Properties

Label 952.2.q.e.137.4
Level $952$
Weight $2$
Character 952.137
Analytic conductor $7.602$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(137,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 17 x^{12} - 18 x^{11} + 102 x^{10} - 59 x^{9} + 462 x^{8} - 28 x^{7} + 1148 x^{6} + \cdots + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 137.4
Root \(0.237215 - 0.410869i\) of defining polynomial
Character \(\chi\) \(=\) 952.137
Dual form 952.2.q.e.681.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.237215 - 0.410869i) q^{3} +(-0.817607 - 1.41614i) q^{5} +(2.62656 - 0.318109i) q^{7} +(1.38746 + 2.40315i) q^{9} +(0.120552 - 0.208801i) q^{11} +1.90325 q^{13} -0.775795 q^{15} +(-0.500000 + 0.866025i) q^{17} +(2.55706 + 4.42896i) q^{19} +(0.492358 - 1.15463i) q^{21} +(-1.83206 - 3.17323i) q^{23} +(1.16304 - 2.01444i) q^{25} +2.73980 q^{27} +2.50385 q^{29} +(1.20792 - 2.09217i) q^{31} +(-0.0571933 - 0.0990617i) q^{33} +(-2.59798 - 3.45948i) q^{35} +(-1.67756 - 2.90562i) q^{37} +(0.451479 - 0.781985i) q^{39} -9.52792 q^{41} +9.54468 q^{43} +(2.26879 - 3.92966i) q^{45} +(4.31973 + 7.48198i) q^{47} +(6.79761 - 1.67106i) q^{49} +(0.237215 + 0.410869i) q^{51} +(5.80792 - 10.0596i) q^{53} -0.394255 q^{55} +2.42629 q^{57} +(1.03546 - 1.79348i) q^{59} +(-5.33802 - 9.24572i) q^{61} +(4.40870 + 5.87064i) q^{63} +(-1.55611 - 2.69526i) q^{65} +(6.28311 - 10.8827i) q^{67} -1.73837 q^{69} +0.576299 q^{71} +(-7.77213 + 13.4617i) q^{73} +(-0.551780 - 0.955711i) q^{75} +(0.250214 - 0.586777i) q^{77} +(4.23303 + 7.33183i) q^{79} +(-3.51245 + 6.08375i) q^{81} +1.02923 q^{83} +1.63521 q^{85} +(0.593951 - 1.02875i) q^{87} +(-5.71344 - 9.89597i) q^{89} +(4.99899 - 0.605440i) q^{91} +(-0.573072 - 0.992590i) q^{93} +(4.18134 - 7.24229i) q^{95} -3.69602 q^{97} +0.669041 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{3} - 2 q^{5} + 2 q^{7} - 4 q^{9} + 12 q^{11} + 4 q^{13} - 12 q^{15} - 7 q^{17} + 3 q^{19} + 18 q^{21} + 18 q^{23} - 15 q^{25} - 36 q^{27} + 10 q^{29} + 10 q^{31} - 21 q^{33} + 19 q^{35} - 11 q^{37}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.237215 0.410869i 0.136956 0.237215i −0.789387 0.613896i \(-0.789601\pi\)
0.926343 + 0.376681i \(0.122935\pi\)
\(4\) 0 0
\(5\) −0.817607 1.41614i −0.365645 0.633316i 0.623234 0.782035i \(-0.285818\pi\)
−0.988879 + 0.148719i \(0.952485\pi\)
\(6\) 0 0
\(7\) 2.62656 0.318109i 0.992746 0.120234i
\(8\) 0 0
\(9\) 1.38746 + 2.40315i 0.462486 + 0.801049i
\(10\) 0 0
\(11\) 0.120552 0.208801i 0.0363477 0.0629560i −0.847279 0.531148i \(-0.821761\pi\)
0.883627 + 0.468192i \(0.155094\pi\)
\(12\) 0 0
\(13\) 1.90325 0.527866 0.263933 0.964541i \(-0.414980\pi\)
0.263933 + 0.964541i \(0.414980\pi\)
\(14\) 0 0
\(15\) −0.775795 −0.200310
\(16\) 0 0
\(17\) −0.500000 + 0.866025i −0.121268 + 0.210042i
\(18\) 0 0
\(19\) 2.55706 + 4.42896i 0.586630 + 1.01607i 0.994670 + 0.103108i \(0.0328789\pi\)
−0.408041 + 0.912964i \(0.633788\pi\)
\(20\) 0 0
\(21\) 0.492358 1.15463i 0.107441 0.251961i
\(22\) 0 0
\(23\) −1.83206 3.17323i −0.382012 0.661663i 0.609338 0.792910i \(-0.291435\pi\)
−0.991350 + 0.131247i \(0.958102\pi\)
\(24\) 0 0
\(25\) 1.16304 2.01444i 0.232607 0.402888i
\(26\) 0 0
\(27\) 2.73980 0.527274
\(28\) 0 0
\(29\) 2.50385 0.464953 0.232477 0.972602i \(-0.425317\pi\)
0.232477 + 0.972602i \(0.425317\pi\)
\(30\) 0 0
\(31\) 1.20792 2.09217i 0.216948 0.375765i −0.736925 0.675974i \(-0.763723\pi\)
0.953873 + 0.300209i \(0.0970564\pi\)
\(32\) 0 0
\(33\) −0.0571933 0.0990617i −0.00995608 0.0172444i
\(34\) 0 0
\(35\) −2.59798 3.45948i −0.439139 0.584759i
\(36\) 0 0
\(37\) −1.67756 2.90562i −0.275789 0.477681i 0.694545 0.719450i \(-0.255606\pi\)
−0.970334 + 0.241768i \(0.922273\pi\)
\(38\) 0 0
\(39\) 0.451479 0.781985i 0.0722945 0.125218i
\(40\) 0 0
\(41\) −9.52792 −1.48801 −0.744006 0.668173i \(-0.767076\pi\)
−0.744006 + 0.668173i \(0.767076\pi\)
\(42\) 0 0
\(43\) 9.54468 1.45555 0.727775 0.685816i \(-0.240555\pi\)
0.727775 + 0.685816i \(0.240555\pi\)
\(44\) 0 0
\(45\) 2.26879 3.92966i 0.338211 0.585799i
\(46\) 0 0
\(47\) 4.31973 + 7.48198i 0.630097 + 1.09136i 0.987532 + 0.157421i \(0.0503181\pi\)
−0.357435 + 0.933938i \(0.616349\pi\)
\(48\) 0 0
\(49\) 6.79761 1.67106i 0.971088 0.238723i
\(50\) 0 0
\(51\) 0.237215 + 0.410869i 0.0332168 + 0.0575331i
\(52\) 0 0
\(53\) 5.80792 10.0596i 0.797779 1.38179i −0.123280 0.992372i \(-0.539341\pi\)
0.921059 0.389423i \(-0.127325\pi\)
\(54\) 0 0
\(55\) −0.394255 −0.0531614
\(56\) 0 0
\(57\) 2.42629 0.321370
\(58\) 0 0
\(59\) 1.03546 1.79348i 0.134806 0.233491i −0.790717 0.612181i \(-0.790292\pi\)
0.925523 + 0.378691i \(0.123626\pi\)
\(60\) 0 0
\(61\) −5.33802 9.24572i −0.683463 1.18379i −0.973917 0.226904i \(-0.927140\pi\)
0.290454 0.956889i \(-0.406194\pi\)
\(62\) 0 0
\(63\) 4.40870 + 5.87064i 0.555444 + 0.739632i
\(64\) 0 0
\(65\) −1.55611 2.69526i −0.193012 0.334306i
\(66\) 0 0
\(67\) 6.28311 10.8827i 0.767604 1.32953i −0.171254 0.985227i \(-0.554782\pi\)
0.938859 0.344303i \(-0.111885\pi\)
\(68\) 0 0
\(69\) −1.73837 −0.209275
\(70\) 0 0
\(71\) 0.576299 0.0683942 0.0341971 0.999415i \(-0.489113\pi\)
0.0341971 + 0.999415i \(0.489113\pi\)
\(72\) 0 0
\(73\) −7.77213 + 13.4617i −0.909659 + 1.57558i −0.0951216 + 0.995466i \(0.530324\pi\)
