
\(302\) 0 0
\(303\) 2.05931 3.56683i 0.118304 0.204909i
\(304\) 0 0
\(305\) −8.72881 15.1187i −0.499810 0.865697i
\(306\) 0 0
\(307\) −21.8210 −1.24539 −0.622695 0.782465i \(-0.713962\pi\)
−0.622695 + 0.782465i \(0.713962\pi\)
\(308\) 0 0
\(309\) 6.69516 0.380874
\(310\) 0 0
\(311\) −2.97172 5.14716i −0.168511 0.291869i 0.769386 0.638784i \(-0.220562\pi\)
−0.937896 + 0.346916i \(0.887229\pi\)
\(312\) 0 0
\(313\) 6.43219 11.1409i 0.363569 0.629720i −0.624976 0.780644i \(-0.714891\pi\)
0.988545 + 0.150923i \(0.0482247\pi\)
\(314\) 0 0
\(315\) 4.70905 + 11.0432i 0.265325 + 0.622214i
\(316\) 0 0
\(317\) 1.65872 2.87299i 0.0931629 0.161363i −0.815677 0.578507i \(-0.803636\pi\)
0.908840 + 0.417144i \(0.136969\pi\)
\(318\) 0 0
\(319\) 0.301843 + 0.522807i 0.0169000 + 0.0292716i
\(320\) 0 0
\(321\) 6.57223 0.366826
\(322\) 0 0
\(323\) −5.11412 −0.284557
\(324\) 0 0
\(325\) 2.21355 + 3.83398i 0.122785 + 0.212671i
\(326\) 0 0
\(327\) −1.48672 + 2.57508i −0.0822159 + 0.142402i
\(328\) 0 0
\(329\) 13.7261 18.2777i 0.756744 1.00768i
\(330\) 0 0
\(331\) −3.72252 + 6.44760i −0.204608 + 0.354392i −0.950008 0.312226i \(-0.898925\pi\)
0.745399 + 0.666618i \(0.232259\pi\)
\(332\) 0 0
\(333\) 4.65509 + 8.06286i 0.255098 + 0.441842i
\(334\) 0 0
\(335\) −20.5485 −1.12268
\(336\) 0 0
\(337\) −4.05359 −0.220813 −0.110407 0.993887i \(-0.535215\pi\)
−0.110407 + 0.993887i \(0.535215\pi\)
\(338\) 0 0
\(339\) −3.46293 5.99797i −0.188080 0.325765i
\(340\) 0 0
\(341\) −0.291232 + 0.504429i −0.0157711 + 0.0273164i
\(342\) 0 0
\(343\) 17.3227 + 6.55152i 0.935340 + 0.353749i
\(344\) 0 0
\(345\) 1.42131 2.46177i 0.0765205 0.132537i
\(346\) 0 0
\(347\) 17.6541 + 30.5778i 0.947722 + 1.64150i 0.750206 + 0.661204i \(0.229954\pi\)
0.197516 + 0.980300i \(0.436713\pi\)
\(348\) 0 0
\(349\) −1.80670 −0.0967104 −0.0483552 0.998830i \(-0.515398\pi\)
−0.0483552 + 0.998830i \(0.515398\pi\)
\(350\) 0 0
\(351\) 5.21451 0.278330
\(352\) 0 0
\(353\) 0.225328 + 0.390280i 0.0119930 + 0.0207725i 0.871960 0.489578i \(-0.162849\pi\)
−0.859967 + 0.510350i \(0.829516\pi\)
\(354\) 0 0
\(355\) −0.471187 + 0.816119i −0.0250080 + 0.0433151i
\(356\) 0 0
\(357\) 0.753760 1.00371i 0.0398932 0.0531220i
\(358\) 0 0
\(359\) −18.1137 + 31.3739i −0.956007 + 1.65585i −0.223960 + 0.974598i \(0.571899\pi\)
−0.732047 + 0.681254i \(0.761435\pi\)
\(360\) 0 0
\(361\) −3.57710 6.19572i −0.188269 0.326091i
\(362\) 0 0
\(363\) 5.19116 0.272465
\(364\) 0 0
\(365\) 25.4182 1.33045
\(366\) 0 0
\(367\) 9.63081 + 16.6811i 0.502724 + 0.870744i 0.999995 + 0.00314852i \(0.00100221\pi\)
−0.497271 + 0.867595i \(0.665664\pi\)
\(368\) 0 0
\(369\) −13.2196 + 22.8970i −0.688184 + 1.19197i
\(370\) 0 0
\(371\) 12.0548 + 28.2697i 0.625854 + 1.46769i
\(372\) 0 0
\(373\) 11.2166 19.4277i 0.580774 1.00593i −0.414613 0.909998i \(-0.636083\pi\)
0.995388 0.0959331i \(-0.0305835\pi\)
\(374\) 0 0
\(375\) −2.84177 4.92209i −0.146748 0.254175i
\(376\) 0 0
\(377\) 4.76544 0.245433
\(378\) 0 0
\(379\) 1.03798 0.0533176 0.0266588 0.999645i \(-0.491513\pi\)
0.0266588 + 0.999645i \(0.491513\pi\)
\(380\) 0 0
\(381\) −3.54216 6.13520i −0.181470 0.314316i
\(382\) 0 0
\(383\) 11.5778 20.0534i 0.591600 1.02468i −0.402417 0.915456i \(-0.631830\pi\)
0.994017 0.109225i \(-0.0348368\pi\)
\(384\) 0 0
\(385\) −1.03553 0.125416i −0.0527757 0.00639180i
\(386\) 0 0
\(387\) 13.2428 22.9373i 0.673171 1.16597i
\(388\) 0 0
