Properties

Label 952.2.q.d.137.2
Level $952$
Weight $2$
Character 952.137
Analytic conductor $7.602$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(137,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 11 x^{12} - 6 x^{11} + 94 x^{10} - 39 x^{9} + 282 x^{8} - 47 x^{7} + 615 x^{6} - 134 x^{5} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 137.2
Root \(-0.759308 + 1.31516i\) of defining polynomial
Character \(\chi\) \(=\) 952.137
Dual form 952.2.q.d.681.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.759308 + 1.31516i) q^{3} +(0.399186 + 0.691411i) q^{5} +(1.00540 + 2.44728i) q^{7} +(0.346902 + 0.600853i) q^{9} +(2.82215 - 4.88810i) q^{11} +4.80031 q^{13} -1.21242 q^{15} +(0.500000 - 0.866025i) q^{17} +(2.53870 + 4.39716i) q^{19} +(-3.98197 - 0.535981i) q^{21} +(-2.09504 - 3.62871i) q^{23} +(2.18130 - 3.77812i) q^{25} -5.60947 q^{27} +1.85926 q^{29} +(-5.04506 + 8.73831i) q^{31} +(4.28576 + 7.42315i) q^{33} +(-1.29073 + 1.67206i) q^{35} +(3.05689 + 5.29469i) q^{37} +(-3.64491 + 6.31317i) q^{39} +6.24965 q^{41} -0.575750 q^{43} +(-0.276957 + 0.479704i) q^{45} +(-2.87068 - 4.97216i) q^{47} +(-4.97835 + 4.92097i) q^{49} +(0.759308 + 1.31516i) q^{51} +(-2.25167 + 3.90001i) q^{53} +4.50625 q^{55} -7.71062 q^{57} +(-3.98924 + 6.90957i) q^{59} +(-4.46706 - 7.73717i) q^{61} +(-1.12168 + 1.45306i) q^{63} +(1.91622 + 3.31898i) q^{65} +(-5.33937 + 9.24806i) q^{67} +6.36311 q^{69} +3.73942 q^{71} +(6.58929 - 11.4130i) q^{73} +(3.31256 + 5.73752i) q^{75} +(14.7999 + 1.99210i) q^{77} +(-2.57805 - 4.46532i) q^{79} +(3.21861 - 5.57480i) q^{81} +5.24724 q^{83} +0.798372 q^{85} +(-1.41175 + 2.44523i) q^{87} +(0.264175 + 0.457564i) q^{89} +(4.82621 + 11.7477i) q^{91} +(-7.66152 - 13.2701i) q^{93} +(-2.02683 + 3.51057i) q^{95} +5.53836 q^{97} +3.91604 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + q^{5} - 7 q^{7} - q^{9} - 5 q^{11} + 22 q^{13} + 16 q^{15} + 7 q^{17} + 2 q^{19} - 13 q^{21} - 9 q^{23} - 2 q^{25} + 18 q^{27} + 18 q^{29} + 2 q^{31} - 2 q^{33} + 9 q^{35} - 8 q^{37} - q^{39}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.759308 + 1.31516i −0.438387 + 0.759308i −0.997565 0.0697392i \(-0.977783\pi\)
0.559179 + 0.829047i \(0.311117\pi\)
\(4\) 0 0
\(5\) 0.399186 + 0.691411i 0.178521 + 0.309208i 0.941374 0.337364i \(-0.109535\pi\)
−0.762853 + 0.646572i \(0.776202\pi\)
\(6\) 0 0
\(7\) 1.00540 + 2.44728i 0.380004 + 0.924985i
\(8\) 0 0
\(9\) 0.346902 + 0.600853i 0.115634 + 0.200284i
\(10\) 0 0
\(11\) 2.82215 4.88810i 0.850909 1.47382i −0.0294801 0.999565i \(-0.509385\pi\)
0.880389 0.474252i \(-0.157282\pi\)
\(12\) 0 0
\(13\) 4.80031 1.33137 0.665683 0.746235i \(-0.268140\pi\)
0.665683 + 0.746235i \(0.268140\pi\)
\(14\) 0 0
\(15\) −1.21242 −0.313046
\(16\) 0 0
\(17\) 0.500000 0.866025i 0.121268 0.210042i
\(18\) 0 0
\(19\) 2.53870 + 4.39716i 0.582418 + 1.00878i 0.995192 + 0.0979439i \(0.0312266\pi\)
−0.412774 + 0.910833i \(0.635440\pi\)
\(20\) 0 0
\(21\) −3.98197 0.535981i −0.868937 0.116961i
\(22\) 0 0
\(23\) −2.09504 3.62871i −0.436845 0.756638i 0.560599 0.828088i \(-0.310571\pi\)
−0.997444 + 0.0714491i \(0.977238\pi\)
\(24\) 0 0
\(25\) 2.18130 3.77812i 0.436260 0.755625i
\(26\) 0 0
\(27\) −5.60947 −1.07954
\(28\) 0 0
\(29\) 1.85926 0.345256 0.172628 0.984987i \(-0.444774\pi\)
0.172628 + 0.984987i \(0.444774\pi\)
\(30\) 0 0
\(31\) −5.04506 + 8.73831i −0.906120 + 1.56945i −0.0867140 + 0.996233i \(0.527637\pi\)
−0.819406 + 0.573213i \(0.805697\pi\)
\(32\) 0 0
\(33\) 4.28576 + 7.42315i 0.746054 + 1.29220i
\(34\) 0 0
\(35\) −1.29073 + 1.67206i −0.218174 + 0.282630i
\(36\) 0 0
\(37\) 3.05689 + 5.29469i 0.502550 + 0.870442i 0.999996 + 0.00294696i \(0.000938049\pi\)
−0.497446 + 0.867495i \(0.665729\pi\)
\(38\) 0 0
\(39\) −3.64491 + 6.31317i −0.583653 + 1.01092i
\(40\) 0 0
\(41\) 6.24965 0.976032 0.488016 0.872835i \(-0.337721\pi\)
0.488016 + 0.872835i \(0.337721\pi\)
\(42\) 0 0
\(43\) −0.575750 −0.0878010 −0.0439005 0.999036i \(-0.513978\pi\)
−0.0439005 + 0.999036i \(0.513978\pi\)
\(44\) 0 0
\(45\) −0.276957 + 0.479704i −0.0412864 + 0.0715101i
\(46\) 0 0
\(47\) −2.87068 4.97216i −0.418731 0.725264i 0.577081 0.816687i \(-0.304192\pi\)
−0.995812 + 0.0914233i \(0.970858\pi\)
\(48\) 0 0
\(49\) −4.97835 + 4.92097i −0.711194 + 0.702996i
\(50\) 0 0
\(51\) 0.759308 + 1.31516i 0.106324 + 0.184159i
\(52\) 0 0
\(53\) −2.25167 + 3.90001i −0.309291 + 0.535707i −0.978207 0.207630i \(-0.933425\pi\)
0.668917 + 0.743337i \(0.266758\pi\)
\(54\) 0 0
\(55\) 4.50625 0.607622
\(56\) 0 0
\(57\) −7.71062 −1.02130
\(58\) 0 0
\(59\) −3.98924 + 6.90957i −0.519355 + 0.899550i 0.480392 + 0.877054i \(0.340495\pi\)
−0.999747 + 0.0224958i \(0.992839\pi\)
\(60\) 0 0
\(61\) −4.46706 7.73717i −0.571948 0.990643i −0.996366 0.0851766i \(-0.972855\pi\)
0.424418 0.905466i \(-0.360479\pi\)
\(62\) 0 0
\(63\) −1.12168 + 1.45306i −0.141318 + 0.183069i
\(64\) 0 0
\(65\) 1.91622 + 3.31898i 0.237677 + 0.411669i
\(66\) 0 0
\(67\) −5.33937 + 9.24806i −0.652308 + 1.12983i 0.330254 + 0.943892i \(0.392866\pi\)
−0.982561 + 0.185938i \(0.940468\pi\)
\(68\) 0 0
\(69\) 6.36311 0.766029
\(70\) 0 0
\(71\) 3.73942 0.443787 0.221894 0.975071i \(-0.428776\pi\)
0.221894 + 0.975071i \(0.428776\pi\)