−0.814538 + 0.580111i \(0.803009\pi\)
\(74\) 0 0
\(75\) −0.551780 0.955711i −0.0637141 0.110356i
\(76\) 0 0
\(77\) 0.250214 0.586777i 0.0285145 0.0668695i
\(78\) 0 0
\(79\) 4.23303 + 7.33183i 0.476253 + 0.824895i 0.999630 0.0272066i \(-0.00866120\pi\)
−0.523377 + 0.852102i \(0.675328\pi\)
\(80\) 0 0
\(81\) −3.51245 + 6.08375i −0.390273 + 0.675972i
\(82\) 0 0
\(83\) 1.02923 0.112972 0.0564862 0.998403i \(-0.482010\pi\)
0.0564862 + 0.998403i \(0.482010\pi\)
\(84\) 0 0
\(85\) 1.63521 0.177364
\(86\) 0 0
\(87\) 0.593951 1.02875i 0.0636782 0.110294i
\(88\) 0 0
\(89\) −5.71344 9.89597i −0.605624 1.04897i −0.991953 0.126610i \(-0.959590\pi\)
0.386329 0.922361i \(-0.373743\pi\)
\(90\) 0 0
\(91\) 4.99899 0.605440i 0.524037 0.0634674i
\(92\) 0 0
\(93\) −0.573072 0.992590i −0.0594248 0.102927i
\(94\) 0 0
\(95\) 4.18134 7.24229i 0.428996 0.743044i
\(96\) 0 0
\(97\) −3.69602 −0.375274 −0.187637 0.982238i \(-0.560083\pi\)
−0.187637 + 0.982238i \(0.560083\pi\)
\(98\) 0 0
\(99\) 0.669041 0.0672411
\(100\) 0 0
\(101\) −4.34060 + 7.51814i −0.431906 + 0.748083i −0.997037 0.0769181i \(-0.975492\pi\)
0.565132 + 0.825001i \(0.308825\pi\)
\(102\) 0 0
\(103\) 7.05600 + 12.2213i 0.695248 + 1.20421i 0.970097 + 0.242718i \(0.0780389\pi\)
−0.274849 + 0.961487i \(0.588628\pi\)
\(104\) 0 0
\(105\) −2.03767 + 0.246787i −0.198856 + 0.0240840i
\(106\) 0 0
\(107\) 6.92645 + 11.9970i 0.669605 + 1.15979i 0.978015 + 0.208536i \(0.0668699\pi\)
−0.308410 + 0.951254i \(0.599797\pi\)
\(108\) 0 0
\(109\) 3.13370 5.42772i 0.300154 0.519882i −0.676017 0.736886i \(-0.736295\pi\)
0.976171 + 0.217005i \(0.0696287\pi\)
\(110\) 0 0
\(111\) −1.59177 −0.151084
\(112\) 0 0
\(113\) −14.5983 −1.37329 −0.686644 0.726993i \(-0.740917\pi\)
−0.686644 + 0.726993i \(0.740917\pi\)
\(114\) 0 0
\(115\) −2.99582 + 5.18891i −0.279361 + 0.483868i
\(116\) 0 0
\(117\) 2.64068 + 4.57378i 0.244131 + 0.422847i
\(118\) 0 0
\(119\) −1.03779 + 2.43372i −0.0951339 + 0.223099i
\(120\) 0 0
\(121\) 5.47093 + 9.47594i 0.497358 + 0.861449i
\(122\) 0 0
\(123\) −2.26017 + 3.91472i −0.203792 + 0.352979i
\(124\) 0 0
\(125\) −11.9797 −1.07150
\(126\) 0 0
\(127\) −14.9323 −1.32502 −0.662512 0.749052i \(-0.730510\pi\)
−0.662512 + 0.749052i \(0.730510\pi\)
\(128\) 0 0
\(129\) 2.26414 3.92161i 0.199347 0.345278i
\(130\) 0 0
\(131\) −4.61868 7.99979i −0.403536 0.698945i 0.590614 0.806954i \(-0.298886\pi\)
−0.994150 + 0.108010i \(0.965552\pi\)
\(132\) 0 0
\(133\) 8.12515 + 10.8195i 0.704540 + 0.938169i
\(134\) 0 0
\(135\) −2.24008 3.87993i −0.192795 0.333931i
\(136\) 0 0
\(137\) 0.100997 0.174931i 0.00862872 0.0149454i −0.861679 0.507454i \(-0.830587\pi\)
0.870308 + 0.492509i \(0.163920\pi\)
\(138\) 0 0
\(139\) −8.80733 −0.747028 −0.373514 0.927625i \(-0.621847\pi\)
−0.373514 + 0.927625i \(0.621847\pi\)
\(140\) 0 0
\(141\) 4.09882 0.345183
\(142\) 0 0
\(143\) 0.229439 0.397401i 0.0191867 0.0332323i
\(144\) 0 0
\(145\) −2.04716 3.54579i −0.170008 0.294462i
\(146\) 0 0
\(147\) 0.925910 3.18933i 0.0763677 0.263051i
\(148\) 0 0
\(149\) 2.45347 + 4.24953i 0.200996 + 0.348135i 0.948850 0.315728i \(-0.102249\pi\)
−0.747854 + 0.663864i \(0.768916\pi\)
\(150\) 0 0
\(151\) 1.51957 2.63197i 0.123661 0.214186i −0.797548 0.603255i \(-0.793870\pi\)
0.921209 + 0.389069i \(0.127203\pi\)
\(152\) 0 0
\(153\) −2.77492 −0.224339
\(154\) 0 0
\(155\) −3.95040 −0.317304
\(156\) 0 0
\(157\) 9.95417 17.2411i 0.794429 1.37599i −0.128772 0.991674i \(-0.541104\pi\)
0.923201 0.384317i \(-0.125563\pi\)
\(158\) 0 0
\(159\) −2.75545 4.77259i −0.218522 0.378491i
\(160\) 0 0
\(161\) −5.82145 7.75187i −0.458795 0.610933i
\(162\) 0 0
\(163\) −2.77077 4.79912i −0.217024 0.375896i 0.736873 0.676031i \(-0.236302\pi\)
−0.953897 + 0.300135i \(0.902968\pi\)
\(164\) 0 0
\(165\) −0.0935233 + 0.161987i −0.00728078 + 0.0126107i
\(166\) 0 0
\(167\) 3.42008 0.264654 0.132327 0.991206i \(-0.457755\pi\)
0.132327 + 0.991206i \(0.457755\pi\)
\(168\) 0 0
\(169\) −9.37765 −0.721358
\(170\) 0 0
\(171\) −7.09562 + 12.2900i −0.542616 + 0.939838i
\(172\) 0 0
\(173\) −5.67678 9.83247i −0.431598 0.747549i 0.565414 0.824808i \(-0.308717\pi\)
−0.997011 + 0.0772587i \(0.975383\pi\)
\(174\) 0 0
\(175\) 2.41397 5.66101i 0.182479 0.427932i
\(176\) 0 0
\(177\) −0.491256 0.850880i −0.0369250 0.0639560i
\(178\) 0 0
\(179\) −7.38337 + 12.7884i −0.551859 + 0.955847i 0.446282 + 0.894892i \(0.352748\pi\)
−0.998141 + 0.0609548i \(0.980585\pi\)
\(180\) 0 0
\(181\) 4.00555 0.297730 0.148865 0.988858i \(-0.452438\pi\)
0.148865 + 0.988858i \(0.452438\pi\)
\(182\) 0 0
\(183\) −5.06504 −0.374418
\(184\) 0 0
\(185\) −2.74317 + 4.75132i −0.201682 + 0.349324i
\(186\) 0 0
\(187\) 0.120552 + 0.208801i 0.00881560 + 0.0152691i
\(188\) 0 0
\(189\) 7.19623 0.871553i 0.523449 0.0633962i
\(190\) 0 0
\(191\) 10.8124 + 18.7276i 0.782357 + 1.35508i 0.930565 + 0.366126i \(0.119316\pi\)
−0.148209 + 0.988956i \(0.547351\pi\)
\(192\) 0 0
\(193\) −7.76416 + 13.4479i −0.558877 + 0.968002i 0.438714 + 0.898627i \(0.355434\pi\)
−0.997591 + 0.0693758i \(0.977899\pi\)
\(194\) 0 0
\(195\) −1.47653 −0.105737
\(196\) 0 0
\(197\) 0.389479 0.0277492 0.0138746 0.999904i \(-0.495583\pi\)
0.0138746 + 0.999904i \(0.495583\pi\)
\(198\) 0 0