\(389\) 18.3216 + 31.7339i 0.928940 + 1.60897i 0.785099 + 0.619370i \(0.212612\pi\)
0.143840 + 0.989601i \(0.454055\pi\)
\(390\) 0 0
\(391\) 3.66413 0.185303
\(392\) 0 0
\(393\) −4.38248 −0.221067
\(394\) 0 0
\(395\) 6.92192 + 11.9891i 0.348279 + 0.603238i
\(396\) 0 0
\(397\) 8.58159 14.8638i 0.430698 0.745991i −0.566236 0.824243i \(-0.691601\pi\)
0.996934 + 0.0782528i \(0.0249341\pi\)
\(398\) 0 0
\(399\) 6.37280 + 0.771825i 0.319039 + 0.0386396i
\(400\) 0 0
\(401\) −1.97898 + 3.42770i −0.0988256 + 0.171171i −0.911199 0.411967i \(-0.864842\pi\)
0.812373 + 0.583138i \(0.198175\pi\)
\(402\) 0 0
\(403\) 2.29896 + 3.98192i 0.114520 + 0.198354i
\(404\) 0 0
\(405\) 11.4872 0.570805
\(406\) 0 0
\(407\) −0.808931 −0.0400972
\(408\) 0 0
\(409\) −3.03370 5.25452i −0.150007 0.259819i 0.781223 0.624252i \(-0.214596\pi\)
−0.931230 + 0.364433i \(0.881263\pi\)
\(410\) 0 0
\(411\) −0.0479159 + 0.0829927i −0.00236351 + 0.00409373i
\(412\) 0 0
\(413\) 2.14919 + 5.04006i 0.105754 + 0.248005i
\(414\) 0 0
\(415\) −0.841505 + 1.45753i −0.0413078 + 0.0715473i
\(416\) 0 0
\(417\) −2.08923 3.61866i −0.102310 0.177206i
\(418\) 0 0
\(419\) 5.33057 0.260415 0.130208 0.991487i \(-0.458436\pi\)
0.130208 + 0.991487i \(0.458436\pi\)
\(420\) 0 0
\(421\) 17.1834 0.837466 0.418733 0.908109i \(-0.362474\pi\)
0.418733 + 0.908109i \(0.362474\pi\)
\(422\) 0 0
\(423\) −11.9869 20.7619i −0.582822 1.00948i
\(424\) 0 0
\(425\) 1.16304 2.01444i 0.0564156 0.0977146i
\(426\) 0 0
\(427\) −16.9618 + 22.5864i −0.820837 + 1.09303i
\(428\) 0 0
\(429\) −0.108853 + 0.188539i −0.00525547 + 0.00910275i
\(430\) 0 0
\(431\) −2.81008 4.86720i −0.135357 0.234445i 0.790377 0.612621i \(-0.209885\pi\)
−0.925734 + 0.378176i \(0.876551\pi\)
\(432\) 0 0
\(433\) −6.15198 −0.295645 −0.147823 0.989014i \(-0.547227\pi\)
−0.147823 + 0.989014i \(0.547227\pi\)
\(434\) 0 0
\(435\) −1.94247 −0.0931345
\(436\) 0 0
\(437\) 9.36939 + 16.2283i 0.448199 + 0.776303i
\(438\) 0 0
\(439\) −19.3334 + 33.4864i −0.922731 + 1.59822i −0.127562 + 0.991831i \(0.540715\pi\)
−0.795170 + 0.606387i \(0.792618\pi\)
\(440\) 0 0
\(441\) 13.4472 14.0171i 0.640343 0.667483i
\(442\) 0 0
\(443\) 17.4494 30.2232i 0.829045 1.43595i −0.0697441 0.997565i \(-0.522218\pi\)
0.898789 0.438382i \(-0.144448\pi\)
\(444\) 0 0
\(445\) −9.34270 16.1820i −0.442887 0.767102i
\(446\) 0 0
\(447\) 2.32800 0.110111
\(448\) 0 0
\(449\) 13.1959 0.622752 0.311376 0.950287i \(-0.399210\pi\)
0.311376 + 0.950287i \(0.399210\pi\)
\(450\) 0 0
\(451\) −1.14861 1.98944i −0.0540857 0.0936792i
\(452\) 0 0
\(453\) −0.720928 + 1.24868i −0.0338722 + 0.0586683i
\(454\) 0 0
\(455\) −4.94460 + 6.58424i −0.231806 + 0.308674i
\(456\) 0 0
\(457\) 10.8853 18.8539i 0.509193 0.881948i −0.490751 0.871300i \(-0.663277\pi\)
0.999943 0.0106475i \(-0.00338927\pi\)
\(458\) 0 0
\(459\) −1.36990 2.37273i −0.0639414 0.110750i
\(460\) 0 0
\(461\) 20.9376 0.975159 0.487579 0.873079i \(-0.337880\pi\)
0.487579 + 0.873079i \(0.337880\pi\)
\(462\) 0 0
\(463\) 12.4193 0.577175 0.288588 0.957453i \(-0.406814\pi\)
0.288588 + 0.957453i \(0.406814\pi\)
\(464\) 0 0
\(465\) −0.937096 1.62310i −0.0434568 0.0752693i
\(466\) 0 0
\(467\) −4.71506 + 8.16672i −0.218187 + 0.377911i −0.954254 0.298998i \(-0.903348\pi\)
0.736067 + 0.676909i \(0.236681\pi\)
\(468\) 0 0
\(469\) 13.0411 + 30.5827i 0.602181 + 1.41218i
\(470\) 0 0
\(471\) −4.72256 + 8.17971i −0.217604 + 0.376901i
\(472\) 0 0