\(72\) 0 0
\(73\) 6.58929 11.4130i 0.771218 1.33579i −0.165678 0.986180i \(-0.552981\pi\)
0.936896 0.349608i \(-0.113685\pi\)
\(74\) 0 0
\(75\) 3.31256 + 5.73752i 0.382501 + 0.662512i
\(76\) 0 0
\(77\) 14.7999 + 1.99210i 1.68661 + 0.227021i
\(78\) 0 0
\(79\) −2.57805 4.46532i −0.290053 0.502387i 0.683769 0.729699i \(-0.260340\pi\)
−0.973822 + 0.227312i \(0.927006\pi\)
\(80\) 0 0
\(81\) 3.21861 5.57480i 0.357623 0.619422i
\(82\) 0 0
\(83\) 5.24724 0.575960 0.287980 0.957636i \(-0.407016\pi\)
0.287980 + 0.957636i \(0.407016\pi\)
\(84\) 0 0
\(85\) 0.798372 0.0865956
\(86\) 0 0
\(87\) −1.41175 + 2.44523i −0.151356 + 0.262156i
\(88\) 0 0
\(89\) 0.264175 + 0.457564i 0.0280025 + 0.0485017i 0.879687 0.475553i \(-0.157752\pi\)
−0.851685 + 0.524055i \(0.824419\pi\)
\(90\) 0 0
\(91\) 4.82621 + 11.7477i 0.505924 + 1.23149i
\(92\) 0 0
\(93\) −7.66152 13.2701i −0.794462 1.37605i
\(94\) 0 0
\(95\) −2.02683 + 3.51057i −0.207948 + 0.360177i
\(96\) 0 0
\(97\) 5.53836 0.562336 0.281168 0.959659i \(-0.409278\pi\)
0.281168 + 0.959659i \(0.409278\pi\)
\(98\) 0 0
\(99\) 3.91604 0.393577
\(100\) 0 0
\(101\) −5.85708 + 10.1448i −0.582801 + 1.00944i 0.412345 + 0.911028i \(0.364710\pi\)
−0.995146 + 0.0984129i \(0.968623\pi\)
\(102\) 0 0
\(103\) 2.27921 + 3.94770i 0.224577 + 0.388979i 0.956192 0.292739i \(-0.0945666\pi\)
−0.731615 + 0.681718i \(0.761233\pi\)
\(104\) 0 0
\(105\) −1.21896 2.96713i −0.118959 0.289563i
\(106\) 0 0
\(107\) −8.82178 15.2798i −0.852834 1.47715i −0.878640 0.477485i \(-0.841549\pi\)
0.0258062 0.999667i \(-0.491785\pi\)
\(108\) 0 0
\(109\) −6.71058 + 11.6231i −0.642757 + 1.11329i 0.342058 + 0.939679i \(0.388876\pi\)
−0.984815 + 0.173608i \(0.944457\pi\)
\(110\) 0 0
\(111\) −9.28449 −0.881245
\(112\) 0 0
\(113\) −15.4940 −1.45755 −0.728775 0.684753i \(-0.759910\pi\)
−0.728775 + 0.684753i \(0.759910\pi\)
\(114\) 0 0
\(115\) 1.67262 2.89706i 0.155973 0.270152i
\(116\) 0 0
\(117\) 1.66524 + 2.88428i 0.153951 + 0.266652i
\(118\) 0 0
\(119\) 2.62210 + 0.352941i 0.240368 + 0.0323540i
\(120\) 0 0
\(121\) −10.4290 18.0636i −0.948092 1.64214i
\(122\) 0 0
\(123\) −4.74541 + 8.21930i −0.427879 + 0.741109i
\(124\) 0 0
\(125\) 7.47484 0.668570
\(126\) 0 0
\(127\) 1.46849 0.130308 0.0651539 0.997875i \(-0.479246\pi\)
0.0651539 + 0.997875i \(0.479246\pi\)
\(128\) 0 0
\(129\) 0.437172 0.757203i 0.0384908 0.0666680i
\(130\) 0 0
\(131\) 6.34953 + 10.9977i 0.554761 + 0.960875i 0.997922 + 0.0644328i \(0.0205238\pi\)
−0.443161 + 0.896442i \(0.646143\pi\)
\(132\) 0 0
\(133\) −8.20868 + 10.6338i −0.711782 + 0.922067i
\(134\) 0 0
\(135\) −2.23922 3.87845i −0.192722 0.333804i
\(136\) 0 0
\(137\) 6.11094 10.5845i 0.522093 0.904292i −0.477576 0.878590i \(-0.658485\pi\)
0.999670 0.0257018i \(-0.00818204\pi\)
\(138\) 0 0
\(139\) −6.86885 −0.582608 −0.291304 0.956631i \(-0.594089\pi\)
−0.291304 + 0.956631i \(0.594089\pi\)
\(140\) 0 0
\(141\) 8.71891 0.734265
\(142\) 0 0
\(143\) 13.5472 23.4644i 1.13287 1.96219i
\(144\) 0 0
\(145\) 0.742191 + 1.28551i 0.0616356 + 0.106756i
\(146\) 0 0
\(147\) −2.69176 10.2839i −0.222013 0.848199i
\(148\) 0 0
\(149\) 3.47149 + 6.01279i 0.284395 + 0.492587i 0.972462 0.233060i \(-0.0748739\pi\)
−0.688067 + 0.725647i \(0.741541\pi\)
\(150\) 0 0
\(151\) 6.87181 11.9023i 0.559220 0.968597i −0.438342 0.898808i \(-0.644434\pi\)
0.997562 0.0697890i \(-0.0222326\pi\)
\(152\) 0 0
\(153\) 0.693805 0.0560908
\(154\) 0 0
\(155\) −8.05568 −0.647048
\(156\) 0 0
\(157\) 1.94788 3.37384i 0.155458 0.269261i −0.777768 0.628552i \(-0.783648\pi\)
0.933226 + 0.359291i \(0.116981\pi\)
\(158\) 0 0
\(159\) −3.41942 5.92262i −0.271178 0.469694i
\(160\) 0 0
\(161\) 6.77413 8.77543i 0.533876 0.691601i
\(162\) 0 0
\(163\) −12.1831 21.1017i −0.954254 1.65282i −0.736067 0.676909i \(-0.763319\pi\)
−0.218186 0.975907i \(-0.570014\pi\)
\(164\) 0 0
\(165\) −3.42163 + 5.92644i −0.266373 + 0.461372i
\(166\) 0 0
\(167\) 14.5608 1.12675 0.563374 0.826202i \(-0.309503\pi\)
0.563374 + 0.826202i \(0.309503\pi\)
\(168\) 0 0
\(169\) 10.0429 0.772534
\(170\) 0 0
\(171\) −1.76136 + 3.05077i −0.134695 + 0.233298i
\(172\) 0 0
\(173\) −6.99348 12.1131i −0.531704 0.920939i −0.999315 0.0370045i \(-0.988218\pi\)
0.467611 0.883935i \(-0.345115\pi\)
\(174\) 0 0
\(175\) 11.4392 + 1.53974i 0.864722 + 0.116393i
\(176\) 0 0
\(177\) −6.05813 10.4930i −0.455357 0.788701i
\(178\) 0 0
\(179\) −11.4042 + 19.7526i −0.852387 + 1.47638i 0.0266615 + 0.999645i \(0.491512\pi\)
−0.879048 + 0.476733i \(0.841821\pi\)
\(180\) 0 0
\(181\) 0.886797 0.0659151 0.0329575 0.999457i \(-0.489507\pi\)
0.0329575 + 0.999457i \(0.489507\pi\)
\(182\) 0 0
\(183\) 13.5675 1.00294
\(184\) 0 0
\(185\) −2.44054 + 4.22714i −0.179432 + 0.310785i
\(186\) 0 0
\(187\) −2.82215 4.88810i −0.206376 0.357453i
\(188\) 0 0
\(189\) −5.63974 13.7279i −0.410231 0.998561i
\(190\) 0 0
\(191\) −4.38853 7.60116i −0.317543 0.550001i 0.662432 0.749122i \(-0.269525\pi\)
−0.979975 + 0.199121i \(0.936191\pi\)
\(192\) 0 0
\(193\) 8.61177 14.9160i 0.619889 1.07368i −0.369617 0.929184i \(-0.620511\pi\)
0.989506 0.144495i \(-0.0461556\pi\)
\(194\) 0 0
\(195\) −5.81999 −0.416778
\(196\) 0 0
\(197\) 20.3939 1.45300 0.726502 0.687164i \(-0.241145\pi\)