\(199\) −1.53439 + 2.65763i −0.108770 + 0.188395i −0.915272 0.402836i \(-0.868024\pi\)
0.806502 + 0.591231i \(0.201358\pi\)
\(200\) 0 0
\(201\) −2.98090 5.16307i −0.210256 0.364175i
\(202\) 0 0
\(203\) 6.57650 0.796497i 0.461580 0.0559031i
\(204\) 0 0
\(205\) 7.79010 + 13.4928i 0.544084 + 0.942381i
\(206\) 0 0
\(207\) 5.08382 8.80544i 0.353350 0.612020i
\(208\) 0 0
\(209\) 1.23303 0.0852904
\(210\) 0 0
\(211\) −16.8747 −1.16170 −0.580850 0.814010i \(-0.697280\pi\)
−0.580850 + 0.814010i \(0.697280\pi\)
\(212\) 0 0
\(213\) 0.136707 0.236783i 0.00936701 0.0162241i
\(214\) 0 0
\(215\) −7.80380 13.5166i −0.532214 0.921822i
\(216\) 0 0
\(217\) 2.50712 5.87946i 0.170195 0.399124i
\(218\) 0 0
\(219\) 3.68734 + 6.38665i 0.249167 + 0.431570i
\(220\) 0 0
\(221\) −0.951624 + 1.64826i −0.0640131 + 0.110874i
\(222\) 0 0
\(223\) −4.32590 −0.289683 −0.144842 0.989455i \(-0.546267\pi\)
−0.144842 + 0.989455i \(0.546267\pi\)
\(224\) 0 0
\(225\) 6.45466 0.430311
\(226\) 0 0
\(227\) −12.0610 + 20.8902i −0.800514 + 1.38653i 0.118763 + 0.992923i \(0.462107\pi\)
−0.919278 + 0.393609i \(0.871226\pi\)
\(228\) 0 0
\(229\) 0.204077 + 0.353472i 0.0134858 + 0.0233581i 0.872690 0.488275i \(-0.162374\pi\)
−0.859204 + 0.511634i \(0.829041\pi\)
\(230\) 0 0
\(231\) −0.181734 0.241998i −0.0119572 0.0159223i
\(232\) 0 0
\(233\) 0.787341 + 1.36371i 0.0515804 + 0.0893399i 0.890663 0.454664i \(-0.150241\pi\)
−0.839082 + 0.544004i \(0.816907\pi\)
\(234\) 0 0
\(235\) 7.06368 12.2346i 0.460784 0.798101i
\(236\) 0 0
\(237\) 4.01656 0.260903
\(238\) 0 0
\(239\) −7.31831 −0.473382 −0.236691 0.971585i \(-0.576063\pi\)
−0.236691 + 0.971585i \(0.576063\pi\)
\(240\) 0 0
\(241\) −6.53210 + 11.3139i −0.420770 + 0.728795i −0.996015 0.0891863i \(-0.971573\pi\)
0.575245 + 0.817981i \(0.304907\pi\)
\(242\) 0 0
\(243\) 5.77611 + 10.0045i 0.370537 + 0.641790i
\(244\) 0 0
\(245\) −7.92423 8.26008i −0.506261 0.527717i
\(246\) 0 0
\(247\) 4.86672 + 8.42940i 0.309662 + 0.536350i
\(248\) 0 0
\(249\) 0.244149 0.422878i 0.0154723 0.0267988i
\(250\) 0 0
\(251\) −10.1335 −0.639619 −0.319810 0.947482i \(-0.603619\pi\)
−0.319810 + 0.947482i \(0.603619\pi\)
\(252\) 0 0
\(253\) −0.883432 −0.0555409
\(254\) 0 0
\(255\) 0.387898 0.671859i 0.0242911 0.0420734i
\(256\) 0 0
\(257\) −7.17544 12.4282i −0.447591 0.775251i 0.550637 0.834745i \(-0.314385\pi\)
−0.998229 + 0.0594936i \(0.981051\pi\)
\(258\) 0 0
\(259\) −5.33052 7.09814i −0.331222 0.441057i
\(260\) 0 0
\(261\) 3.47398 + 6.01712i 0.215034 + 0.372450i
\(262\) 0 0
\(263\) 8.82134 15.2790i 0.543947 0.942144i −0.454726 0.890632i \(-0.650263\pi\)
0.998672 0.0515119i \(-0.0164040\pi\)
\(264\) 0 0
\(265\) −18.9944 −1.16682
\(266\) 0 0
\(267\) −5.42126 −0.331776
\(268\) 0 0
\(269\) −4.50383 + 7.80086i −0.274603 + 0.475627i −0.970035 0.242966i \(-0.921880\pi\)
0.695432 + 0.718592i \(0.255213\pi\)
\(270\) 0 0
\(271\) 9.75978 + 16.9044i 0.592864 + 1.02687i 0.993844 + 0.110785i \(0.0353364\pi\)
−0.400980 + 0.916087i \(0.631330\pi\)
\(272\) 0 0
\(273\) 0.937080 2.19755i 0.0567147 0.133002i
\(274\) 0 0
\(275\) −0.280412 0.485687i −0.0169095 0.0292881i
\(276\) 0 0
\(277\) −13.1338 + 22.7483i −0.789131 + 1.36681i 0.137370 + 0.990520i \(0.456135\pi\)
−0.926500 + 0.376294i \(0.877198\pi\)
\(278\) 0 0
\(279\) 6.70373 0.401342
\(280\) 0 0
\(281\) −0.117643 −0.00701798 −0.00350899 0.999994i \(-0.501117\pi\)
−0.00350899 + 0.999994i \(0.501117\pi\)
\(282\) 0 0
\(283\) 1.43448 2.48459i 0.0852708 0.147693i −0.820236 0.572026i \(-0.806158\pi\)
0.905507 + 0.424332i \(0.139491\pi\)
\(284\) 0 0
\(285\) −1.98375 3.43596i −0.117507 0.203529i
\(286\) 0 0
\(287\) −25.0256 + 3.03092i −1.47722 + 0.178909i
\(288\) 0 0
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) 0 0
\(291\) −0.876751 + 1.51858i −0.0513961 + 0.0890206i
\(292\) 0 0
\(293\) −17.8039 −1.04011 −0.520057 0.854132i \(-0.674089\pi\)
−0.520057 + 0.854132i \(0.674089\pi\)
\(294\) 0 0
\(295\) −3.38641 −0.197164
\(296\) 0 0
\(297\) 0.330287 0.572073i 0.0191652 0.0331950i
\(298\) 0 0
\(299\) −3.48687 6.03943i −0.201651 0.349270i
\(300\) 0 0
\(301\) 25.0696 3.03625i 1.44499 0.175006i
\(302\) 0 0
\(303\) 2.05931 + 3.56683i 0.118304 + 0.204909i
\(304\) 0 0
\(305\) −8.72881 + 15.1187i −0.499810 + 0.865697i
\(306\) 0 0
\(307\) −21.8210 −1.24539 −0.622695 0.782465i \(-0.713962\pi\)
−0.622695 + 0.782465i \(0.713962\pi\)
\(308\) 0 0
\(309\) 6.69516 0.380874
\(310\) 0 0
\(311\) −2.97172 + 5.14716i −0.168511 + 0.291869i −0.937896 0.346916i \(-0.887229\pi\)
0.769386 + 0.638784i \(0.220562\pi\)
\(312\) 0 0
\(313\) 6.43219 + 11.1409i 0.363569 + 0.629720i 0.988545 0.150923i \(-0.0482247\pi\)
−0.624976 + 0.780644i \(0.714891\pi\)
\(314\) 0 0
\(315\) 4.70905 11.0432i 0.265325 0.622214i
\(316\) 0 0
\(317\) 1.65872 + 2.87299i 0.0931629 + 0.161363i 0.908840 0.417144i \(-0.136969\pi\)
−0.815677 + 0.578507i \(0.803636\pi\)
\(318\) 0 0
\(319\) 0.301843 0.522807i 0.0169000 0.0292716i
\(320\) 0 0
\(321\) 6.57223 0.366826
\(322\) 0 0
\(323\) −5.11412 −0.284557
\(324\) 0 0
\(325\) 2.21355 3.83398i 0.122785 0.212671i
\(326\) 0 0
\(327\) −1.48672 2.57508i −0.0822159 0.142402i
\(328\) 0 0
\(329\) 13.7261 + 18.2777i 0.756744 + 1.00768i
\(330\) 0 0