\(473\) 1.15063 + 1.99294i 0.0529058 + 0.0916355i
\(474\) 0 0
\(475\) 11.8958 0.545817
\(476\) 0 0
\(477\) 32.2330 1.47585
\(478\) 0 0
\(479\) −0.259657 0.449739i −0.0118640 0.0205491i 0.860032 0.510239i \(-0.170443\pi\)
−0.871896 + 0.489690i \(0.837110\pi\)
\(480\) 0 0
\(481\) −3.19282 + 5.53012i −0.145580 + 0.252152i
\(482\) 0 0
\(483\) −4.56594 0.552992i −0.207757 0.0251620i
\(484\) 0 0
\(485\) 3.02189 5.23407i 0.137217 0.237667i
\(486\) 0 0
\(487\) 18.7952 + 32.5542i 0.851691 + 1.47517i 0.879681 + 0.475565i \(0.157756\pi\)
−0.0279894 + 0.999608i \(0.508910\pi\)
\(488\) 0 0
\(489\) −2.62908 −0.118891
\(490\) 0 0
\(491\) −27.0798 −1.22210 −0.611048 0.791593i \(-0.709252\pi\)
−0.611048 + 0.791593i \(0.709252\pi\)
\(492\) 0 0
\(493\) −1.25192 2.16840i −0.0563838 0.0976597i
\(494\) 0 0
\(495\) −0.547013 + 0.947453i −0.0245864 + 0.0425849i
\(496\) 0 0
\(497\) 1.51368 + 0.183326i 0.0678980 + 0.00822329i
\(498\) 0 0
\(499\) 14.0361 24.3112i 0.628342 1.08832i −0.359543 0.933129i \(-0.617067\pi\)
0.987884 0.155191i \(-0.0495994\pi\)
\(500\) 0 0
\(501\) 0.811295 + 1.40520i 0.0362460 + 0.0627799i
\(502\) 0 0
\(503\) −33.5454 −1.49572 −0.747858 0.663858i \(-0.768918\pi\)
−0.747858 + 0.663858i \(0.768918\pi\)
\(504\) 0 0
\(505\) 14.1956 0.631697
\(506\) 0 0
\(507\) −2.22452 3.85298i −0.0987944 0.171117i
\(508\) 0 0
\(509\) −5.54900 + 9.61116i −0.245955 + 0.426007i −0.962400 0.271637i \(-0.912435\pi\)
0.716445 + 0.697644i \(0.245768\pi\)
\(510\) 0 0
\(511\) −16.1317 37.8304i −0.713623 1.67352i
\(512\) 0 0
\(513\) 7.00582 12.1344i 0.309314 0.535748i
\(514\) 0 0
\(515\) 11.5381 + 19.9845i 0.508428 + 0.880623i
\(516\) 0 0
\(517\) 2.08300 0.0916102
\(518\) 0 0
\(519\) −5.38647 −0.236440
\(520\) 0 0
\(521\) 17.4319 + 30.1929i 0.763704 + 1.32277i 0.940929 + 0.338604i \(0.109955\pi\)
−0.177225 + 0.984170i \(0.556712\pi\)
\(522\) 0 0
\(523\) −11.9368 + 20.6752i −0.521961 + 0.904063i 0.477712 + 0.878516i \(0.341466\pi\)
−0.999674 + 0.0255470i \(0.991867\pi\)
\(524\) 0 0
\(525\) −1.75330 + 2.33470i −0.0765204 + 0.101895i
\(526\) 0 0
\(527\) 1.20792 2.09217i 0.0526177 0.0911365i
\(528\) 0 0
\(529\) 4.78709 + 8.29148i 0.208134 + 0.360499i
\(530\) 0 0
\(531\) 5.74665 0.249383
\(532\) 0 0
\(533\) −18.1340 −0.785470
\(534\) 0 0
\(535\) 11.3262 + 19.6176i 0.489675 + 0.848143i
\(536\) 0 0
\(537\) 3.50289 6.06719i 0.151161 0.261818i
\(538\) 0 0
\(539\) 0.470542 + 1.62080i 0.0202677 + 0.0698128i
\(540\) 0 0
\(541\) −8.72549 + 15.1130i −0.375138 + 0.649758i −0.990348 0.138605i \(-0.955738\pi\)
0.615210 + 0.788364i \(0.289071\pi\)
\(542\) 0 0
\(543\) 0.950177 + 1.64576i 0.0407760 + 0.0706261i
\(544\) 0 0
\(545\) −10.2485 −0.438999
\(546\) 0 0
\(547\) 17.0311 0.728198 0.364099 0.931360i \(-0.381377\pi\)
0.364099 + 0.931360i \(0.381377\pi\)
\(548\) 0 0
\(549\) 14.8126 + 25.6561i 0.632185 + 1.09498i
\(550\) 0 0
\(551\) 6.40249 11.0894i 0.272755 0.472426i
\(552\) 0 0
\(553\) 13.4506 17.9109i 0.571979 0.761649i
\(554\) 0 0
\(555\) 1.30144 2.25417i 0.0552433 0.0956841i
\(556\) 0 0
\(557\) −0.877019 1.51904i −0.0371605 0.0643639i 0.846847 0.531837i \(-0.178498\pi\)
−0.884007 + 0.467473i \(0.845165\pi\)
\(558\) 0 0
\(559\) 18.1659 0.768335
\(560\) 0 0
\(561\) 0.114387 0.00482941
\(562\) 0 0
\(563\) −18.3305 31.7494i −0.772539 1.33808i −0.936167 0.351554i \(-0.885653\pi\)
0.163629 0.986522i \(-0.447680\pi\)
\(564\) 0 0
\(565\) 11.9356 20.6731i 0.502136 0.869726i
