Properties

Label 952.2.cw.b.129.14
Level $952$
Weight $2$
Character 952.129
Analytic conductor $7.602$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(73,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([0, 0, 8, 15])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.cw (of order \(48\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,0,0,0,0,0,0,0,0,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{48})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 129.14
Character \(\chi\) \(=\) 952.129
Dual form 952.2.cw.b.369.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.676224 + 1.37125i) q^{3} +(-1.51754 + 1.33085i) q^{5} +(-1.85544 - 1.88609i) q^{7} +(0.403248 - 0.525523i) q^{9} +(0.150271 - 0.00984927i) q^{11} +(-3.08120 - 3.08120i) q^{13} +(-2.85111 - 1.18097i) q^{15} +(-3.95450 - 1.16701i) q^{17} +(-0.152919 - 1.16154i) q^{19} +(1.33160 - 3.81969i) q^{21} +(-5.01931 - 2.47525i) q^{23} +(-0.120857 + 0.917997i) q^{25} +(5.49193 + 1.09241i) q^{27} +(0.520678 + 2.61762i) q^{29} +(-3.05391 + 1.50602i) q^{31} +(0.115122 + 0.199398i) q^{33} +(5.32580 + 0.392909i) q^{35} +(0.714577 - 10.9023i) q^{37} +(2.14150 - 6.30866i) q^{39} +(2.03703 - 10.2408i) q^{41} +(-2.49747 - 6.02944i) q^{43} +(0.0874456 + 1.33416i) q^{45} +(-3.19006 + 11.9055i) q^{47} +(-0.114672 + 6.99906i) q^{49} +(-1.07387 - 6.21175i) q^{51} +(-2.93824 - 3.82919i) q^{53} +(-0.214934 + 0.214934i) q^{55} +(1.48935 - 0.995149i) q^{57} +(0.331680 + 0.0436665i) q^{59} +(-3.80806 - 11.2182i) q^{61} +(-1.73939 + 0.214515i) q^{63} +(8.77645 + 0.575239i) q^{65} +(2.48934 + 1.43722i) q^{67} -8.55653i q^{69} +(8.90077 + 5.94731i) q^{71} +(13.7879 + 4.68037i) q^{73} +(-1.34053 + 0.455047i) q^{75} +(-0.297395 - 0.265150i) q^{77} +(3.27159 - 6.63413i) q^{79} +(1.70148 + 6.34999i) q^{81} +(-3.21226 + 7.75508i) q^{83} +(7.55423 - 3.49185i) q^{85} +(-3.23731 + 2.48408i) q^{87} +(-7.54220 - 2.02093i) q^{89} +(-0.0944340 + 11.5284i) q^{91} +(-4.13026 - 3.16926i) q^{93} +(1.77789 + 1.55917i) q^{95} +(-19.2403 + 3.82713i) q^{97} +(0.0554203 - 0.0829424i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 32 q^{15} + 48 q^{21} - 32 q^{29} - 72 q^{31} - 16 q^{37} - 32 q^{39} + 32 q^{43} + 24 q^{47} - 48 q^{49} - 16 q^{53} - 128 q^{57} - 72 q^{61} - 40 q^{63} + 32 q^{65} + 80 q^{71} + 96 q^{73} - 216 q^{75}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.676224 + 1.37125i 0.390418 + 0.791689i 0.999999 0.00103421i \(-0.000329200\pi\)
−0.609582 + 0.792723i \(0.708663\pi\)
\(4\) 0 0
\(5\) −1.51754 + 1.33085i −0.678665 + 0.595173i −0.927702 0.373321i \(-0.878219\pi\)
0.249038 + 0.968494i \(0.419886\pi\)
\(6\) 0 0
\(7\) −1.85544 1.88609i −0.701291 0.712875i
\(8\) 0 0
\(9\) 0.403248 0.525523i 0.134416 0.175174i
\(10\) 0 0
\(11\) 0.150271 0.00984927i 0.0453083 0.00296967i −0.0427321 0.999087i \(-0.513606\pi\)
0.0880404 + 0.996117i \(0.471940\pi\)
\(12\) 0 0
\(13\) −3.08120 3.08120i −0.854571 0.854571i 0.136121 0.990692i \(-0.456536\pi\)