\(331\) −3.72252 6.44760i −0.204608 0.354392i 0.745399 0.666618i \(-0.232259\pi\)
−0.950008 + 0.312226i \(0.898925\pi\)
\(332\) 0 0
\(333\) 4.65509 8.06286i 0.255098 0.441842i
\(334\) 0 0
\(335\) −20.5485 −1.12268
\(336\) 0 0
\(337\) −4.05359 −0.220813 −0.110407 0.993887i \(-0.535215\pi\)
−0.110407 + 0.993887i \(0.535215\pi\)
\(338\) 0 0
\(339\) −3.46293 + 5.99797i −0.188080 + 0.325765i
\(340\) 0 0
\(341\) −0.291232 0.504429i −0.0157711 0.0273164i
\(342\) 0 0
\(343\) 17.3227 6.55152i 0.935340 0.353749i
\(344\) 0 0
\(345\) 1.42131 + 2.46177i 0.0765205 + 0.132537i
\(346\) 0 0
\(347\) 17.6541 30.5778i 0.947722 1.64150i 0.197516 0.980300i \(-0.436713\pi\)
0.750206 0.661204i \(-0.229954\pi\)
\(348\) 0 0
\(349\) −1.80670 −0.0967104 −0.0483552 0.998830i \(-0.515398\pi\)
−0.0483552 + 0.998830i \(0.515398\pi\)
\(350\) 0 0
\(351\) 5.21451 0.278330
\(352\) 0 0
\(353\) 0.225328 0.390280i 0.0119930 0.0207725i −0.859967 0.510350i \(-0.829516\pi\)
0.871960 + 0.489578i \(0.162849\pi\)
\(354\) 0 0
\(355\) −0.471187 0.816119i −0.0250080 0.0433151i
\(356\) 0 0
\(357\) 0.753760 + 1.00371i 0.0398932 + 0.0531220i
\(358\) 0 0
\(359\) −18.1137 31.3739i −0.956007 1.65585i −0.732047 0.681254i \(-0.761435\pi\)
−0.223960 0.974598i \(-0.571899\pi\)
\(360\) 0 0
\(361\) −3.57710 + 6.19572i −0.188269 + 0.326091i
\(362\) 0 0
\(363\) 5.19116 0.272465
\(364\) 0 0
\(365\) 25.4182 1.33045
\(366\) 0 0
\(367\) 9.63081 16.6811i 0.502724 0.870744i −0.497271 0.867595i \(-0.665664\pi\)
0.999995 0.00314852i \(-0.00100221\pi\)
\(368\) 0 0
\(369\) −13.2196 22.8970i −0.688184 1.19197i
\(370\) 0 0
\(371\) 12.0548 28.2697i 0.625854 1.46769i
\(372\) 0 0
\(373\) 11.2166 + 19.4277i 0.580774 + 1.00593i 0.995388 + 0.0959331i \(0.0305835\pi\)
−0.414613 + 0.909998i \(0.636083\pi\)
\(374\) 0 0
\(375\) −2.84177 + 4.92209i −0.146748 + 0.254175i
\(376\) 0 0
\(377\) 4.76544 0.245433
\(378\) 0 0
\(379\) 1.03798 0.0533176 0.0266588 0.999645i \(-0.491513\pi\)
0.0266588 + 0.999645i \(0.491513\pi\)
\(380\) 0 0
\(381\) −3.54216 + 6.13520i −0.181470 + 0.314316i
\(382\) 0 0
\(383\) 11.5778 + 20.0534i 0.591600 + 1.02468i 0.994017 + 0.109225i \(0.0348368\pi\)
−0.402417 + 0.915456i \(0.631830\pi\)
\(384\) 0 0
\(385\) −1.03553 + 0.125416i −0.0527757 + 0.00639180i
\(386\) 0 0
\(387\) 13.2428 + 22.9373i 0.673171 + 1.16597i
\(388\) 0 0
\(389\) 18.3216 31.7339i 0.928940 1.60897i 0.143840 0.989601i \(-0.454055\pi\)
0.785099 0.619370i \(-0.212612\pi\)
\(390\) 0 0
\(391\) 3.66413 0.185303
\(392\) 0 0
\(393\) −4.38248 −0.221067
\(394\) 0 0
\(395\) 6.92192 11.9891i 0.348279 0.603238i
\(396\) 0 0
\(397\) 8.58159 + 14.8638i 0.430698 + 0.745991i 0.996934 0.0782528i \(-0.0249341\pi\)
−0.566236 + 0.824243i \(0.691601\pi\)
\(398\) 0 0
\(399\) 6.37280 0.771825i 0.319039 0.0386396i
\(400\) 0 0
\(401\) −1.97898 3.42770i −0.0988256 0.171171i 0.812373 0.583138i \(-0.198175\pi\)
−0.911199 + 0.411967i \(0.864842\pi\)
\(402\) 0 0
\(403\) 2.29896 3.98192i 0.114520 0.198354i
\(404\) 0 0
\(405\) 11.4872 0.570805
\(406\) 0 0
\(407\) −0.808931 −0.0400972
\(408\) 0 0
\(409\) −3.03370 + 5.25452i −0.150007 + 0.259819i −0.931230 0.364433i \(-0.881263\pi\)
0.781223 + 0.624252i \(0.214596\pi\)
\(410\) 0 0
\(411\) −0.0479159 0.0829927i −0.00236351 0.00409373i
\(412\) 0 0
\(413\) 2.14919 5.04006i 0.105754 0.248005i
\(414\) 0 0
\(415\) −0.841505 1.45753i −0.0413078 0.0715473i
\(416\) 0 0
\(417\) −2.08923 + 3.61866i −0.102310 + 0.177206i
\(418\) 0 0
\(419\) 5.33057 0.260415 0.130208 0.991487i \(-0.458436\pi\)
0.130208 + 0.991487i \(0.458436\pi\)
\(420\) 0 0
\(421\) 17.1834 0.837466 0.418733 0.908109i \(-0.362474\pi\)
0.418733 + 0.908109i \(0.362474\pi\)
\(422\) 0 0
\(423\) −11.9869 + 20.7619i −0.582822 + 1.00948i
\(424\) 0 0
\(425\) 1.16304 + 2.01444i 0.0564156 + 0.0977146i
\(426\) 0 0
\(427\) −16.9618 22.5864i −0.820837 1.09303i
\(428\) 0 0
\(429\) −0.108853 0.188539i −0.00525547 0.00910275i
\(430\) 0 0
\(431\) −2.81008 + 4.86720i −0.135357 + 0.234445i −0.925734 0.378176i \(-0.876551\pi\)
0.790377 + 0.612621i \(0.209885\pi\)
\(432\) 0 0
\(433\) −6.15198 −0.295645 −0.147823 0.989014i \(-0.547227\pi\)
−0.147823 + 0.989014i \(0.547227\pi\)
\(434\) 0 0
\(435\) −1.94247 −0.0931345
\(436\) 0 0
\(437\) 9.36939 16.2283i 0.448199 0.776303i
\(438\) 0 0
\(439\) −19.3334 33.4864i −0.922731 1.59822i −0.795170 0.606387i \(-0.792618\pi\)
−0.127562 0.991831i \(-0.540715\pi\)
\(440\) 0 0
\(441\) 13.4472 + 14.0171i 0.640343 + 0.667483i
\(442\) 0 0
\(443\) 17.4494 + 30.2232i 0.829045 + 1.43595i 0.898789 + 0.438382i \(0.144448\pi\)
−0.0697441 + 0.997565i \(0.522218\pi\)
\(444\) 0 0
\(445\) −9.34270 + 16.1820i −0.442887 + 0.767102i
\(446\) 0 0
\(447\) 2.32800 0.110111
\(448\) 0 0
\(449\) 13.1959 0.622752 0.311376 0.950287i \(-0.399210\pi\)
0.311376 + 0.950287i \(0.399210\pi\)
\(450\) 0 0
\(451\) −1.14861 + 1.98944i −0.0540857 + 0.0936792i
\(452\) 0 0
\(453\) −0.720928 1.24868i −0.0338722 0.0586683i
\(454\) 0 0
\(455\) −4.94460 6.58424i −0.231806 0.308674i
\(456\) 0 0
\(457\) 10.8853 + 18.8539i 0.509193 + 0.881948i 0.999943 + 0.0106475i \(0.00338927\pi\)
−0.490751 + 0.871300i \(0.663277\pi\)
\(458\) 0 0
\(459\) −1.36990 + 2.37273i −0.0639414 + 0.110750i
\(460\) 0 0
\(461\) 20.9376 0.975159 0.487579 0.873079i \(-0.337880\pi\)