0.726502 + 0.687164i \(0.241145\pi\)
\(198\) 0 0
\(199\) 4.20788 7.28826i 0.298289 0.516651i −0.677456 0.735563i \(-0.736918\pi\)
0.975745 + 0.218912i \(0.0702509\pi\)
\(200\) 0 0
\(201\) −8.10845 14.0443i −0.571926 0.990605i
\(202\) 0 0
\(203\) 1.86929 + 4.55013i 0.131199 + 0.319357i
\(204\) 0 0
\(205\) 2.49478 + 4.32108i 0.174243 + 0.301797i
\(206\) 0 0
\(207\) 1.45355 2.51762i 0.101028 0.174986i
\(208\) 0 0
\(209\) 28.6583 1.98234
\(210\) 0 0
\(211\) −22.8992 −1.57644 −0.788222 0.615391i \(-0.788998\pi\)
−0.788222 + 0.615391i \(0.788998\pi\)
\(212\) 0 0
\(213\) −2.83937 + 4.91793i −0.194550 + 0.336971i
\(214\) 0 0
\(215\) −0.229831 0.398080i −0.0156744 0.0271488i
\(216\) 0 0
\(217\) −26.4574 3.56122i −1.79604 0.241751i
\(218\) 0 0
\(219\) 10.0066 + 17.3319i 0.676183 + 1.17118i
\(220\) 0 0
\(221\) 2.40015 4.15719i 0.161452 0.279643i
\(222\) 0 0
\(223\) −9.97337 −0.667866 −0.333933 0.942597i \(-0.608376\pi\)
−0.333933 + 0.942597i \(0.608376\pi\)
\(224\) 0 0
\(225\) 3.02679 0.201786
\(226\) 0 0
\(227\) 11.7572 20.3641i 0.780353 1.35161i −0.151384 0.988475i \(-0.548373\pi\)
0.931736 0.363135i \(-0.118294\pi\)
\(228\) 0 0
\(229\) 5.22090 + 9.04286i 0.345007 + 0.597569i 0.985355 0.170516i \(-0.0545433\pi\)
−0.640348 + 0.768085i \(0.721210\pi\)
\(230\) 0 0
\(231\) −13.8576 + 17.9517i −0.911765 + 1.18113i
\(232\) 0 0
\(233\) −12.0454 20.8632i −0.789118 1.36679i −0.926508 0.376276i \(-0.877205\pi\)
0.137390 0.990517i \(-0.456129\pi\)
\(234\) 0 0
\(235\) 2.29187 3.96963i 0.149505 0.258950i
\(236\) 0 0
\(237\) 7.83014 0.508622
\(238\) 0 0
\(239\) 29.7263 1.92283 0.961417 0.275095i \(-0.0887093\pi\)
0.961417 + 0.275095i \(0.0887093\pi\)
\(240\) 0 0
\(241\) −2.03223 + 3.51992i −0.130907 + 0.226738i −0.924027 0.382328i \(-0.875122\pi\)
0.793119 + 0.609066i \(0.208456\pi\)
\(242\) 0 0
\(243\) −3.52637 6.10786i −0.226217 0.391819i
\(244\) 0 0
\(245\) −5.38970 1.47770i −0.344336 0.0944070i
\(246\) 0 0
\(247\) 12.1865 + 21.1077i 0.775411 + 1.34305i
\(248\) 0 0
\(249\) −3.98427 + 6.90096i −0.252493 + 0.437331i
\(250\) 0 0
\(251\) 2.80048 0.176765 0.0883823 0.996087i \(-0.471830\pi\)
0.0883823 + 0.996087i \(0.471830\pi\)
\(252\) 0 0
\(253\) −23.6500 −1.48686
\(254\) 0 0
\(255\) −0.606211 + 1.04999i −0.0379624 + 0.0657528i
\(256\) 0 0
\(257\) −1.89829 3.28793i −0.118412 0.205096i 0.800726 0.599030i \(-0.204447\pi\)
−0.919139 + 0.393934i \(0.871114\pi\)
\(258\) 0 0
\(259\) −9.88420 + 12.8043i −0.614175 + 0.795623i
\(260\) 0 0
\(261\) 0.644982 + 1.11714i 0.0399234 + 0.0691493i
\(262\) 0 0
\(263\) 3.61664 6.26420i 0.223012 0.386267i −0.732709 0.680542i \(-0.761745\pi\)
0.955721 + 0.294274i \(0.0950779\pi\)
\(264\) 0 0
\(265\) −3.59534 −0.220860
\(266\) 0 0
\(267\) −0.802360 −0.0491036
\(268\) 0 0
\(269\) −0.421685 + 0.730381i −0.0257106 + 0.0445321i −0.878594 0.477569i \(-0.841518\pi\)
0.852884 + 0.522101i \(0.174852\pi\)
\(270\) 0 0
\(271\) −1.20606 2.08896i −0.0732630 0.126895i 0.827067 0.562104i \(-0.190008\pi\)
−0.900330 + 0.435209i \(0.856675\pi\)
\(272\) 0 0
\(273\) −19.1147 2.57288i −1.15687 0.155717i
\(274\) 0 0
\(275\) −12.3119 21.3248i −0.742435 1.28594i
\(276\) 0 0
\(277\) −11.8650 + 20.5508i −0.712900 + 1.23478i 0.250864 + 0.968022i \(0.419285\pi\)
−0.963764 + 0.266757i \(0.914048\pi\)
\(278\) 0 0
\(279\) −7.00058 −0.419114
\(280\) 0 0
\(281\) −2.87529 −0.171526 −0.0857629 0.996316i \(-0.527333\pi\)
−0.0857629 + 0.996316i \(0.527333\pi\)
\(282\) 0 0
\(283\) 13.1237 22.7309i 0.780123 1.35121i −0.151747 0.988419i \(-0.548490\pi\)
0.931870 0.362793i \(-0.118177\pi\)
\(284\) 0 0
\(285\) −3.07797 5.33121i −0.182323 0.315794i
\(286\) 0 0
\(287\) 6.28338 + 15.2946i 0.370896 + 0.902815i
\(288\) 0 0
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) 0 0
\(291\) −4.20532 + 7.28384i −0.246520 + 0.426986i
\(292\) 0 0
\(293\) −14.2126 −0.830311 −0.415156 0.909750i \(-0.636273\pi\)
−0.415156 + 0.909750i \(0.636273\pi\)
\(294\) 0 0
\(295\) −6.36980 −0.370864
\(296\) 0 0
\(297\) −15.8307 + 27.4197i −0.918593 + 1.59105i
\(298\) 0 0
\(299\) −10.0568 17.4189i −0.581601 1.00736i
\(300\) 0 0
\(301\) −0.578857 1.40902i −0.0333648 0.0812146i
\(302\) 0 0
\(303\) −8.89465 15.4060i −0.510984 0.885051i
\(304\) 0 0
\(305\) 3.56637 6.17714i 0.204210 0.353702i
\(306\) 0 0
\(307\) 26.5976 1.51800 0.759002 0.651088i \(-0.225687\pi\)
0.759002 + 0.651088i \(0.225687\pi\)
\(308\) 0 0
\(309\) −6.92248 −0.393806
\(310\) 0 0
\(311\) −10.6272 + 18.4068i −0.602611 + 1.04375i 0.389813 + 0.920894i \(0.372540\pi\)
−0.992424 + 0.122859i \(0.960794\pi\)
\(312\) 0 0
\(313\) 8.87844 + 15.3779i 0.501839 + 0.869211i 0.999998 + 0.00212502i \(0.000676414\pi\)
−0.498159 + 0.867086i \(0.665990\pi\)
\(314\) 0 0
\(315\) −1.45242 0.195499i −0.0818347 0.0110151i
\(316\) 0 0
\(317\) −0.995267 1.72385i −0.0558997 0.0968212i 0.836721 0.547629i \(-0.184469\pi\)
−0.892621 + 0.450808i \(0.851136\pi\)
\(318\) 0 0
\(319\) 5.24710 9.08825i 0.293781 0.508844i
\(320\) 0 0
\(321\) 26.7938 1.49548
\(322\) 0 0
\(323\) 5.07740 0.282514
\(324\) 0 0
\(325\) 10.4709 18.1362i 0.580822 1.00601i
\(326\) 0 0
\(327\) −10.1908 17.6510i −0.563552 0.976101i
\(328\) 0 0
\(329\) 9.28209 12.0243i 0.511738 0.662923i
\(330\) 0 0