\(566\) 0 0
\(567\) −7.29037 17.0967i −0.306167 0.717992i
\(568\) 0 0
\(569\) −20.8523 + 36.1172i −0.874173 + 1.51411i −0.0165316 + 0.999863i \(0.505262\pi\)
−0.857641 + 0.514248i \(0.828071\pi\)
\(570\) 0 0
\(571\) 4.53790 + 7.85987i 0.189905 + 0.328925i 0.945218 0.326439i \(-0.105849\pi\)
−0.755313 + 0.655364i \(0.772515\pi\)
\(572\) 0 0
\(573\) 10.2594 0.428595
\(574\) 0 0
\(575\) −8.52303 −0.355435
\(576\) 0 0
\(577\) −22.7712 39.4409i −0.947977 1.64194i −0.749677 0.661803i \(-0.769791\pi\)
−0.198300 0.980141i \(-0.563542\pi\)
\(578\) 0 0
\(579\) 3.68355 6.38010i 0.153083 0.265148i
\(580\) 0 0
\(581\) 2.70333 + 0.327407i 0.112153 + 0.0135831i
\(582\) 0 0
\(583\) −1.40031 + 2.42540i −0.0579948 + 0.100450i
\(584\) 0 0
\(585\) 4.31807 + 7.47912i 0.178530 + 0.309224i
\(586\) 0 0
\(587\) −14.6764 −0.605759 −0.302879 0.953029i \(-0.597948\pi\)
−0.302879 + 0.953029i \(0.597948\pi\)
\(588\) 0 0
\(589\) 12.3549 0.509073
\(590\) 0 0
\(591\) 0.0923903 + 0.160025i 0.00380043 + 0.00658254i
\(592\) 0 0
\(593\) 11.2216 19.4364i 0.460817 0.798158i −0.538185 0.842827i \(-0.680890\pi\)
0.999002 + 0.0446688i \(0.0142232\pi\)
\(594\) 0 0
\(595\) 4.29499 + 0.520176i 0.176077 + 0.0213251i
\(596\) 0 0
\(597\) 0.727959 1.26086i 0.0297934 0.0516037i
\(598\) 0 0
\(599\) 9.54172 + 16.5267i 0.389864 + 0.675264i 0.992431 0.122804i \(-0.0391887\pi\)
−0.602567 + 0.798068i \(0.705855\pi\)
\(600\) 0 0
\(601\) −13.1280 −0.535503 −0.267751 0.963488i \(-0.586281\pi\)
−0.267751 + 0.963488i \(0.586281\pi\)
\(602\) 0 0
\(603\) 34.8702 1.42002
\(604\) 0 0
\(605\) 8.94615 + 15.4952i 0.363713 + 0.629969i
\(606\) 0 0
\(607\) 6.93698 12.0152i 0.281563 0.487682i −0.690207 0.723612i \(-0.742480\pi\)
0.971770 + 0.235930i \(0.0758138\pi\)
\(608\) 0 0
\(609\) 1.23279 + 2.89102i 0.0499552 + 0.117150i
\(610\) 0 0
\(611\) 8.22151 14.2401i 0.332607 0.576092i
\(612\) 0 0
\(613\) −22.0584 38.2063i −0.890931 1.54314i −0.838761 0.544500i \(-0.816719\pi\)
−0.0521706 0.998638i \(-0.516614\pi\)
\(614\) 0 0
\(615\) 7.39172 0.298063
\(616\) 0 0
\(617\) −35.7861 −1.44069 −0.720347 0.693614i \(-0.756018\pi\)
−0.720347 + 0.693614i \(0.756018\pi\)
\(618\) 0 0
\(619\) 6.83536 + 11.8392i 0.274736 + 0.475857i 0.970069 0.242831i \(-0.0780761\pi\)
−0.695332 + 0.718688i \(0.744743\pi\)
\(620\) 0 0
\(621\) −5.01948 + 8.69399i −0.201425 + 0.348878i
\(622\) 0 0
\(623\) −18.1547 + 24.1748i −0.727352 + 0.968545i
\(624\) 0 0
\(625\) 3.97951 6.89271i 0.159180 0.275708i
\(626\) 0 0
\(627\) 0.292493 + 0.506613i 0.0116811 + 0.0202322i
\(628\) 0 0
\(629\) 3.35512 0.133778
\(630\) 0 0
\(631\) −11.5439 −0.459557 −0.229779 0.973243i \(-0.573800\pi\)
−0.229779 + 0.973243i \(0.573800\pi\)
\(632\) 0 0
\(633\) −4.00293 6.93328i −0.159102 0.275573i
\(634\) 0 0
\(635\) 12.2087 21.1461i 0.484488 0.839158i
\(636\) 0 0
\(637\) 12.9375 + 3.18045i 0.512604 + 0.126014i
\(638\) 0 0
\(639\) 0.799591 1.38493i 0.0316313 0.0547871i
\(640\) 0 0
\(641\) −7.05438 12.2185i −0.278631 0.482604i 0.692414 0.721501i \(-0.256547\pi\)
−0.971045 + 0.238897i \(0.923214\pi\)
\(642\) 0 0
\(643\) 31.8841 1.25738 0.628692 0.777654i \(-0.283590\pi\)
0.628692 + 0.777654i \(0.283590\pi\)
\(644\) 0 0
\(645\) −7.40472 −0.291560
\(646\) 0 0
\(647\) 1.34019 + 2.32128i 0.0526884 + 0.0912589i 0.891167 0.453676i \(-0.149888\pi\)
−0.838478 + 0.544935i \(0.816554\pi\)
\(648\) 0 0
\(649\) −0.249654 + 0.432413i −0.00979976 + 0.0169737i