0.487579 + 0.873079i \(0.337880\pi\)
\(462\) 0 0
\(463\) 12.4193 0.577175 0.288588 0.957453i \(-0.406814\pi\)
0.288588 + 0.957453i \(0.406814\pi\)
\(464\) 0 0
\(465\) −0.937096 + 1.62310i −0.0434568 + 0.0752693i
\(466\) 0 0
\(467\) −4.71506 8.16672i −0.218187 0.377911i 0.736067 0.676909i \(-0.236681\pi\)
−0.954254 + 0.298998i \(0.903348\pi\)
\(468\) 0 0
\(469\) 13.0411 30.5827i 0.602181 1.41218i
\(470\) 0 0
\(471\) −4.72256 8.17971i −0.217604 0.376901i
\(472\) 0 0
\(473\) 1.15063 1.99294i 0.0529058 0.0916355i
\(474\) 0 0
\(475\) 11.8958 0.545817
\(476\) 0 0
\(477\) 32.2330 1.47585
\(478\) 0 0
\(479\) −0.259657 + 0.449739i −0.0118640 + 0.0205491i −0.871896 0.489690i \(-0.837110\pi\)
0.860032 + 0.510239i \(0.170443\pi\)
\(480\) 0 0
\(481\) −3.19282 5.53012i −0.145580 0.252152i
\(482\) 0 0
\(483\) −4.56594 + 0.552992i −0.207757 + 0.0251620i
\(484\) 0 0
\(485\) 3.02189 + 5.23407i 0.137217 + 0.237667i
\(486\) 0 0
\(487\) 18.7952 32.5542i 0.851691 1.47517i −0.0279894 0.999608i \(-0.508910\pi\)
0.879681 0.475565i \(-0.157756\pi\)
\(488\) 0 0
\(489\) −2.62908 −0.118891
\(490\) 0 0
\(491\) −27.0798 −1.22210 −0.611048 0.791593i \(-0.709252\pi\)
−0.611048 + 0.791593i \(0.709252\pi\)
\(492\) 0 0
\(493\) −1.25192 + 2.16840i −0.0563838 + 0.0976597i
\(494\) 0 0
\(495\) −0.547013 0.947453i −0.0245864 0.0425849i
\(496\) 0 0
\(497\) 1.51368 0.183326i 0.0678980 0.00822329i
\(498\) 0 0
\(499\) 14.0361 + 24.3112i 0.628342 + 1.08832i 0.987884 + 0.155191i \(0.0495994\pi\)
−0.359543 + 0.933129i \(0.617067\pi\)
\(500\) 0 0
\(501\) 0.811295 1.40520i 0.0362460 0.0627799i
\(502\) 0 0
\(503\) −33.5454 −1.49572 −0.747858 0.663858i \(-0.768918\pi\)
−0.747858 + 0.663858i \(0.768918\pi\)
\(504\) 0 0
\(505\) 14.1956 0.631697
\(506\) 0 0
\(507\) −2.22452 + 3.85298i −0.0987944 + 0.171117i
\(508\) 0 0
\(509\) −5.54900 9.61116i −0.245955 0.426007i 0.716445 0.697644i \(-0.245768\pi\)
−0.962400 + 0.271637i \(0.912435\pi\)
\(510\) 0 0
\(511\) −16.1317 + 37.8304i −0.713623 + 1.67352i
\(512\) 0 0
\(513\) 7.00582 + 12.1344i 0.309314 + 0.535748i
\(514\) 0 0
\(515\) 11.5381 19.9845i 0.508428 0.880623i
\(516\) 0 0
\(517\) 2.08300 0.0916102
\(518\) 0 0
\(519\) −5.38647 −0.236440
\(520\) 0 0
\(521\) 17.4319 30.1929i 0.763704 1.32277i −0.177225 0.984170i \(-0.556712\pi\)
0.940929 0.338604i \(-0.109955\pi\)
\(522\) 0 0
\(523\) −11.9368 20.6752i −0.521961 0.904063i −0.999674 0.0255470i \(-0.991867\pi\)
0.477712 0.878516i \(-0.341466\pi\)
\(524\) 0 0
\(525\) −1.75330 2.33470i −0.0765204 0.101895i
\(526\) 0 0
\(527\) 1.20792 + 2.09217i 0.0526177 + 0.0911365i
\(528\) 0 0
\(529\) 4.78709 8.29148i 0.208134 0.360499i
\(530\) 0 0
\(531\) 5.74665 0.249383
\(532\) 0 0
\(533\) −18.1340 −0.785470
\(534\) 0 0
\(535\) 11.3262 19.6176i 0.489675 0.848143i
\(536\) 0 0
\(537\) 3.50289 + 6.06719i 0.151161 + 0.261818i
\(538\) 0 0
\(539\) 0.470542 1.62080i 0.0202677 0.0698128i
\(540\) 0 0
\(541\) −8.72549 15.1130i −0.375138 0.649758i 0.615210 0.788364i \(-0.289071\pi\)
−0.990348 + 0.138605i \(0.955738\pi\)
\(542\) 0 0
\(543\) 0.950177 1.64576i 0.0407760 0.0706261i
\(544\) 0 0
\(545\) −10.2485 −0.438999
\(546\) 0 0
\(547\) 17.0311 0.728198 0.364099 0.931360i \(-0.381377\pi\)
0.364099 + 0.931360i \(0.381377\pi\)
\(548\) 0 0
\(549\) 14.8126 25.6561i 0.632185 1.09498i
\(550\) 0 0
\(551\) 6.40249 + 11.0894i 0.272755 + 0.472426i
\(552\) 0 0
\(553\) 13.4506 + 17.9109i 0.571979 + 0.761649i
\(554\) 0 0
\(555\) 1.30144 + 2.25417i 0.0552433 + 0.0956841i
\(556\) 0 0
\(557\) −0.877019 + 1.51904i −0.0371605 + 0.0643639i −0.884007 0.467473i \(-0.845165\pi\)
0.846847 + 0.531837i \(0.178498\pi\)
\(558\) 0 0
\(559\) 18.1659 0.768335
\(560\) 0 0
\(561\) 0.114387 0.00482941
\(562\) 0 0
\(563\) −18.3305 + 31.7494i −0.772539 + 1.33808i 0.163629 + 0.986522i \(0.447680\pi\)
−0.936167 + 0.351554i \(0.885653\pi\)
\(564\) 0 0
\(565\) 11.9356 + 20.6731i 0.502136 + 0.869726i
\(566\) 0 0
\(567\) −7.29037 + 17.0967i −0.306167 + 0.717992i
\(568\) 0 0
\(569\) −20.8523 36.1172i −0.874173 1.51411i −0.857641 0.514248i \(-0.828071\pi\)
−0.0165316 0.999863i \(-0.505262\pi\)
\(570\) 0 0
\(571\) 4.53790 7.85987i 0.189905 0.328925i −0.755313 0.655364i \(-0.772515\pi\)
0.945218 + 0.326439i \(0.105849\pi\)
\(572\) 0 0
\(573\) 10.2594 0.428595
\(574\) 0 0
\(575\) −8.52303 −0.355435
\(576\) 0 0
\(577\) −22.7712 + 39.4409i −0.947977 + 1.64194i −0.198300 + 0.980141i \(0.563542\pi\)
−0.749677 + 0.661803i \(0.769791\pi\)
\(578\) 0 0
\(579\) 3.68355 + 6.38010i 0.153083 + 0.265148i
\(580\) 0 0
\(581\) 2.70333 0.327407i 0.112153 0.0135831i
\(582\) 0 0
\(583\) −1.40031 2.42540i −0.0579948 0.100450i
\(584\) 0 0
\(585\) 4.31807 7.47912i 0.178530 0.309224i
\(586\) 0 0
\(587\) −14.6764 −0.605759 −0.302879 0.953029i \(-0.597948\pi\)
−0.302879 + 0.953029i \(0.597948\pi\)
\(588\) 0 0
\(589\) 12.3549 0.509073
\(590\) 0 0
\(591\) 0.0923903 0.160025i 0.00380043 0.00658254i
\(592\) 0 0
\(593\) 11.2216 + 19.4364i 0.460817 + 0.798158i 0.999002 0.0446688i \(-0.0142232\pi\)
−0.538185 + 0.842827i \(0.680890\pi\)
\(594\) 0 0
\(595\) 4.29499 0.520176i 0.176077 0.0213251i
\(596\) 0 0
\(597\) 0.727959 + 1.26086i 0.0297934 + 0.0516037i
\(598\) 0 0
\(599\) 9.54172 16.5267i 0.389864 0.675264i −0.602567 0.798068i \(-0.705855\pi\)