−0.990692 + 0.136121i \(0.956536\pi\)
\(14\) 0 0
\(15\) −2.85111 1.18097i −0.736155 0.304925i
\(16\) 0 0
\(17\) −3.95450 1.16701i −0.959108 0.283042i
\(18\) 0 0
\(19\) −0.152919 1.16154i −0.0350821 0.266475i −0.999992 0.00389530i \(-0.998760\pi\)
0.964910 0.262580i \(-0.0845732\pi\)
\(20\) 0 0
\(21\) 1.33160 3.81969i 0.290579 0.833524i
\(22\) 0 0
\(23\) −5.01931 2.47525i −1.04660 0.516125i −0.164102 0.986443i \(-0.552472\pi\)
−0.882497 + 0.470318i \(0.844139\pi\)
\(24\) 0 0
\(25\) −0.120857 + 0.917997i −0.0241713 + 0.183599i
\(26\) 0 0
\(27\) 5.49193 + 1.09241i 1.05692 + 0.210235i
\(28\) 0 0
\(29\) 0.520678 + 2.61762i 0.0966875 + 0.486081i 0.998539 + 0.0540348i \(0.0172082\pi\)
−0.901852 + 0.432046i \(0.857792\pi\)
\(30\) 0 0
\(31\) −3.05391 + 1.50602i −0.548499 + 0.270490i −0.695353 0.718668i \(-0.744752\pi\)
0.146854 + 0.989158i \(0.453085\pi\)
\(32\) 0 0
\(33\) 0.115122 + 0.199398i 0.0200402 + 0.0347107i
\(34\) 0 0
\(35\) 5.32580 + 0.392909i 0.900225 + 0.0664137i
\(36\) 0 0
\(37\) 0.714577 10.9023i 0.117476 1.79233i −0.380133 0.924932i \(-0.624122\pi\)
0.497609 0.867401i \(-0.334211\pi\)
\(38\) 0 0
\(39\) 2.14150 6.30866i 0.342915 1.01019i
\(40\) 0 0
\(41\) 2.03703 10.2408i 0.318130 1.59935i −0.408791 0.912628i \(-0.634050\pi\)
0.726922 0.686721i \(-0.240950\pi\)
\(42\) 0 0
\(43\) −2.49747 6.02944i −0.380861 0.919481i −0.991800 0.127802i \(-0.959208\pi\)
0.610938 0.791678i \(-0.290792\pi\)
\(44\) 0 0
\(45\) 0.0874456 + 1.33416i 0.0130356 + 0.198885i
\(46\) 0 0
\(47\) −3.19006 + 11.9055i −0.465318 + 1.73659i 0.190513 + 0.981685i \(0.438985\pi\)
−0.655831 + 0.754907i \(0.727682\pi\)
\(48\) 0 0
\(49\) −0.114672 + 6.99906i −0.0163817 + 0.999866i
\(50\) 0 0
\(51\) −1.07387 6.21175i −0.150372 0.869820i
\(52\) 0 0
\(53\) −2.93824 3.82919i −0.403599 0.525980i 0.546696 0.837331i \(-0.315885\pi\)
−0.950295 + 0.311351i \(0.899219\pi\)
\(54\) 0 0
\(55\) −0.214934 + 0.214934i −0.0289817 + 0.0289817i
\(56\) 0 0
\(57\) 1.48935 0.995149i 0.197269 0.131811i
\(58\) 0 0
\(59\) 0.331680 + 0.0436665i 0.0431810 + 0.00568489i 0.152086 0.988367i \(-0.451401\pi\)
−0.108905 + 0.994052i \(0.534734\pi\)
\(60\) 0 0
\(61\) −3.80806 11.2182i −0.487573 1.43634i −0.860963 0.508668i \(-0.830138\pi\)
0.373390 0.927674i \(-0.378195\pi\)
\(62\) 0 0
\(63\) −1.73939 + 0.214515i −0.219142 + 0.0270264i
\(64\) 0 0
\(65\) 8.77645 + 0.575239i 1.08858 + 0.0713496i
\(66\) 0 0
\(67\) 2.48934 + 1.43722i 0.304122 + 0.175585i 0.644293 0.764779i \(-0.277152\pi\)
−0.340171 + 0.940364i \(0.610485\pi\)
\(68\) 0 0
\(69\) 8.55653i 1.03009i
\(70\) 0 0
\(71\) 8.90077 + 5.94731i 1.05633 + 0.705815i 0.957249 0.289264i \(-0.0934106\pi\)
0.0990781 + 0.995080i \(0.468411\pi\)
\(72\) 0 0
\(73\) 13.7879 + 4.68037i 1.61375 + 0.547796i 0.975113 0.221709i \(-0.0711634\pi\)
0.638641 + 0.769504i \(0.279497\pi\)
\(74\) 0 0
\(75\) −1.34053 + 0.455047i −0.154791 + 0.0525443i
\(76\) 0 0
\(77\) −0.297395 0.265150i −0.0338913 0.0302166i