\(331\) 7.69952 + 13.3360i 0.423204 + 0.733011i 0.996251 0.0865119i \(-0.0275721\pi\)
−0.573047 + 0.819523i \(0.694239\pi\)
\(332\) 0 0
\(333\) −2.12089 + 3.67348i −0.116224 + 0.201306i
\(334\) 0 0
\(335\) −8.52561 −0.465804
\(336\) 0 0
\(337\) −24.0830 −1.31188 −0.655942 0.754811i \(-0.727729\pi\)
−0.655942 + 0.754811i \(0.727729\pi\)
\(338\) 0 0
\(339\) 11.7647 20.3770i 0.638970 1.10673i
\(340\) 0 0
\(341\) 28.4758 + 49.3216i 1.54205 + 2.67091i
\(342\) 0 0
\(343\) −17.0482 7.23590i −0.920517 0.390702i
\(344\) 0 0
\(345\) 2.54007 + 4.39953i 0.136753 + 0.236862i
\(346\) 0 0
\(347\) 9.19663 15.9290i 0.493701 0.855115i −0.506273 0.862373i \(-0.668977\pi\)
0.999974 + 0.00725830i \(0.00231041\pi\)
\(348\) 0 0
\(349\) 22.6309 1.21140 0.605701 0.795692i \(-0.292893\pi\)
0.605701 + 0.795692i \(0.292893\pi\)
\(350\) 0 0
\(351\) −26.9272 −1.43727
\(352\) 0 0
\(353\) −2.75923 + 4.77913i −0.146859 + 0.254367i −0.930065 0.367395i \(-0.880250\pi\)
0.783206 + 0.621762i \(0.213583\pi\)
\(354\) 0 0
\(355\) 1.49272 + 2.58547i 0.0792256 + 0.137223i
\(356\) 0 0
\(357\) −2.45516 + 3.18050i −0.129941 + 0.168330i
\(358\) 0 0
\(359\) −9.33341 16.1659i −0.492599 0.853206i 0.507365 0.861731i \(-0.330620\pi\)
−0.999964 + 0.00852545i \(0.997286\pi\)
\(360\) 0 0
\(361\) −3.39000 + 5.87166i −0.178421 + 0.309035i
\(362\) 0 0
\(363\) 31.6753 1.66252
\(364\) 0 0
\(365\) 10.5214 0.550716
\(366\) 0 0
\(367\) −12.8238 + 22.2115i −0.669398 + 1.15943i 0.308674 + 0.951168i \(0.400115\pi\)
−0.978073 + 0.208264i \(0.933219\pi\)
\(368\) 0 0
\(369\) 2.16802 + 3.75512i 0.112863 + 0.195484i
\(370\) 0 0
\(371\) −11.8082 1.58941i −0.613053 0.0825182i
\(372\) 0 0
\(373\) 2.52018 + 4.36508i 0.130490 + 0.226015i 0.923866 0.382717i \(-0.125012\pi\)
−0.793376 + 0.608732i \(0.791678\pi\)
\(374\) 0 0
\(375\) −5.67571 + 9.83061i −0.293092 + 0.507651i
\(376\) 0 0
\(377\) 8.92502 0.459662
\(378\) 0 0
\(379\) 22.9762 1.18021 0.590105 0.807326i \(-0.299086\pi\)
0.590105 + 0.807326i \(0.299086\pi\)
\(380\) 0 0
\(381\) −1.11504 + 1.93130i −0.0571252 + 0.0989438i
\(382\) 0 0
\(383\) 14.4673 + 25.0581i 0.739245 + 1.28041i 0.952836 + 0.303487i \(0.0981510\pi\)
−0.213590 + 0.976923i \(0.568516\pi\)
\(384\) 0 0
\(385\) 4.53057 + 11.0280i 0.230899 + 0.562041i
\(386\) 0 0
\(387\) −0.199729 0.345941i −0.0101528 0.0175852i
\(388\) 0 0
\(389\) −3.75696 + 6.50725i −0.190486 + 0.329931i −0.945411 0.325880i \(-0.894340\pi\)
0.754926 + 0.655810i \(0.227673\pi\)
\(390\) 0 0
\(391\) −4.19007 −0.211901
\(392\) 0 0
\(393\) −19.2850 −0.972800
\(394\) 0 0
\(395\) 2.05825 3.56499i 0.103562 0.179374i
\(396\) 0 0
\(397\) 13.0530 + 22.6084i 0.655109 + 1.13468i 0.981866 + 0.189574i \(0.0607108\pi\)
−0.326757 + 0.945108i \(0.605956\pi\)
\(398\) 0 0
\(399\) −7.75224 18.8701i −0.388097 0.944684i
\(400\) 0 0
\(401\) −3.36153 5.82234i −0.167867 0.290754i 0.769803 0.638282i \(-0.220354\pi\)
−0.937670 + 0.347528i \(0.887021\pi\)
\(402\) 0 0
\(403\) −24.2179 + 41.9466i −1.20638 + 2.08951i
\(404\) 0 0
\(405\) 5.13930 0.255374
\(406\) 0 0
\(407\) 34.5080 1.71050
\(408\) 0 0
\(409\) −2.44865 + 4.24119i −0.121078 + 0.209714i −0.920193 0.391465i \(-0.871969\pi\)
0.799115 + 0.601178i \(0.205302\pi\)
\(410\) 0 0
\(411\) 9.28018 + 16.0737i 0.457757 + 0.792859i
\(412\) 0 0
\(413\) −20.9204 2.81593i −1.02943 0.138563i
\(414\) 0 0
\(415\) 2.09463 + 3.62800i 0.102821 + 0.178091i
\(416\) 0 0
\(417\) 5.21557 9.03364i 0.255408 0.442379i
\(418\) 0 0
\(419\) −4.81341 −0.235151 −0.117575 0.993064i \(-0.537512\pi\)
−0.117575 + 0.993064i \(0.537512\pi\)
\(420\) 0 0
\(421\) −0.402770 −0.0196298 −0.00981490 0.999952i \(-0.503124\pi\)
−0.00981490 + 0.999952i \(0.503124\pi\)
\(422\) 0 0
\(423\) 1.99169 3.44971i 0.0968392 0.167730i
\(424\) 0 0
\(425\) −2.18130 3.77812i −0.105809 0.183266i
\(426\) 0 0
\(427\) 14.4439 18.7111i 0.698987 0.905492i
\(428\) 0 0
\(429\) 20.5729 + 35.6334i 0.993271 + 1.72040i
\(430\) 0 0
\(431\) −4.03202 + 6.98366i −0.194215 + 0.336391i −0.946643 0.322284i \(-0.895549\pi\)
0.752428 + 0.658675i \(0.228883\pi\)
\(432\) 0 0
\(433\) −31.8869 −1.53238 −0.766192 0.642611i \(-0.777851\pi\)
−0.766192 + 0.642611i \(0.777851\pi\)
\(434\) 0 0
\(435\) −2.25421 −0.108081
\(436\) 0 0
\(437\) 10.6373 18.4244i 0.508853 0.881359i
\(438\) 0 0
\(439\) −9.48183 16.4230i −0.452543 0.783828i 0.546000 0.837785i \(-0.316150\pi\)
−0.998543 + 0.0539573i \(0.982817\pi\)
\(440\) 0 0
\(441\) −4.68378 1.28416i −0.223037 0.0611505i
\(442\) 0 0
\(443\) −5.46078 9.45835i −0.259449 0.449380i 0.706645 0.707568i \(-0.250208\pi\)
−0.966095 + 0.258189i \(0.916874\pi\)
\(444\) 0 0
\(445\) −0.210910 + 0.365307i −0.00999808 + 0.0173172i
\(446\) 0 0
\(447\) −10.5437 −0.498700
\(448\) 0 0
\(449\) 3.09341 0.145987 0.0729936 0.997332i \(-0.476745\pi\)
0.0729936 + 0.997332i \(0.476745\pi\)
\(450\) 0 0
\(451\) 17.6374 30.5489i 0.830514 1.43849i
\(452\) 0 0
\(453\) 10.4356 + 18.0751i 0.490309 + 0.849240i
\(454\) 0 0
\(455\) −6.19592 + 8.02641i −0.290469 + 0.376284i
\(456\) 0 0
\(457\) −0.524616 0.908661i −0.0245405 0.0425054i 0.853494 0.521102i \(-0.174479\pi\)
−0.878035 + 0.478597i \(0.841146\pi\)
\(458\) 0 0
\(459\) −2.80474 + 4.85795i −0.130914 + 0.226749i
\(460\) 0 0