\(650\) 0 0
\(651\) −1.82096 + 2.42480i −0.0713690 + 0.0950352i
\(652\) 0 0
\(653\) −1.94055 + 3.36114i −0.0759398 + 0.131532i −0.901495 0.432790i \(-0.857529\pi\)
0.825555 + 0.564322i \(0.190862\pi\)
\(654\) 0 0
\(655\) −7.55253 13.0814i −0.295102 0.511131i
\(656\) 0 0
\(657\) −43.1340 −1.68282
\(658\) 0 0
\(659\) −18.8524 −0.734383 −0.367192 0.930145i \(-0.619681\pi\)
−0.367192 + 0.930145i \(0.619681\pi\)
\(660\) 0 0
\(661\) 10.2000 + 17.6669i 0.396734 + 0.687164i 0.993321 0.115385i \(-0.0368101\pi\)
−0.596586 + 0.802549i \(0.703477\pi\)
\(662\) 0 0
\(663\) 0.451479 0.781985i 0.0175340 0.0303698i
\(664\) 0 0
\(665\) 8.67869 + 20.3524i 0.336545 + 0.789233i
\(666\) 0 0
\(667\) −4.58721 + 7.94528i −0.177617 + 0.307642i
\(668\) 0 0
\(669\) −1.02617 1.77738i −0.0396740 0.0687173i
\(670\) 0 0
\(671\) −2.57403 −0.0993692
\(672\) 0 0
\(673\) 51.4240 1.98225 0.991125 0.132931i \(-0.0424389\pi\)
0.991125 + 0.132931i \(0.0424389\pi\)
\(674\) 0 0
\(675\) 3.18648 + 5.51915i 0.122648 + 0.212432i
\(676\) 0 0
\(677\) −12.2023 + 21.1349i −0.468971 + 0.812281i −0.999371 0.0354664i \(-0.988708\pi\)
0.530400 + 0.847747i \(0.322042\pi\)
\(678\) 0 0
\(679\) −9.70780 1.17574i −0.372551 0.0451206i
\(680\) 0 0
\(681\) 5.72209 9.91095i 0.219271 0.379788i
\(682\) 0 0
\(683\) 11.5015 + 19.9211i 0.440091 + 0.762260i 0.997696 0.0678467i \(-0.0216129\pi\)
−0.557605 + 0.830107i \(0.688280\pi\)
\(684\) 0 0
\(685\) −0.330302 −0.0126202
\(686\) 0 0
\(687\) 0.193641 0.00738785
\(688\) 0 0
\(689\) 11.0539 + 19.1459i 0.421121 + 0.729402i
\(690\) 0 0
\(691\) 4.25661 7.37267i 0.161929 0.280469i −0.773631 0.633636i \(-0.781562\pi\)
0.935560 + 0.353166i \(0.114895\pi\)
\(692\) 0 0
\(693\) 1.75727 + 0.212828i 0.0667533 + 0.00808466i
\(694\) 0 0
\(695\) 7.20093 12.4724i 0.273147 0.473104i
\(696\) 0 0
\(697\) 4.76396 + 8.25142i 0.180448 + 0.312545i
\(698\) 0 0
\(699\) 0.747077 0.0282570
\(700\) 0 0
\(701\) −28.3455 −1.07060 −0.535298 0.844663i \(-0.679801\pi\)
−0.535298 + 0.844663i \(0.679801\pi\)
\(702\) 0 0
\(703\) 8.57925 + 14.8597i 0.323573 + 0.560444i
\(704\) 0 0
\(705\) −3.35122 + 5.80449i −0.126214 + 0.218610i
\(706\) 0 0
\(707\) −9.00925 21.1276i −0.338828 0.794585i
\(708\) 0 0
\(709\) −11.1436 + 19.3013i −0.418506 + 0.724874i −0.995789 0.0916701i \(-0.970779\pi\)
0.577283 + 0.816544i \(0.304113\pi\)
\(710\) 0 0
\(711\) −11.7463 20.3452i −0.440521 0.763005i
\(712\) 0 0
\(713\) −8.85191 −0.331507
\(714\) 0 0
\(715\) −0.750365 −0.0280621
\(716\) 0 0
\(717\) −1.73601 3.00686i −0.0648326 0.112293i
\(718\) 0 0
\(719\) 9.56097 16.5601i 0.356564 0.617587i −0.630820 0.775929i \(-0.717281\pi\)
0.987384 + 0.158342i \(0.0506148\pi\)
\(720\) 0 0
\(721\) 22.4207 29.8555i 0.834991 1.11188i
\(722\) 0 0
\(723\) 3.09903 5.36768i 0.115254 0.199626i
\(724\) 0 0
\(725\) 2.91207 + 5.04385i 0.108151 + 0.187324i
\(726\) 0 0
\(727\) −8.01996 −0.297444 −0.148722 0.988879i \(-0.547516\pi\)
−0.148722 + 0.988879i \(0.547516\pi\)
\(728\) 0 0
\(729\) −15.5940 −0.577555
\(730\) 0 0
\(731\) −4.77234 8.26593i −0.176511 0.305727i
\(732\) 0 0
\(733\) −18.1380 + 31.4159i −0.669941 + 1.16037i 0.307979 + 0.951393i \(0.400347\pi\)
−0.977920 + 0.208979i \(0.932986\pi\)
\(734\) 0 0
\(735\) −5.27356 1.29640i −0.194518 0.0478185i
\(736\) 0 0
\(737\) −1.51488 + 2.62384i −0.0558012 + 0.0966506i
\(738\) 0 0
\(739\) 18.2500 + 31.6099i 0.671336 + 1.16279i 0.977525 + 0.210817i \(0.0676126\pi\)