0.992431 + 0.122804i \(0.0391887\pi\)
\(600\) 0 0
\(601\) −13.1280 −0.535503 −0.267751 0.963488i \(-0.586281\pi\)
−0.267751 + 0.963488i \(0.586281\pi\)
\(602\) 0 0
\(603\) 34.8702 1.42002
\(604\) 0 0
\(605\) 8.94615 15.4952i 0.363713 0.629969i
\(606\) 0 0
\(607\) 6.93698 + 12.0152i 0.281563 + 0.487682i 0.971770 0.235930i \(-0.0758138\pi\)
−0.690207 + 0.723612i \(0.742480\pi\)
\(608\) 0 0
\(609\) 1.23279 2.89102i 0.0499552 0.117150i
\(610\) 0 0
\(611\) 8.22151 + 14.2401i 0.332607 + 0.576092i
\(612\) 0 0
\(613\) −22.0584 + 38.2063i −0.890931 + 1.54314i −0.0521706 + 0.998638i \(0.516614\pi\)
−0.838761 + 0.544500i \(0.816719\pi\)
\(614\) 0 0
\(615\) 7.39172 0.298063
\(616\) 0 0
\(617\) −35.7861 −1.44069 −0.720347 0.693614i \(-0.756018\pi\)
−0.720347 + 0.693614i \(0.756018\pi\)
\(618\) 0 0
\(619\) 6.83536 11.8392i 0.274736 0.475857i −0.695332 0.718688i \(-0.744743\pi\)
0.970069 + 0.242831i \(0.0780761\pi\)
\(620\) 0 0
\(621\) −5.01948 8.69399i −0.201425 0.348878i
\(622\) 0 0
\(623\) −18.1547 24.1748i −0.727352 0.968545i
\(624\) 0 0
\(625\) 3.97951 + 6.89271i 0.159180 + 0.275708i
\(626\) 0 0
\(627\) 0.292493 0.506613i 0.0116811 0.0202322i
\(628\) 0 0
\(629\) 3.35512 0.133778
\(630\) 0 0
\(631\) −11.5439 −0.459557 −0.229779 0.973243i \(-0.573800\pi\)
−0.229779 + 0.973243i \(0.573800\pi\)
\(632\) 0 0
\(633\) −4.00293 + 6.93328i −0.159102 + 0.275573i
\(634\) 0 0
\(635\) 12.2087 + 21.1461i 0.484488 + 0.839158i
\(636\) 0 0
\(637\) 12.9375 3.18045i 0.512604 0.126014i
\(638\) 0 0
\(639\) 0.799591 + 1.38493i 0.0316313 + 0.0547871i
\(640\) 0 0
\(641\) −7.05438 + 12.2185i −0.278631 + 0.482604i −0.971045 0.238897i \(-0.923214\pi\)
0.692414 + 0.721501i \(0.256547\pi\)
\(642\) 0 0
\(643\) 31.8841 1.25738 0.628692 0.777654i \(-0.283590\pi\)
0.628692 + 0.777654i \(0.283590\pi\)
\(644\) 0 0
\(645\) −7.40472 −0.291560
\(646\) 0 0
\(647\) 1.34019 2.32128i 0.0526884 0.0912589i −0.838478 0.544935i \(-0.816554\pi\)
0.891167 + 0.453676i \(0.149888\pi\)
\(648\) 0 0
\(649\) −0.249654 0.432413i −0.00979976 0.0169737i
\(650\) 0 0
\(651\) −1.82096 2.42480i −0.0713690 0.0950352i
\(652\) 0 0
\(653\) −1.94055 3.36114i −0.0759398 0.131532i 0.825555 0.564322i \(-0.190862\pi\)
−0.901495 + 0.432790i \(0.857529\pi\)
\(654\) 0 0
\(655\) −7.55253 + 13.0814i −0.295102 + 0.511131i
\(656\) 0 0
\(657\) −43.1340 −1.68282
\(658\) 0 0
\(659\) −18.8524 −0.734383 −0.367192 0.930145i \(-0.619681\pi\)
−0.367192 + 0.930145i \(0.619681\pi\)
\(660\) 0 0
\(661\) 10.2000 17.6669i 0.396734 0.687164i −0.596586 0.802549i \(-0.703477\pi\)
0.993321 + 0.115385i \(0.0368101\pi\)
\(662\) 0 0
\(663\) 0.451479 + 0.781985i 0.0175340 + 0.0303698i
\(664\) 0 0
\(665\) 8.67869 20.3524i 0.336545 0.789233i
\(666\) 0 0
\(667\) −4.58721 7.94528i −0.177617 0.307642i
\(668\) 0 0
\(669\) −1.02617 + 1.77738i −0.0396740 + 0.0687173i
\(670\) 0 0
\(671\) −2.57403 −0.0993692
\(672\) 0 0
\(673\) 51.4240 1.98225 0.991125 0.132931i \(-0.0424389\pi\)
0.991125 + 0.132931i \(0.0424389\pi\)
\(674\) 0 0
\(675\) 3.18648 5.51915i 0.122648 0.212432i
\(676\) 0 0
\(677\) −12.2023 21.1349i −0.468971 0.812281i 0.530400 0.847747i \(-0.322042\pi\)
−0.999371 + 0.0354664i \(0.988708\pi\)
\(678\) 0 0
\(679\) −9.70780 + 1.17574i −0.372551 + 0.0451206i
\(680\) 0 0
\(681\) 5.72209 + 9.91095i 0.219271 + 0.379788i
\(682\) 0 0
\(683\) 11.5015 19.9211i 0.440091 0.762260i −0.557605 0.830107i \(-0.688280\pi\)
0.997696 + 0.0678467i \(0.0216129\pi\)
\(684\) 0 0
\(685\) −0.330302 −0.0126202
\(686\) 0 0
\(687\) 0.193641 0.00738785
\(688\) 0 0
\(689\) 11.0539 19.1459i 0.421121 0.729402i
\(690\) 0 0
\(691\) 4.25661 + 7.37267i 0.161929 + 0.280469i 0.935560 0.353166i \(-0.114895\pi\)
−0.773631 + 0.633636i \(0.781562\pi\)
\(692\) 0 0
\(693\) 1.75727 0.212828i 0.0667533 0.00808466i
\(694\) 0 0
\(695\) 7.20093 + 12.4724i 0.273147 + 0.473104i
\(696\) 0 0
\(697\) 4.76396 8.25142i 0.180448 0.312545i
\(698\) 0 0
\(699\) 0.747077 0.0282570
\(700\) 0 0
\(701\) −28.3455 −1.07060 −0.535298 0.844663i \(-0.679801\pi\)
−0.535298 + 0.844663i \(0.679801\pi\)
\(702\) 0 0
\(703\) 8.57925 14.8597i 0.323573 0.560444i
\(704\) 0 0
\(705\) −3.35122 5.80449i −0.126214 0.218610i
\(706\) 0 0
\(707\) −9.00925 + 21.1276i −0.338828 + 0.794585i
\(708\) 0 0
\(709\) −11.1436 19.3013i −0.418506 0.724874i 0.577283 0.816544i \(-0.304113\pi\)
−0.995789 + 0.0916701i \(0.970779\pi\)
\(710\) 0 0
\(711\) −11.7463 + 20.3452i −0.440521 + 0.763005i
\(712\) 0 0
\(713\) −8.85191 −0.331507
\(714\) 0 0
\(715\) −0.750365 −0.0280621
\(716\) 0 0
\(717\) −1.73601 + 3.00686i −0.0648326 + 0.112293i
\(718\) 0 0
\(719\) 9.56097 + 16.5601i 0.356564 + 0.617587i 0.987384 0.158342i \(-0.0506148\pi\)
−0.630820 + 0.775929i \(0.717281\pi\)
\(720\) 0 0
\(721\) 22.4207 + 29.8555i 0.834991 + 1.11188i
\(722\) 0 0
\(723\) 3.09903 + 5.36768i 0.115254 + 0.199626i
\(724\) 0 0
\(725\) 2.91207 5.04385i 0.108151 0.187324i
\(726\) 0 0
\(727\) −8.01996 −0.297444 −0.148722 0.988879i \(-0.547516\pi\)
−0.148722 + 0.988879i \(0.547516\pi\)
\(728\) 0 0
\(729\) −15.5940 −0.577555
\(730\) 0 0
\(731\) −4.77234 + 8.26593i −0.176511 + 0.305727i
\(732\) 0 0
\(733\) −18.1380 31.4159i −0.669941 1.16037i −0.977920 0.208979i \(-0.932986\pi\)
0.307979 0.951393i \(-0.400347\pi\)