\(461\) −29.5804 −1.37770 −0.688848 0.724906i \(-0.741883\pi\)
−0.688848 + 0.724906i \(0.741883\pi\)
\(462\) 0 0
\(463\) 1.85379 0.0861529 0.0430764 0.999072i \(-0.486284\pi\)
0.0430764 + 0.999072i \(0.486284\pi\)
\(464\) 0 0
\(465\) 6.11674 10.5945i 0.283657 0.491309i
\(466\) 0 0
\(467\) −15.9179 27.5706i −0.736591 1.27581i −0.954022 0.299737i \(-0.903101\pi\)
0.217431 0.976076i \(-0.430232\pi\)
\(468\) 0 0
\(469\) −28.0008 3.76896i −1.29296 0.174035i
\(470\) 0 0
\(471\) 2.95809 + 5.12356i 0.136302 + 0.236081i
\(472\) 0 0
\(473\) −1.62485 + 2.81432i −0.0747107 + 0.129403i
\(474\) 0 0
\(475\) 22.1507 1.01634
\(476\) 0 0
\(477\) −3.12444 −0.143058
\(478\) 0 0
\(479\) 18.7418 32.4617i 0.856334 1.48321i −0.0190675 0.999818i \(-0.506070\pi\)
0.875402 0.483396i \(-0.160597\pi\)
\(480\) 0 0
\(481\) 14.6740 + 25.4161i 0.669078 + 1.15888i
\(482\) 0 0
\(483\) 6.39745 + 15.5723i 0.291094 + 0.708565i
\(484\) 0 0
\(485\) 2.21084 + 3.82928i 0.100389 + 0.173879i
\(486\) 0 0
\(487\) −15.5422 + 26.9198i −0.704283 + 1.21985i 0.262667 + 0.964887i \(0.415398\pi\)
−0.966950 + 0.254967i \(0.917935\pi\)
\(488\) 0 0
\(489\) 37.0029 1.67333
\(490\) 0 0
\(491\) 37.0322 1.67124 0.835621 0.549306i \(-0.185108\pi\)
0.835621 + 0.549306i \(0.185108\pi\)
\(492\) 0 0
\(493\) 0.929630 1.61017i 0.0418684 0.0725183i
\(494\) 0 0
\(495\) 1.56323 + 2.70759i 0.0702619 + 0.121697i
\(496\) 0 0
\(497\) 3.75960 + 9.15140i 0.168641 + 0.410496i
\(498\) 0 0
\(499\) −3.81702 6.61128i −0.170873 0.295961i 0.767852 0.640627i \(-0.221326\pi\)
−0.938725 + 0.344666i \(0.887992\pi\)
\(500\) 0 0
\(501\) −11.0561 + 19.1498i −0.493952 + 0.855549i
\(502\) 0 0
\(503\) 0.908307 0.0404994 0.0202497 0.999795i \(-0.493554\pi\)
0.0202497 + 0.999795i \(0.493554\pi\)
\(504\) 0 0
\(505\) −9.35226 −0.416170
\(506\) 0 0
\(507\) −7.62568 + 13.2081i −0.338669 + 0.586591i
\(508\) 0 0
\(509\) 3.54117 + 6.13349i 0.156960 + 0.271862i 0.933771 0.357871i \(-0.116497\pi\)
−0.776811 + 0.629734i \(0.783164\pi\)
\(510\) 0 0
\(511\) 34.5556 + 4.65125i 1.52865 + 0.205759i
\(512\) 0 0
\(513\) −14.2408 24.6657i −0.628745 1.08902i
\(514\) 0 0
\(515\) −1.81966 + 3.15174i −0.0801836 + 0.138882i
\(516\) 0 0
\(517\) −32.4059 −1.42521
\(518\) 0 0
\(519\) 21.2408 0.932369
\(520\) 0 0
\(521\) 8.46355 14.6593i 0.370795 0.642235i −0.618893 0.785475i \(-0.712419\pi\)
0.989688 + 0.143240i \(0.0457520\pi\)
\(522\) 0 0
\(523\) 4.31166 + 7.46801i 0.188536 + 0.326553i 0.944762 0.327756i \(-0.106293\pi\)
−0.756227 + 0.654310i \(0.772959\pi\)
\(524\) 0 0
\(525\) −10.7109 + 13.8752i −0.467461 + 0.605565i
\(526\) 0 0
\(527\) 5.04506 + 8.73831i 0.219766 + 0.380647i
\(528\) 0 0
\(529\) 2.72164 4.71402i 0.118332 0.204957i
\(530\) 0 0
\(531\) −5.53552 −0.240221
\(532\) 0 0
\(533\) 30.0002 1.29946
\(534\) 0 0
\(535\) 7.04307 12.1989i 0.304498 0.527407i
\(536\) 0 0
\(537\) −17.3185 29.9966i −0.747350 1.29445i
\(538\) 0 0
\(539\) 10.0046 + 38.2224i 0.430927 + 1.64636i
\(540\) 0 0
\(541\) 22.3060 + 38.6351i 0.959009 + 1.66105i 0.724914 + 0.688839i \(0.241879\pi\)
0.234095 + 0.972214i \(0.424787\pi\)
\(542\) 0 0
\(543\) −0.673352 + 1.16628i −0.0288963 + 0.0500499i
\(544\) 0 0
\(545\) −10.7151 −0.458983
\(546\) 0 0
\(547\) 34.2732 1.46542 0.732709 0.680543i \(-0.238256\pi\)
0.732709 + 0.680543i \(0.238256\pi\)
\(548\) 0 0
\(549\) 3.09927 5.36809i 0.132273 0.229104i
\(550\) 0 0
\(551\) 4.72011 + 8.17546i 0.201083 + 0.348286i
\(552\) 0 0
\(553\) 8.33591 10.7986i 0.354479 0.459204i
\(554\) 0 0
\(555\) −3.70624 6.41940i −0.157321 0.272488i
\(556\) 0 0
\(557\) −11.4631 + 19.8547i −0.485707 + 0.841269i −0.999865 0.0164266i \(-0.994771\pi\)
0.514158 + 0.857695i \(0.328104\pi\)
\(558\) 0 0
\(559\) −2.76378 −0.116895
\(560\) 0 0
\(561\) 8.57151 0.361890
\(562\) 0 0
\(563\) −6.64813 + 11.5149i −0.280185 + 0.485295i −0.971430 0.237326i \(-0.923729\pi\)
0.691245 + 0.722620i \(0.257063\pi\)
\(564\) 0 0
\(565\) −6.18498 10.7127i −0.260204 0.450686i
\(566\) 0 0
\(567\) 16.8791 + 2.27196i 0.708854 + 0.0954132i
\(568\) 0 0
\(569\) −7.98356 13.8279i −0.334688 0.579697i 0.648737 0.761013i \(-0.275298\pi\)
−0.983425 + 0.181316i \(0.941964\pi\)
\(570\) 0 0
\(571\) 11.2969 19.5667i 0.472759 0.818842i −0.526755 0.850017i \(-0.676592\pi\)
0.999514 + 0.0311751i \(0.00992495\pi\)
\(572\) 0 0
\(573\) 13.3290 0.556827
\(574\) 0 0
\(575\) −18.2796 −0.762313
\(576\) 0 0
\(577\) −18.5524 + 32.1337i −0.772346 + 1.33774i 0.163928 + 0.986472i \(0.447583\pi\)
−0.936274 + 0.351270i \(0.885750\pi\)
\(578\) 0 0
\(579\) 13.0780 + 22.6517i 0.543502 + 0.941373i
\(580\) 0 0
\(581\) 5.27556 + 12.8415i 0.218867 + 0.532754i
\(582\) 0 0
\(583\) 12.7091 + 22.0128i 0.526357 + 0.911676i
\(584\) 0 0
\(585\) −1.32948 + 2.30273i −0.0549672 + 0.0952060i
\(586\) 0 0
\(587\) −14.9886 −0.618646 −0.309323 0.950957i \(-0.600102\pi\)
−0.309323 + 0.950957i \(0.600102\pi\)
\(588\) 0 0
\(589\) −51.2316 −2.11096
\(590\) 0 0
\(591\) −15.4852 + 26.8212i −0.636978 + 1.10328i
\(592\) 0 0
\(593\) −21.2759 36.8510i −0.873697 1.51329i −0.858144 0.513408i \(-0.828383\pi\)
−0.0155526 0.999879i \(-0.504951\pi\)
\(594\) 0 0
\(595\) 0.802681 + 1.95384i 0.0329067 + 0.0800996i
\(596\) 0 0
\(597\) 6.39015 + 11.0681i 0.261531 + 0.452986i