−0.306189 + 0.951971i \(0.599054\pi\)
\(740\) 0 0
\(741\) 4.61784 0.169640
\(742\) 0 0
\(743\) 5.06824 0.185936 0.0929678 0.995669i \(-0.470365\pi\)
0.0929678 + 0.995669i \(0.470365\pi\)
\(744\) 0 0
\(745\) 4.01195 + 6.94890i 0.146986 + 0.254588i
\(746\) 0 0
\(747\) 1.42801 2.47339i 0.0522482 0.0904965i
\(748\) 0 0
\(749\) 22.0091 29.3073i 0.804193 1.07087i
\(750\) 0 0
\(751\) −12.6068 + 21.8356i −0.460029 + 0.796794i −0.998962 0.0455548i \(-0.985494\pi\)
0.538933 + 0.842349i \(0.318828\pi\)
\(752\) 0 0
\(753\) −2.40381 4.16353i −0.0875999 0.151727i
\(754\) 0 0
\(755\) −4.96963 −0.180863
\(756\) 0 0
\(757\) −7.28908 −0.264926 −0.132463 0.991188i \(-0.542289\pi\)
−0.132463 + 0.991188i \(0.542289\pi\)
\(758\) 0 0
\(759\) −0.209563 0.362975i −0.00760667 0.0131751i
\(760\) 0 0
\(761\) −2.65844 + 4.60455i −0.0963683 + 0.166915i −0.910179 0.414215i \(-0.864056\pi\)
0.813811 + 0.581130i \(0.197389\pi\)
\(762\) 0 0
\(763\) 6.50423 + 15.2531i 0.235469 + 0.552199i
\(764\) 0 0
\(765\) 2.26879 3.92966i 0.0820283 0.142077i
\(766\) 0 0
\(767\) 1.97074 + 3.41343i 0.0711595 + 0.123252i
\(768\) 0 0
\(769\) −32.0489 −1.15571 −0.577857 0.816138i \(-0.696111\pi\)
−0.577857 + 0.816138i \(0.696111\pi\)
\(770\) 0 0
\(771\) −6.80849 −0.245202
\(772\) 0 0
\(773\) −2.85261 4.94087i −0.102601 0.177711i 0.810154 0.586217i \(-0.199383\pi\)
−0.912756 + 0.408506i \(0.866050\pi\)
\(774\) 0 0
\(775\) −2.80970 + 4.86655i −0.100927 + 0.174812i
\(776\) 0 0
\(777\) −4.18088 0.506357i −0.149988 0.0181655i
\(778\) 0 0
\(779\) −24.3635 + 42.1987i −0.872911 + 1.51193i
\(780\) 0 0
\(781\) 0.0694738 + 0.120332i 0.00248597 + 0.00430582i
\(782\) 0 0
\(783\) 6.86003 0.245158
\(784\) 0 0
\(785\) −32.5544 −1.16192
\(786\) 0 0
\(787\) −19.8183 34.3263i −0.706446 1.22360i −0.966167 0.257917i \(-0.916964\pi\)
0.259721 0.965684i \(-0.416370\pi\)
\(788\) 0 0
\(789\) −4.18511 + 7.24882i −0.148994 + 0.258065i
\(790\) 0 0
\(791\) −38.3432 4.64384i −1.36333 0.165116i
\(792\) 0 0
\(793\) −10.1596 + 17.5969i −0.360777 + 0.624884i
\(794\) 0 0
\(795\) −4.50576 7.80420i −0.159803 0.276787i
\(796\) 0 0
\(797\) −30.9698 −1.09701 −0.548503 0.836148i \(-0.684802\pi\)
−0.548503 + 0.836148i \(0.684802\pi\)
\(798\) 0 0
\(799\) −8.63945 −0.305642
\(800\) 0 0
\(801\) 15.8543 + 27.4605i 0.560185 + 0.970269i
\(802\) 0 0
\(803\) 1.87389 3.24566i 0.0661280 0.114537i
\(804\) 0 0
\(805\) −6.21805 14.5820i −0.219157 0.513946i
\(806\) 0 0
\(807\) 2.13675 3.70096i 0.0752172 0.130280i
\(808\) 0 0
\(809\) 19.9944 + 34.6314i 0.702967 + 1.21757i 0.967420 + 0.253176i \(0.0814751\pi\)
−0.264453 + 0.964398i \(0.585192\pi\)
\(810\) 0 0
\(811\) −8.21437 −0.288446 −0.144223 0.989545i \(-0.546068\pi\)
−0.144223 + 0.989545i \(0.546068\pi\)
\(812\) 0 0
\(813\) 9.26067 0.324786
\(814\) 0 0
\(815\) −4.53081 7.84759i −0.158707 0.274889i
\(816\) 0 0
\(817\) 24.4063 42.2729i 0.853868 1.47894i
\(818\) 0 0
\(819\) 8.39085 11.1733i 0.293200 0.390426i
\(820\) 0 0
\(821\) 24.6670 42.7246i 0.860886 1.49110i −0.0101897 0.999948i \(-0.503244\pi\)
0.871075 0.491150i \(-0.163423\pi\)
\(822\) 0 0
\(823\) −0.988862 1.71276i −0.0344696 0.0597031i 0.848276 0.529554i \(-0.177641\pi\)
−0.882746 + 0.469851i \(0.844308\pi\)
\(824\) 0 0
\(825\) −0.266072 −0.00926343
\(826\) 0 0
\(827\) −9.58007 −0.333132 −0.166566 0.986030i \(-0.553268\pi\)
−0.166566 + 0.986030i \(0.553268\pi\)
\(828\) 0 0