\(734\) 0 0
\(735\) −5.27356 + 1.29640i −0.194518 + 0.0478185i
\(736\) 0 0
\(737\) −1.51488 2.62384i −0.0558012 0.0966506i
\(738\) 0 0
\(739\) 18.2500 31.6099i 0.671336 1.16279i −0.306189 0.951971i \(-0.599054\pi\)
0.977525 0.210817i \(-0.0676126\pi\)
\(740\) 0 0
\(741\) 4.61784 0.169640
\(742\) 0 0
\(743\) 5.06824 0.185936 0.0929678 0.995669i \(-0.470365\pi\)
0.0929678 + 0.995669i \(0.470365\pi\)
\(744\) 0 0
\(745\) 4.01195 6.94890i 0.146986 0.254588i
\(746\) 0 0
\(747\) 1.42801 + 2.47339i 0.0522482 + 0.0904965i
\(748\) 0 0
\(749\) 22.0091 + 29.3073i 0.804193 + 1.07087i
\(750\) 0 0
\(751\) −12.6068 21.8356i −0.460029 0.796794i 0.538933 0.842349i \(-0.318828\pi\)
−0.998962 + 0.0455548i \(0.985494\pi\)
\(752\) 0 0
\(753\) −2.40381 + 4.16353i −0.0875999 + 0.151727i
\(754\) 0 0
\(755\) −4.96963 −0.180863
\(756\) 0 0
\(757\) −7.28908 −0.264926 −0.132463 0.991188i \(-0.542289\pi\)
−0.132463 + 0.991188i \(0.542289\pi\)
\(758\) 0 0
\(759\) −0.209563 + 0.362975i −0.00760667 + 0.0131751i
\(760\) 0 0
\(761\) −2.65844 4.60455i −0.0963683 0.166915i 0.813811 0.581130i \(-0.197389\pi\)
−0.910179 + 0.414215i \(0.864056\pi\)
\(762\) 0 0
\(763\) 6.50423 15.2531i 0.235469 0.552199i
\(764\) 0 0
\(765\) 2.26879 + 3.92966i 0.0820283 + 0.142077i
\(766\) 0 0
\(767\) 1.97074 3.41343i 0.0711595 0.123252i
\(768\) 0 0
\(769\) −32.0489 −1.15571 −0.577857 0.816138i \(-0.696111\pi\)
−0.577857 + 0.816138i \(0.696111\pi\)
\(770\) 0 0
\(771\) −6.80849 −0.245202
\(772\) 0 0
\(773\) −2.85261 + 4.94087i −0.102601 + 0.177711i −0.912756 0.408506i \(-0.866050\pi\)
0.810154 + 0.586217i \(0.199383\pi\)
\(774\) 0 0
\(775\) −2.80970 4.86655i −0.100927 0.174812i
\(776\) 0 0
\(777\) −4.18088 + 0.506357i −0.149988 + 0.0181655i
\(778\) 0 0
\(779\) −24.3635 42.1987i −0.872911 1.51193i
\(780\) 0 0
\(781\) 0.0694738 0.120332i 0.00248597 0.00430582i
\(782\) 0 0
\(783\) 6.86003 0.245158
\(784\) 0 0
\(785\) −32.5544 −1.16192
\(786\) 0 0
\(787\) −19.8183 + 34.3263i −0.706446 + 1.22360i 0.259721 + 0.965684i \(0.416370\pi\)
−0.966167 + 0.257917i \(0.916964\pi\)
\(788\) 0 0
\(789\) −4.18511 7.24882i −0.148994 0.258065i
\(790\) 0 0
\(791\) −38.3432 + 4.64384i −1.36333 + 0.165116i
\(792\) 0 0
\(793\) −10.1596 17.5969i −0.360777 0.624884i
\(794\) 0 0
\(795\) −4.50576 + 7.80420i −0.159803 + 0.276787i
\(796\) 0 0
\(797\) −30.9698 −1.09701 −0.548503 0.836148i \(-0.684802\pi\)
−0.548503 + 0.836148i \(0.684802\pi\)
\(798\) 0 0
\(799\) −8.63945 −0.305642
\(800\) 0 0
\(801\) 15.8543 27.4605i 0.560185 0.970269i
\(802\) 0 0
\(803\) 1.87389 + 3.24566i 0.0661280 + 0.114537i
\(804\) 0 0
\(805\) −6.21805 + 14.5820i −0.219157 + 0.513946i
\(806\) 0 0
\(807\) 2.13675 + 3.70096i 0.0752172 + 0.130280i
\(808\) 0 0
\(809\) 19.9944 34.6314i 0.702967 1.21757i −0.264453 0.964398i \(-0.585192\pi\)
0.967420 0.253176i \(-0.0814751\pi\)
\(810\) 0 0
\(811\) −8.21437 −0.288446 −0.144223 0.989545i \(-0.546068\pi\)
−0.144223 + 0.989545i \(0.546068\pi\)
\(812\) 0 0
\(813\) 9.26067 0.324786
\(814\) 0 0
\(815\) −4.53081 + 7.84759i −0.158707 + 0.274889i
\(816\) 0 0
\(817\) 24.4063 + 42.2729i 0.853868 + 1.47894i
\(818\) 0 0
\(819\) 8.39085 + 11.1733i 0.293200 + 0.390426i
\(820\) 0 0
\(821\) 24.6670 + 42.7246i 0.860886 + 1.49110i 0.871075 + 0.491150i \(0.163423\pi\)
−0.0101897 + 0.999948i \(0.503244\pi\)
\(822\) 0 0
\(823\) −0.988862 + 1.71276i −0.0344696 + 0.0597031i −0.882746 0.469851i \(-0.844308\pi\)
0.848276 + 0.529554i \(0.177641\pi\)
\(824\) 0 0
\(825\) −0.266072 −0.00926343
\(826\) 0 0
\(827\) −9.58007 −0.333132 −0.166566 0.986030i \(-0.553268\pi\)
−0.166566 + 0.986030i \(0.553268\pi\)
\(828\) 0 0
\(829\) −5.97750 + 10.3533i −0.207607 + 0.359586i −0.950960 0.309313i \(-0.899901\pi\)
0.743353 + 0.668899i \(0.233234\pi\)
\(830\) 0 0
\(831\) 6.23105 + 10.7925i 0.216153 + 0.374388i
\(832\) 0 0
\(833\) −1.95162 + 6.72244i −0.0676198 + 0.232919i
\(834\) 0 0
\(835\) −2.79628 4.84330i −0.0967694 0.167609i
\(836\) 0 0
\(837\) 3.30944 5.73212i 0.114391 0.198131i
\(838\) 0 0
\(839\) 34.7915 1.20114 0.600569 0.799573i \(-0.294941\pi\)
0.600569 + 0.799573i \(0.294941\pi\)
\(840\) 0 0
\(841\) −22.7307 −0.783819
\(842\) 0 0
\(843\) −0.0279066 + 0.0483357i −0.000961156 + 0.00166477i
\(844\) 0 0
\(845\) 7.66723 + 13.2800i 0.263761 + 0.456847i
\(846\) 0 0
\(847\) 17.3841 + 23.1487i 0.597325 + 0.795400i
\(848\) 0 0
\(849\) −0.680559 1.17876i −0.0233567 0.0404550i
\(850\) 0 0
\(851\) −6.14680 + 10.6466i −0.210710 + 0.364960i
\(852\) 0 0
\(853\) −54.9715 −1.88219 −0.941095 0.338143i \(-0.890201\pi\)
−0.941095 + 0.338143i \(0.890201\pi\)
\(854\) 0 0
\(855\) 23.2057 0.793619
\(856\) 0 0
\(857\) −12.2786 + 21.2672i −0.419429 + 0.726473i −0.995882 0.0906577i \(-0.971103\pi\)
0.576453 + 0.817130i \(0.304436\pi\)
\(858\) 0 0
\(859\) −16.6168 28.7812i −0.566959 0.982002i −0.996864 0.0791280i \(-0.974786\pi\)
0.429905 0.902874i \(-0.358547\pi\)
\(860\) 0 0
\(861\) −4.69115 + 11.0012i −0.159874 + 0.374921i
\(862\) 0 0
\(863\) −4.68623 8.11679i −0.159521 0.276299i 0.775175 0.631747i \(-0.217662\pi\)
−0.934696 + 0.355448i \(0.884328\pi\)
\(864\) 0 0
\(865\) −9.28275 + 16.0782i −0.315623 + 0.546675i
\(866\) 0 0
\(867\) −0.474430 −0.0161125
\(868\) 0 0
\(869\) 2.04119 0.0692428
\(870\) 0 0