\(598\) 0 0
\(599\) 2.69666 4.67076i 0.110183 0.190842i −0.805661 0.592377i \(-0.798190\pi\)
0.915844 + 0.401535i \(0.131523\pi\)
\(600\) 0 0
\(601\) −39.2266 −1.60009 −0.800044 0.599942i \(-0.795191\pi\)
−0.800044 + 0.599942i \(0.795191\pi\)
\(602\) 0 0
\(603\) −7.40896 −0.301716
\(604\) 0 0
\(605\) 8.32624 14.4215i 0.338510 0.586316i
\(606\) 0 0
\(607\) 1.85618 + 3.21500i 0.0753401 + 0.130493i 0.901234 0.433333i \(-0.142662\pi\)
−0.825894 + 0.563825i \(0.809329\pi\)
\(608\) 0 0
\(609\) −7.40352 0.996529i −0.300006 0.0403814i
\(610\) 0 0
\(611\) −13.7801 23.8679i −0.557484 0.965591i
\(612\) 0 0
\(613\) 9.32919 16.1586i 0.376803 0.652641i −0.613792 0.789467i \(-0.710357\pi\)
0.990595 + 0.136826i \(0.0436902\pi\)
\(614\) 0 0
\(615\) −7.57721 −0.305543
\(616\) 0 0
\(617\) 0.327324 0.0131776 0.00658878 0.999978i \(-0.497903\pi\)
0.00658878 + 0.999978i \(0.497903\pi\)
\(618\) 0 0
\(619\) −5.83076 + 10.0992i −0.234358 + 0.405920i −0.959086 0.283115i \(-0.908632\pi\)
0.724728 + 0.689035i \(0.241965\pi\)
\(620\) 0 0
\(621\) 11.7521 + 20.3551i 0.471594 + 0.816824i
\(622\) 0 0
\(623\) −0.854187 + 1.10654i −0.0342223 + 0.0443327i
\(624\) 0 0
\(625\) −7.92265 13.7224i −0.316906 0.548897i
\(626\) 0 0
\(627\) −21.7605 + 37.6903i −0.869031 + 1.50521i
\(628\) 0 0
\(629\) 6.11378 0.243773
\(630\) 0 0
\(631\) 10.1776 0.405162 0.202581 0.979266i \(-0.435067\pi\)
0.202581 + 0.979266i \(0.435067\pi\)
\(632\) 0 0
\(633\) 17.3875 30.1161i 0.691092 1.19701i
\(634\) 0 0
\(635\) 0.586203 + 1.01533i 0.0232627 + 0.0402922i
\(636\) 0 0
\(637\) −23.8976 + 23.6222i −0.946858 + 0.935945i
\(638\) 0 0
\(639\) 1.29721 + 2.24684i 0.0513170 + 0.0888836i
\(640\) 0 0
\(641\) 8.45887 14.6512i 0.334105 0.578687i −0.649207 0.760612i \(-0.724899\pi\)
0.983313 + 0.181924i \(0.0582326\pi\)
\(642\) 0 0
\(643\) −17.1979 −0.678220 −0.339110 0.940747i \(-0.610126\pi\)
−0.339110 + 0.940747i \(0.610126\pi\)
\(644\) 0 0
\(645\) 0.698051 0.0274857
\(646\) 0 0
\(647\) 15.4467 26.7545i 0.607273 1.05183i −0.384415 0.923161i \(-0.625597\pi\)
0.991688 0.128667i \(-0.0410700\pi\)
\(648\) 0 0
\(649\) 22.5165 + 38.9997i 0.883848 + 1.53087i
\(650\) 0 0
\(651\) 24.7729 32.0916i 0.970925 1.25777i
\(652\) 0 0
\(653\) −3.56998 6.18339i −0.139704 0.241975i 0.787680 0.616084i \(-0.211282\pi\)
−0.927385 + 0.374109i \(0.877949\pi\)
\(654\) 0 0
\(655\) −5.06929 + 8.78027i −0.198074 + 0.343074i
\(656\) 0 0
\(657\) 9.14336 0.356716
\(658\) 0 0
\(659\) 31.5442 1.22879 0.614394 0.789000i \(-0.289401\pi\)
0.614394 + 0.789000i \(0.289401\pi\)
\(660\) 0 0
\(661\) 20.7244 35.8958i 0.806088 1.39618i −0.109467 0.993990i \(-0.534914\pi\)
0.915554 0.402194i \(-0.131752\pi\)
\(662\) 0 0
\(663\) 3.64491 + 6.31317i 0.141557 + 0.245183i
\(664\) 0 0
\(665\) −10.6291 1.43070i −0.412179 0.0554802i
\(666\) 0 0
\(667\) −3.89522 6.74672i −0.150823 0.261234i
\(668\) 0 0
\(669\) 7.57286 13.1166i 0.292784 0.507116i
\(670\) 0 0
\(671\) −50.4267 −1.94670
\(672\) 0 0
\(673\) −34.7524 −1.33961 −0.669804 0.742538i \(-0.733622\pi\)
−0.669804 + 0.742538i \(0.733622\pi\)
\(674\) 0 0
\(675\) −12.2359 + 21.1933i −0.470962 + 0.815730i
\(676\) 0 0
\(677\) −2.63952 4.57178i −0.101445 0.175708i 0.810835 0.585274i \(-0.199013\pi\)
−0.912280 + 0.409567i \(0.865680\pi\)
\(678\) 0 0
\(679\) 5.56825 + 13.5539i 0.213690 + 0.520152i
\(680\) 0 0
\(681\) 17.8547 + 30.9252i 0.684193 + 1.18506i
\(682\) 0 0
\(683\) −14.1289 + 24.4720i −0.540627 + 0.936394i 0.458241 + 0.888828i \(0.348480\pi\)
−0.998868 + 0.0475659i \(0.984854\pi\)
\(684\) 0 0
\(685\) 9.75762 0.372819
\(686\) 0 0
\(687\) −15.8571 −0.604985
\(688\) 0 0
\(689\) −10.8087 + 18.7212i −0.411779 + 0.713222i
\(690\) 0 0
\(691\) −17.1436 29.6935i −0.652172 1.12960i −0.982595 0.185762i \(-0.940525\pi\)
0.330423 0.943833i \(-0.392809\pi\)
\(692\) 0 0
\(693\) 3.93717 + 9.58364i 0.149561 + 0.364052i
\(694\) 0 0
\(695\) −2.74195 4.74920i −0.104008 0.180147i
\(696\) 0 0
\(697\) 3.12483 5.41236i 0.118361 0.205008i
\(698\) 0 0
\(699\) 36.5846 1.38376
\(700\) 0 0
\(701\) 30.1766 1.13975 0.569877 0.821730i \(-0.306991\pi\)
0.569877 + 0.821730i \(0.306991\pi\)
\(702\) 0 0
\(703\) −15.5211 + 26.8833i −0.585388 + 1.01392i
\(704\) 0 0
\(705\) 3.48047 + 6.02835i 0.131082 + 0.227041i
\(706\) 0 0
\(707\) −30.7157 4.13440i −1.15518 0.155490i
\(708\) 0 0
\(709\) −18.5958 32.2089i −0.698380 1.20963i −0.969028 0.246951i \(-0.920571\pi\)
0.270648 0.962678i \(-0.412762\pi\)
\(710\) 0 0
\(711\) 1.78867 3.09806i 0.0670802 0.116186i
\(712\) 0 0
\(713\) 42.2784 1.58334
\(714\) 0 0
\(715\) 21.6314 0.808967
\(716\) 0 0
\(717\) −22.5714 + 39.0948i −0.842945 + 1.46002i
\(718\) 0 0
\(719\) −12.7382 22.0631i −0.475053 0.822816i 0.524539 0.851387i \(-0.324238\pi\)
−0.999592 + 0.0285707i \(0.990904\pi\)
\(720\) 0 0
\(721\) −7.36963 + 9.54687i −0.274459 + 0.355544i
\(722\) 0 0
\(723\) −3.08617 5.34540i −0.114776 0.198798i
\(724\) 0 0
\(725\) 4.05561 7.02452i 0.150621 0.260884i
\(726\) 0 0
\(727\) 29.7250 1.10244 0.551220 0.834360i \(-0.314162\pi\)
0.551220 + 0.834360i \(0.314162\pi\)
\(728\) 0 0
\(729\) 30.0221 1.11193
\(730\) 0 0
\(731\) −0.287875 + 0.498614i −0.0106474 + 0.0184419i
\(732\) 0 0
\(733\) −16.1043 27.8934i −0.594824 1.03027i −0.993572 0.113205i \(-0.963888\pi\)