\(829\) −5.97750 10.3533i −0.207607 0.359586i 0.743353 0.668899i \(-0.233234\pi\)
−0.950960 + 0.309313i \(0.899901\pi\)
\(830\) 0 0
\(831\) 6.23105 10.7925i 0.216153 0.374388i
\(832\) 0 0
\(833\) −1.95162 6.72244i −0.0676198 0.232919i
\(834\) 0 0
\(835\) −2.79628 + 4.84330i −0.0967694 + 0.167609i
\(836\) 0 0
\(837\) 3.30944 + 5.73212i 0.114391 + 0.198131i
\(838\) 0 0
\(839\) 34.7915 1.20114 0.600569 0.799573i \(-0.294941\pi\)
0.600569 + 0.799573i \(0.294941\pi\)
\(840\) 0 0
\(841\) −22.7307 −0.783819
\(842\) 0 0
\(843\) −0.0279066 0.0483357i −0.000961156 0.00166477i
\(844\) 0 0
\(845\) 7.66723 13.2800i 0.263761 0.456847i
\(846\) 0 0
\(847\) 17.3841 23.1487i 0.597325 0.795400i
\(848\) 0 0
\(849\) −0.680559 + 1.17876i −0.0233567 + 0.0404550i
\(850\) 0 0
\(851\) −6.14680 10.6466i −0.210710 0.364960i
\(852\) 0 0
\(853\) −54.9715 −1.88219 −0.941095 0.338143i \(-0.890201\pi\)
−0.941095 + 0.338143i \(0.890201\pi\)
\(854\) 0 0
\(855\) 23.2057 0.793619
\(856\) 0 0
\(857\) −12.2786 21.2672i −0.419429 0.726473i 0.576453 0.817130i \(-0.304436\pi\)
−0.995882 + 0.0906577i \(0.971103\pi\)
\(858\) 0 0
\(859\) −16.6168 + 28.7812i −0.566959 + 0.982002i 0.429905 + 0.902874i \(0.358547\pi\)
−0.996864 + 0.0791280i \(0.974786\pi\)
\(860\) 0 0
\(861\) −4.69115 11.0012i −0.159874 0.374921i
\(862\) 0 0
\(863\) −4.68623 + 8.11679i −0.159521 + 0.276299i −0.934696 0.355448i \(-0.884328\pi\)
0.775175 + 0.631747i \(0.217662\pi\)
\(864\) 0 0
\(865\) −9.28275 16.0782i −0.315623 0.546675i
\(866\) 0 0
\(867\) −0.474430 −0.0161125
\(868\) 0 0
\(869\) 2.04119 0.0692428
\(870\) 0 0
\(871\) 11.9583 + 20.7124i 0.405192 + 0.701813i
\(872\) 0 0
\(873\) −5.12807 + 8.88207i −0.173559 + 0.300613i
\(874\) 0 0
\(875\) −31.4654 3.81085i −1.06372 0.128830i
\(876\) 0 0
\(877\) −16.0433 + 27.7877i −0.541742 + 0.938325i 0.457062 + 0.889435i \(0.348902\pi\)
−0.998804 + 0.0488901i \(0.984432\pi\)
\(878\) 0 0
\(879\) −4.22335 7.31506i −0.142450 0.246731i
\(880\) 0 0
\(881\) −4.55055 −0.153312 −0.0766559 0.997058i \(-0.524424\pi\)
−0.0766559 + 0.997058i \(0.524424\pi\)
\(882\) 0 0
\(883\) −20.7818 −0.699362 −0.349681 0.936869i \(-0.613710\pi\)
−0.349681 + 0.936869i \(0.613710\pi\)
\(884\) 0 0
\(885\) −0.803308 1.39137i −0.0270029 0.0467704i
\(886\) 0 0
\(887\) 7.48267 12.9604i 0.251243 0.435166i −0.712625 0.701545i \(-0.752494\pi\)
0.963868 + 0.266379i \(0.0858272\pi\)
\(888\) 0 0
\(889\) −39.2204 4.75008i −1.31541 0.159313i
\(890\) 0 0
\(891\) 0.846863 1.46681i 0.0283710 0.0491400i
\(892\) 0 0
\(893\) −22.0916 38.2638i −0.739267 1.28045i
\(894\) 0 0
\(895\) 24.1468 0.807138
\(896\) 0 0
\(897\) −3.30855 −0.110469
\(898\) 0 0
\(899\) 3.02444 + 5.23848i 0.100871 + 0.174713i
\(900\) 0 0
\(901\) 5.80792 10.0596i 0.193490 0.335134i
\(902\) 0 0
\(903\) 4.69940 + 11.0206i 0.156386 + 0.366742i
\(904\) 0 0
\(905\) −3.27497 + 5.67241i −0.108864 + 0.188557i
\(906\) 0 0
\(907\) −21.0412 36.4444i −0.698661 1.21012i −0.968931 0.247331i \(-0.920446\pi\)
0.270270 0.962784i \(-0.412887\pi\)
\(908\) 0 0
\(909\) −24.0896 −0.799001
\(910\) 0 0
\(911\) 4.98375 0.165119 0.0825594 0.996586i \(-0.473691\pi\)
0.0825594 + 0.996586i \(0.473691\pi\)
\(912\) 0 0
\(913\) 0.124075 + 0.214904i 0.00410628 + 0.00711229i
\(914\) 0 0
\(915\) 4.14121 7.17279i 0.136904 0.237125i
\(916\) 0 0
\(917\) −14.6760 + 19.5427i −0.484645 + 0.645356i
\(918\) 0 0
\(919\) −9.00977 + 15.6054i −0.297205 + 0.514774i −0.975495 0.220020i \(-0.929388\pi\)