\(871\) 11.9583 20.7124i 0.405192 0.701813i
\(872\) 0 0
\(873\) −5.12807 8.88207i −0.173559 0.300613i
\(874\) 0 0
\(875\) −31.4654 + 3.81085i −1.06372 + 0.128830i
\(876\) 0 0
\(877\) −16.0433 27.7877i −0.541742 0.938325i −0.998804 0.0488901i \(-0.984432\pi\)
0.457062 0.889435i \(-0.348902\pi\)
\(878\) 0 0
\(879\) −4.22335 + 7.31506i −0.142450 + 0.246731i
\(880\) 0 0
\(881\) −4.55055 −0.153312 −0.0766559 0.997058i \(-0.524424\pi\)
−0.0766559 + 0.997058i \(0.524424\pi\)
\(882\) 0 0
\(883\) −20.7818 −0.699362 −0.349681 0.936869i \(-0.613710\pi\)
−0.349681 + 0.936869i \(0.613710\pi\)
\(884\) 0 0
\(885\) −0.803308 + 1.39137i −0.0270029 + 0.0467704i
\(886\) 0 0
\(887\) 7.48267 + 12.9604i 0.251243 + 0.435166i 0.963868 0.266379i \(-0.0858272\pi\)
−0.712625 + 0.701545i \(0.752494\pi\)
\(888\) 0 0
\(889\) −39.2204 + 4.75008i −1.31541 + 0.159313i
\(890\) 0 0
\(891\) 0.846863 + 1.46681i 0.0283710 + 0.0491400i
\(892\) 0 0
\(893\) −22.0916 + 38.2638i −0.739267 + 1.28045i
\(894\) 0 0
\(895\) 24.1468 0.807138
\(896\) 0 0
\(897\) −3.30855 −0.110469
\(898\) 0 0
\(899\) 3.02444 5.23848i 0.100871 0.174713i
\(900\) 0 0
\(901\) 5.80792 + 10.0596i 0.193490 + 0.335134i
\(902\) 0 0
\(903\) 4.69940 11.0206i 0.156386 0.366742i
\(904\) 0 0
\(905\) −3.27497 5.67241i −0.108864 0.188557i
\(906\) 0 0
\(907\) −21.0412 + 36.4444i −0.698661 + 1.21012i 0.270270 + 0.962784i \(0.412887\pi\)
−0.968931 + 0.247331i \(0.920446\pi\)
\(908\) 0 0
\(909\) −24.0896 −0.799001
\(910\) 0 0
\(911\) 4.98375 0.165119 0.0825594 0.996586i \(-0.473691\pi\)
0.0825594 + 0.996586i \(0.473691\pi\)
\(912\) 0 0
\(913\) 0.124075 0.214904i 0.00410628 0.00711229i
\(914\) 0 0
\(915\) 4.14121 + 7.17279i 0.136904 + 0.237125i
\(916\) 0 0
\(917\) −14.6760 19.5427i −0.484645 0.645356i
\(918\) 0 0
\(919\) −9.00977 15.6054i −0.297205 0.514774i 0.678291 0.734794i \(-0.262721\pi\)
−0.975495 + 0.220020i \(0.929388\pi\)
\(920\) 0 0
\(921\) −5.17627 + 8.96557i −0.170564 + 0.295425i
\(922\) 0 0
\(923\) 1.09684 0.0361029
\(924\) 0 0
\(925\) −7.80426 −0.256603
\(926\) 0 0
\(927\) −19.5798 + 33.9132i −0.643085 + 1.11386i
\(928\) 0 0
\(929\) −15.5991 27.0185i −0.511791 0.886448i −0.999907 0.0136692i \(-0.995649\pi\)
0.488115 0.872779i \(-0.337685\pi\)
\(930\) 0 0
\(931\) 24.7830 + 25.8333i 0.812229 + 0.846653i
\(932\) 0 0
\(933\) 1.40987 + 2.44197i 0.0461571 + 0.0799465i
\(934\) 0 0
\(935\) 0.197128 0.341435i 0.00644676 0.0111661i
\(936\) 0 0
\(937\) 58.5957 1.91424 0.957119 0.289695i \(-0.0935540\pi\)
0.957119 + 0.289695i \(0.0935540\pi\)
\(938\) 0 0
\(939\) 6.10326 0.199172
\(940\) 0 0
\(941\) −16.6352 + 28.8131i −0.542293 + 0.939279i 0.456479 + 0.889734i \(0.349110\pi\)
−0.998772 + 0.0495450i \(0.984223\pi\)
\(942\) 0 0
\(943\) 17.4557 + 30.2342i 0.568437 + 0.984563i
\(944\) 0 0
\(945\) −7.11793 9.47826i −0.231546 0.308328i
\(946\) 0 0
\(947\) 23.9844 + 41.5422i 0.779388 + 1.34994i 0.932295 + 0.361699i \(0.117803\pi\)
−0.152907 + 0.988241i \(0.548864\pi\)
\(948\) 0 0
\(949\) −14.7923 + 25.6210i −0.480178 + 0.831693i
\(950\) 0 0
\(951\) 1.57389 0.0510370
\(952\) 0 0
\(953\) −4.51078 −0.146119 −0.0730593 0.997328i \(-0.523276\pi\)
−0.0730593 + 0.997328i \(0.523276\pi\)
\(954\) 0 0
\(955\) 17.6806 30.6236i 0.572130 0.990958i
\(956\) 0 0
\(957\) −0.143203 0.248036i −0.00462911 0.00801785i
\(958\) 0 0
\(959\) 0.209626 0.491595i 0.00676918 0.0158744i
\(960\) 0 0
\(961\) 12.5819 + 21.7925i 0.405867 + 0.702982i
\(962\) 0 0
\(963\) −19.2203 + 33.2905i −0.619366 + 1.07277i
\(964\) 0 0
\(965\) 25.3921 0.817402
\(966\) 0 0
\(967\) −12.4644 −0.400830 −0.200415 0.979711i \(-0.564229\pi\)
−0.200415 + 0.979711i \(0.564229\pi\)
\(968\) 0 0
\(969\) −1.21315 + 2.10123i −0.0389719 + 0.0675013i
\(970\) 0 0
\(971\) 0.603282 + 1.04492i 0.0193602 + 0.0335329i 0.875543 0.483140i \(-0.160504\pi\)
−0.856183 + 0.516673i \(0.827170\pi\)
\(972\) 0 0
\(973\) −23.1330 + 2.80169i −0.741608 + 0.0898180i
\(974\) 0 0
\(975\) −1.05017 1.81895i −0.0336325 0.0582532i
\(976\) 0 0
\(977\) 6.01455 10.4175i 0.192422 0.333286i −0.753630 0.657299i \(-0.771699\pi\)
0.946053 + 0.324013i \(0.105032\pi\)
\(978\) 0 0
\(979\) −2.75506 −0.0880520
\(980\) 0 0
\(981\) 17.3915 0.555268
\(982\) 0 0
\(983\) 4.05275 7.01958i 0.129263 0.223890i −0.794128 0.607750i \(-0.792072\pi\)
0.923391 + 0.383860i \(0.125406\pi\)
\(984\) 0 0
\(985\) −0.318441 0.551556i −0.0101464 0.0175740i
\(986\) 0 0
\(987\) 10.7658 1.30387i 0.342679 0.0415027i
\(988\) 0 0
\(989\) −17.4864 30.2874i −0.556037 0.963084i
\(990\) 0 0
\(991\) −8.42522 + 14.5929i −0.267636 + 0.463559i −0.968251 0.249981i \(-0.919576\pi\)
0.700615 + 0.713540i \(0.252909\pi\)
\(992\) 0 0
\(993\) −3.53216 −0.112090
\(994\) 0 0
\(995\) 5.01810 0.159084
\(996\) 0 0
\(997\) 8.08907 14.0107i 0.256184 0.443723i −0.709033 0.705176i \(-0.750868\pi\)
0.965216 + 0.261453i \(0.0842015\pi\)
\(998\) 0 0
\(999\) −4.59618 7.96081i −0.145417 0.251869i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.q.e.137.4 14
7.2 even 3 inner 952.2.q.e.681.4 yes 14
7.3 odd 6 6664.2.a.y.1.4 7
7.4 even 3 6664.2.a.v.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.e.137.4 14 1.1 even 1 trivial
952.2.q.e.681.4 yes 14 7.2 even 3 inner
6664.2.a.v.1.4 7 7.4 even 3
6664.2.a.y.1.4 7 7.3 odd 6