0.398747 0.917061i \(-0.369445\pi\)
\(734\) 0 0
\(735\) 6.03586 5.96629i 0.222636 0.220070i
\(736\) 0 0
\(737\) 30.1370 + 52.1988i 1.11011 + 1.92277i
\(738\) 0 0
\(739\) 6.37001 11.0332i 0.234325 0.405862i −0.724752 0.689010i \(-0.758045\pi\)
0.959076 + 0.283148i \(0.0913788\pi\)
\(740\) 0 0
\(741\) −37.0134 −1.35972
\(742\) 0 0
\(743\) −37.8141 −1.38727 −0.693633 0.720328i \(-0.743991\pi\)
−0.693633 + 0.720328i \(0.743991\pi\)
\(744\) 0 0
\(745\) −2.77154 + 4.80045i −0.101541 + 0.175875i
\(746\) 0 0
\(747\) 1.82028 + 3.15282i 0.0666006 + 0.115356i
\(748\) 0 0
\(749\) 28.5245 36.9516i 1.04226 1.35018i
\(750\) 0 0
\(751\) −14.1488 24.5064i −0.516296 0.894252i −0.999821 0.0189209i \(-0.993977\pi\)
0.483525 0.875331i \(-0.339356\pi\)
\(752\) 0 0
\(753\) −2.12643 + 3.68308i −0.0774913 + 0.134219i
\(754\) 0 0
\(755\) 10.9725 0.399331
\(756\) 0 0
\(757\) −27.2325 −0.989782 −0.494891 0.868955i \(-0.664792\pi\)
−0.494891 + 0.868955i \(0.664792\pi\)
\(758\) 0 0
\(759\) 17.9576 31.1035i 0.651821 1.12899i
\(760\) 0 0
\(761\) −6.04326 10.4672i −0.219068 0.379437i 0.735455 0.677573i \(-0.236968\pi\)
−0.954523 + 0.298136i \(0.903635\pi\)
\(762\) 0 0
\(763\) −35.1917 4.73687i −1.27402 0.171486i
\(764\) 0 0
\(765\) 0.276957 + 0.479704i 0.0100134 + 0.0173437i
\(766\) 0 0
\(767\) −19.1496 + 33.1681i −0.691452 + 1.19763i
\(768\) 0 0
\(769\) −1.76850 −0.0637739 −0.0318870 0.999491i \(-0.510152\pi\)
−0.0318870 + 0.999491i \(0.510152\pi\)
\(770\) 0 0
\(771\) 5.76555 0.207641
\(772\) 0 0
\(773\) −3.95620 + 6.85234i −0.142295 + 0.246462i −0.928360 0.371681i \(-0.878781\pi\)
0.786066 + 0.618143i \(0.212115\pi\)
\(774\) 0 0
\(775\) 22.0096 + 38.1218i 0.790608 + 1.36937i
\(776\) 0 0
\(777\) −9.33460 22.7217i −0.334877 0.815138i
\(778\) 0 0
\(779\) 15.8660 + 27.4807i 0.568458 + 0.984599i
\(780\) 0 0
\(781\) 10.5532 18.2786i 0.377623 0.654061i
\(782\) 0 0
\(783\) −10.4295 −0.372719
\(784\) 0 0
\(785\) 3.11027 0.111010
\(786\) 0 0
\(787\) −7.92246 + 13.7221i −0.282405 + 0.489140i −0.971977 0.235078i \(-0.924466\pi\)
0.689572 + 0.724218i \(0.257799\pi\)
\(788\) 0 0
\(789\) 5.49229 + 9.51292i 0.195531 + 0.338669i
\(790\) 0 0
\(791\) −15.5776 37.9181i −0.553875 1.34821i
\(792\) 0 0
\(793\) −21.4432 37.1408i −0.761472 1.31891i
\(794\) 0 0
\(795\) 2.72997 4.72845i 0.0968222 0.167701i
\(796\) 0 0
\(797\) 7.19960 0.255023 0.127511 0.991837i \(-0.459301\pi\)
0.127511 + 0.991837i \(0.459301\pi\)
\(798\) 0 0
\(799\) −5.74135 −0.203114
\(800\) 0 0
\(801\) −0.183286 + 0.317460i −0.00647608 + 0.0112169i
\(802\) 0 0
\(803\) −37.1919 64.4182i −1.31247 2.27327i
\(804\) 0 0
\(805\) 8.77157 + 1.18067i 0.309157 + 0.0416132i
\(806\) 0 0
\(807\) −0.640378 1.10917i −0.0225424 0.0390446i
\(808\) 0 0
\(809\) 16.1351 27.9468i 0.567280 0.982558i −0.429554 0.903041i \(-0.641329\pi\)
0.996834 0.0795164i \(-0.0253376\pi\)
\(810\) 0 0
\(811\) −9.81258 −0.344566 −0.172283 0.985047i \(-0.555114\pi\)
−0.172283 + 0.985047i \(0.555114\pi\)
\(812\) 0 0
\(813\) 3.66309 0.128470
\(814\) 0 0
\(815\) 9.72664 16.8470i 0.340710 0.590126i
\(816\) 0 0
\(817\) −1.46166 2.53166i −0.0511369 0.0885717i
\(818\) 0 0
\(819\) −5.38441 + 6.97515i −0.188146 + 0.243731i
\(820\) 0 0
\(821\) 2.13697 + 3.70134i 0.0745808 + 0.129178i 0.900904 0.434019i \(-0.142905\pi\)
−0.826323 + 0.563196i \(0.809571\pi\)
\(822\) 0 0
\(823\) 0.448191 0.776290i 0.0156230 0.0270598i −0.858108 0.513469i \(-0.828360\pi\)
0.873731 + 0.486409i \(0.161694\pi\)
\(824\) 0 0
\(825\) 37.3941 1.30190
\(826\) 0 0
\(827\) −19.0211 −0.661428 −0.330714 0.943731i \(-0.607290\pi\)
−0.330714 + 0.943731i \(0.607290\pi\)
\(828\) 0 0
\(829\) −4.26122 + 7.38065i −0.147998 + 0.256341i −0.930488 0.366323i \(-0.880616\pi\)
0.782489 + 0.622664i \(0.213950\pi\)
\(830\) 0 0
\(831\) −18.0184 31.2088i −0.625052 1.08262i
\(832\) 0 0
\(833\) 1.77251 + 6.77187i 0.0614139 + 0.234631i
\(834\) 0 0
\(835\) 5.81247 + 10.0675i 0.201149 + 0.348400i
\(836\) 0 0
\(837\) 28.3001 49.0173i 0.978196 1.69429i
\(838\) 0 0
\(839\) −16.8692 −0.582389 −0.291195 0.956664i \(-0.594053\pi\)
−0.291195 + 0.956664i \(0.594053\pi\)
\(840\) 0 0
\(841\) −25.5432 −0.880798
\(842\) 0 0
\(843\) 2.18323 3.78147i 0.0751946 0.130241i
\(844\) 0 0
\(845\) 4.00900 + 6.94380i 0.137914 + 0.238874i
\(846\) 0 0
\(847\) 33.7213 43.6838i 1.15868 1.50099i
\(848\) 0 0
\(849\) 19.9299 + 34.5195i 0.683991 + 1.18471i
\(850\) 0 0
\(851\) 12.8086 22.1852i 0.439073 0.760497i
\(852\) 0 0
\(853\) 14.8586 0.508750 0.254375 0.967106i \(-0.418130\pi\)
0.254375 + 0.967106i \(0.418130\pi\)
\(854\) 0 0
\(855\) −2.81245 −0.0961837
\(856\) 0 0
\(857\) −0.854275 + 1.47965i −0.0291815 + 0.0505438i −0.880247 0.474515i \(-0.842623\pi\)
0.851066 + 0.525059i \(0.175957\pi\)
\(858\) 0 0
\(859\) −0.374650 0.648912i −0.0127829 0.0221406i 0.859563 0.511029i \(-0.170736\pi\)
−0.872346 + 0.488889i \(0.837402\pi\)
\(860\) 0 0
\(861\) −24.8859 3.34970i −0.848110 0.114157i
\(862\) 0 0
\(863\) 11.5038 + 19.9251i 0.391593 + 0.678259i 0.992660 0.120940i \(-0.0385907\pi\)
−0.601067 + 0.799199i \(0.705257\pi\)
\(864\) 0 0
\(865\) 5.58340 9.67073i 0.189841 0.328815i
\(866\) 0 0
\(867\) 1.51862 0.0515749
\(868\) 0 0