0.678291 + 0.734794i \(0.262721\pi\)
\(920\) 0 0
\(921\) −5.17627 8.96557i −0.170564 0.295425i
\(922\) 0 0
\(923\) 1.09684 0.0361029
\(924\) 0 0
\(925\) −7.80426 −0.256603
\(926\) 0 0
\(927\) −19.5798 33.9132i −0.643085 1.11386i
\(928\) 0 0
\(929\) −15.5991 + 27.0185i −0.511791 + 0.886448i 0.488115 + 0.872779i \(0.337685\pi\)
−0.999907 + 0.0136692i \(0.995649\pi\)
\(930\) 0 0
\(931\) 24.7830 25.8333i 0.812229 0.846653i
\(932\) 0 0
\(933\) 1.40987 2.44197i 0.0461571 0.0799465i
\(934\) 0 0
\(935\) 0.197128 + 0.341435i 0.00644676 + 0.0111661i
\(936\) 0 0
\(937\) 58.5957 1.91424 0.957119 0.289695i \(-0.0935540\pi\)
0.957119 + 0.289695i \(0.0935540\pi\)
\(938\) 0 0
\(939\) 6.10326 0.199172
\(940\) 0 0
\(941\) −16.6352 28.8131i −0.542293 0.939279i −0.998772 0.0495450i \(-0.984223\pi\)
0.456479 0.889734i \(-0.349110\pi\)
\(942\) 0 0
\(943\) 17.4557 30.2342i 0.568437 0.984563i
\(944\) 0 0
\(945\) −7.11793 + 9.47826i −0.231546 + 0.308328i
\(946\) 0 0
\(947\) 23.9844 41.5422i 0.779388 1.34994i −0.152907 0.988241i \(-0.548864\pi\)
0.932295 0.361699i \(-0.117803\pi\)
\(948\) 0 0
\(949\) −14.7923 25.6210i −0.480178 0.831693i
\(950\) 0 0
\(951\) 1.57389 0.0510370
\(952\) 0 0
\(953\) −4.51078 −0.146119 −0.0730593 0.997328i \(-0.523276\pi\)
−0.0730593 + 0.997328i \(0.523276\pi\)
\(954\) 0 0
\(955\) 17.6806 + 30.6236i 0.572130 + 0.990958i
\(956\) 0 0
\(957\) −0.143203 + 0.248036i −0.00462911 + 0.00801785i
\(958\) 0 0
\(959\) 0.209626 + 0.491595i 0.00676918 + 0.0158744i
\(960\) 0 0
\(961\) 12.5819 21.7925i 0.405867 0.702982i
\(962\) 0 0
\(963\) −19.2203 33.2905i −0.619366 1.07277i
\(964\) 0 0
\(965\) 25.3921 0.817402
\(966\) 0 0
\(967\) −12.4644 −0.400830 −0.200415 0.979711i \(-0.564229\pi\)
−0.200415 + 0.979711i \(0.564229\pi\)
\(968\) 0 0
\(969\) −1.21315 2.10123i −0.0389719 0.0675013i
\(970\) 0 0
\(971\) 0.603282 1.04492i 0.0193602 0.0335329i −0.856183 0.516673i \(-0.827170\pi\)
0.875543 + 0.483140i \(0.160504\pi\)
\(972\) 0 0
\(973\) −23.1330 2.80169i −0.741608 0.0898180i
\(974\) 0 0
\(975\) −1.05017 + 1.81895i −0.0336325 + 0.0582532i
\(976\) 0 0
\(977\) 6.01455 + 10.4175i 0.192422 + 0.333286i 0.946053 0.324013i \(-0.105032\pi\)
−0.753630 + 0.657299i \(0.771699\pi\)
\(978\) 0 0
\(979\) −2.75506 −0.0880520
\(980\) 0 0
\(981\) 17.3915 0.555268
\(982\) 0 0
\(983\) 4.05275 + 7.01958i 0.129263 + 0.223890i 0.923391 0.383860i \(-0.125406\pi\)
−0.794128 + 0.607750i \(0.792072\pi\)
\(984\) 0 0
\(985\) −0.318441 + 0.551556i −0.0101464 + 0.0175740i
\(986\) 0 0
\(987\) 10.7658 + 1.30387i 0.342679 + 0.0415027i
\(988\) 0 0
\(989\) −17.4864 + 30.2874i −0.556037 + 0.963084i
\(990\) 0 0
\(991\) −8.42522 14.5929i −0.267636 0.463559i 0.700615 0.713540i \(-0.252909\pi\)
−0.968251 + 0.249981i \(0.919576\pi\)
\(992\) 0 0
\(993\) −3.53216 −0.112090
\(994\) 0 0
\(995\) 5.01810 0.159084
\(996\) 0 0
\(997\) 8.08907 + 14.0107i 0.256184 + 0.443723i 0.965216 0.261453i \(-0.0842015\pi\)
−0.709033 + 0.705176i \(0.750868\pi\)
\(998\) 0 0
\(999\) −4.59618 + 7.96081i −0.145417 + 0.251869i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.q.e.681.4 yes 14
7.2 even 3 6664.2.a.v.1.4 7
7.4 even 3 inner 952.2.q.e.137.4 14
7.5 odd 6 6664.2.a.y.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.e.137.4 14 7.4 even 3 inner
952.2.q.e.681.4 yes 14 1.1 even 1 trivial
6664.2.a.v.1.4 7 7.2 even 3
6664.2.a.y.1.4 7 7.5 odd 6