\(869\) −29.1026 −0.987236
\(870\) 0 0
\(871\) −25.6306 + 44.3935i −0.868460 + 1.50422i
\(872\) 0 0
\(873\) 1.92127 + 3.32774i 0.0650252 + 0.112627i
\(874\) 0 0
\(875\) 7.51518 + 18.2930i 0.254060 + 0.618417i
\(876\) 0 0
\(877\) −24.1514 41.8314i −0.815534 1.41255i −0.908944 0.416918i \(-0.863110\pi\)
0.0934102 0.995628i \(-0.470223\pi\)
\(878\) 0 0
\(879\) 10.7918 18.6919i 0.363998 0.630462i
\(880\) 0 0
\(881\) −52.2783 −1.76130 −0.880650 0.473767i \(-0.842894\pi\)
−0.880650 + 0.473767i \(0.842894\pi\)
\(882\) 0 0
\(883\) 11.5340 0.388149 0.194075 0.980987i \(-0.437830\pi\)
0.194075 + 0.980987i \(0.437830\pi\)
\(884\) 0 0
\(885\) 4.83664 8.37731i 0.162582 0.281600i
\(886\) 0 0
\(887\) −12.3853 21.4520i −0.415859 0.720288i 0.579660 0.814859i \(-0.303186\pi\)
−0.995518 + 0.0945706i \(0.969852\pi\)
\(888\) 0 0
\(889\) 1.47642 + 3.59382i 0.0495175 + 0.120533i
\(890\) 0 0
\(891\) −18.1668 31.4658i −0.608610 1.05414i
\(892\) 0 0
\(893\) 14.5756 25.2456i 0.487753 0.844813i
\(894\) 0 0
\(895\) −18.2095 −0.608677
\(896\) 0 0
\(897\) 30.5449 1.01986
\(898\) 0 0
\(899\) −9.38009 + 16.2468i −0.312843 + 0.541861i
\(900\) 0 0
\(901\) 2.25167 + 3.90001i 0.0750140 + 0.129928i
\(902\) 0 0
\(903\) 2.29262 + 0.308591i 0.0762936 + 0.0102693i
\(904\) 0 0
\(905\) 0.353997 + 0.613141i 0.0117673 + 0.0203815i
\(906\) 0 0
\(907\) 5.83019 10.0982i 0.193588 0.335305i −0.752848 0.658194i \(-0.771321\pi\)
0.946437 + 0.322889i \(0.104654\pi\)
\(908\) 0 0
\(909\) −8.12734 −0.269567
\(910\) 0 0
\(911\) −15.4049 −0.510389 −0.255194 0.966890i \(-0.582139\pi\)
−0.255194 + 0.966890i \(0.582139\pi\)
\(912\) 0 0
\(913\) 14.8085 25.6490i 0.490089 0.848859i
\(914\) 0 0
\(915\) 5.41595 + 9.38071i 0.179046 + 0.310117i
\(916\) 0 0
\(917\) −20.5307 + 26.5962i −0.677983 + 0.878282i
\(918\) 0 0
\(919\) 22.4714 + 38.9216i 0.741264 + 1.28391i 0.951920 + 0.306346i \(0.0991066\pi\)
−0.210656 + 0.977560i \(0.567560\pi\)
\(920\) 0 0
\(921\) −20.1958 + 34.9801i −0.665473 + 1.15263i
\(922\) 0 0
\(923\) 17.9504 0.590843
\(924\) 0 0
\(925\) 26.6720 0.876970
\(926\) 0 0
\(927\) −1.58133 + 2.73894i −0.0519375 + 0.0899585i
\(928\) 0 0
\(929\) 17.5270 + 30.3577i 0.575042 + 0.996002i 0.996037 + 0.0889394i \(0.0283477\pi\)
−0.420995 + 0.907063i \(0.638319\pi\)
\(930\) 0 0
\(931\) −34.2769 9.39774i −1.12338 0.307998i
\(932\) 0 0
\(933\) −16.1386 27.9528i −0.528353 0.915135i
\(934\) 0 0
\(935\) 2.25312 3.90252i 0.0736850 0.127626i
\(936\) 0 0
\(937\) 9.30499 0.303981 0.151990 0.988382i \(-0.451432\pi\)
0.151990 + 0.988382i \(0.451432\pi\)
\(938\) 0 0
\(939\) −26.9659 −0.879999
\(940\) 0 0
\(941\) 5.18398 8.97892i 0.168993 0.292705i −0.769073 0.639161i \(-0.779282\pi\)
0.938066 + 0.346456i \(0.112615\pi\)
\(942\) 0 0
\(943\) −13.0933 22.6782i −0.426375 0.738503i
\(944\) 0 0
\(945\) 7.24034 9.37939i 0.235528 0.305111i
\(946\) 0 0
\(947\) −5.72785 9.92092i −0.186130 0.322387i 0.757827 0.652456i \(-0.226261\pi\)
−0.943957 + 0.330069i \(0.892928\pi\)
\(948\) 0 0
\(949\) 31.6306 54.7858i 1.02677 1.77842i
\(950\) 0 0
\(951\) 3.02286 0.0980228
\(952\) 0 0
\(953\) 25.4052 0.822956 0.411478 0.911420i \(-0.365013\pi\)
0.411478 + 0.911420i \(0.365013\pi\)
\(954\) 0 0
\(955\) 3.50368 6.06856i 0.113377 0.196374i
\(956\) 0 0
\(957\) 7.96834 + 13.8016i 0.257580 + 0.446141i
\(958\) 0 0
\(959\) 32.0471 + 4.31360i 1.03485 + 0.139293i
\(960\) 0 0
\(961\) −35.4053 61.3239i −1.14211 1.97819i
\(962\) 0 0
\(963\) 6.12060 10.6012i 0.197233 0.341618i
\(964\) 0 0
\(965\) 13.7508 0.442654
\(966\) 0 0
\(967\) 29.5141 0.949108 0.474554 0.880226i \(-0.342609\pi\)
0.474554 + 0.880226i \(0.342609\pi\)
\(968\) 0 0
\(969\) −3.85531 + 6.67760i −0.123850 + 0.214515i
\(970\) 0 0
\(971\) 5.34427 + 9.25655i 0.171506 + 0.297057i 0.938947 0.344063i \(-0.111803\pi\)
−0.767441 + 0.641120i \(0.778470\pi\)
\(972\) 0 0
\(973\) −6.90592 16.8100i −0.221394 0.538904i
\(974\) 0 0
\(975\) 15.9013 + 27.5419i 0.509249 + 0.882045i
\(976\) 0 0
\(977\) 26.0881 45.1858i 0.834631 1.44562i −0.0597000 0.998216i \(-0.519014\pi\)
0.894331 0.447407i \(-0.147652\pi\)
\(978\) 0 0
\(979\) 2.98216 0.0953102
\(980\) 0 0
\(981\) −9.31166 −0.297298
\(982\) 0 0
\(983\) 10.0349 17.3809i 0.320063 0.554365i −0.660438 0.750881i \(-0.729629\pi\)
0.980501 + 0.196515i \(0.0629626\pi\)
\(984\) 0 0
\(985\) 8.14096 + 14.1006i 0.259393 + 0.449281i
\(986\) 0 0
\(987\) 8.76596 + 21.3376i 0.279024 + 0.679184i
\(988\) 0 0
\(989\) 1.20622 + 2.08923i 0.0383555 + 0.0664336i
\(990\) 0 0
\(991\) 22.6282 39.1932i 0.718809 1.24501i −0.242663 0.970111i \(-0.578021\pi\)
0.961472 0.274903i \(-0.0886457\pi\)
\(992\) 0 0
\(993\) −23.3852 −0.742108
\(994\) 0 0
\(995\) 6.71891 0.213004
\(996\) 0 0
\(997\) −13.2262 + 22.9085i −0.418878 + 0.725518i −0.995827 0.0912621i \(-0.970910\pi\)
0.576949 + 0.816780i \(0.304243\pi\)
\(998\) 0 0
\(999\) −17.1476 29.7004i −0.542524 0.939680i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.q.d.137.2 14
7.2 even 3 inner 952.2.q.d.681.2 yes 14
7.3 odd 6 6664.2.a.x.1.2 7
7.4 even 3 6664.2.a.w.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.d.137.2 14 1.1 even 1 trivial
952.2.q.d.681.2 yes 14 7.2 even 3 inner
6664.2.a.w.1.6 7 7.4 even 3
6664.2.a.x.1.2 7 7.3 odd 6