\(78\) 0 0
\(79\) 3.27159 6.63413i 0.368083 0.746398i −0.631497 0.775378i \(-0.717559\pi\)
0.999580 + 0.0289803i \(0.00922600\pi\)
\(80\) 0 0
\(81\) 1.70148 + 6.34999i 0.189053 + 0.705555i
\(82\) 0 0
\(83\) −3.21226 + 7.75508i −0.352591 + 0.851230i 0.643708 + 0.765272i \(0.277395\pi\)
−0.996299 + 0.0859587i \(0.972605\pi\)
\(84\) 0 0
\(85\) 7.55423 3.49185i 0.819371 0.378745i
\(86\) 0 0
\(87\) −3.23731 + 2.48408i −0.347076 + 0.266321i
\(88\) 0 0
\(89\) −7.54220 2.02093i −0.799472 0.214218i −0.164120 0.986440i \(-0.552478\pi\)
−0.635352 + 0.772223i \(0.719145\pi\)
\(90\) 0 0
\(91\) −0.0944340 + 11.5284i −0.00989938 + 1.20851i
\(92\) 0 0
\(93\) −4.13026 3.16926i −0.428288 0.328637i
\(94\) 0 0
\(95\) 1.77789 + 1.55917i 0.182408 + 0.159967i
\(96\) 0 0
\(97\) −19.2403 + 3.82713i −1.95355 + 0.388586i −0.959159 + 0.282868i \(0.908714\pi\)
−0.994396 + 0.105718i \(0.966286\pi\)
\(98\) 0 0
\(99\) 0.0554203 0.0829424i 0.00556995 0.00833602i
\(100\) 0 0
\(101\) −5.59722 + 9.69467i −0.556944 + 0.964656i 0.440805 + 0.897603i \(0.354693\pi\)
−0.997749 + 0.0670528i \(0.978640\pi\)
\(102\) 0 0
\(103\) −15.9890 + 9.23128i −1.57545 + 0.909585i −0.579964 + 0.814642i \(0.696934\pi\)
−0.995483 + 0.0949429i \(0.969733\pi\)
\(104\) 0 0
\(105\) 3.06266 + 7.56868i 0.298885 + 0.738628i
\(106\) 0 0
\(107\) 3.87670 + 4.42053i 0.374775 + 0.427349i 0.908225 0.418483i \(-0.137438\pi\)
−0.533450 + 0.845832i \(0.679105\pi\)
\(108\) 0 0
\(109\) 10.0205 11.4262i 0.959788 1.09443i −0.0356830 0.999363i \(-0.511361\pi\)
0.995471 0.0950653i \(-0.0303060\pi\)
\(110\) 0 0
\(111\) 15.4330 6.39256i 1.46484 0.606755i
\(112\) 0 0
\(113\) −6.09088 9.11565i −0.572982 0.857528i 0.425901 0.904770i \(-0.359957\pi\)
−0.998884 + 0.0472413i \(0.984957\pi\)
\(114\) 0 0
\(115\) 10.9112 2.92364i 1.01747 0.272631i
\(116\) 0 0
\(117\) −2.86173 + 0.376753i −0.264567 + 0.0348309i
\(118\) 0 0
\(119\) 5.13626 + 9.62387i 0.470840 + 0.882218i
\(120\) 0 0
\(121\) −10.8834 + 1.43283i −0.989401 + 0.130257i
\(122\) 0 0
\(123\) 15.4202 4.13182i 1.39039 0.372554i
\(124\) 0 0
\(125\) −6.64522 9.94528i −0.594367 0.889533i
\(126\) 0 0
\(127\) −6.65922 + 2.75834i −0.590910 + 0.244763i −0.658042 0.752981i \(-0.728615\pi\)
0.0671322 + 0.997744i \(0.478615\pi\)
\(128\) 0 0
\(129\) 6.57899 7.50190i 0.579248 0.660505i
\(130\) 0 0
\(131\) 4.44636 + 5.07010i 0.388480 + 0.442977i 0.912715 0.408597i \(-0.133982\pi\)
−0.524235 + 0.851574i \(0.675648\pi\)
\(132\) 0 0
\(133\) −1.90703 + 2.44358i −0.165361 + 0.211886i
\(134\) 0 0
\(135\) −9.78806 + 5.65114i −0.842422 + 0.486373i
\(136\) 0 0
\(137\) 0.717716 1.24312i 0.0613187 0.106207i −0.833736 0.552163i \(-0.813803\pi\)
0.895055 + 0.445956i \(0.147136\pi\)
\(138\) 0 0
\(139\) 3.20809 4.80124i 0.272106 0.407236i −0.670099 0.742272i \(-0.733748\pi\)
0.942205 + 0.335036i \(0.108748\pi\)
\(140\) 0 0
\(141\) −18.4825 + 3.67640i −1.55651 + 0.309609i
\(142\) 0 0
\(143\) −0.493362 0.432667i −0.0412570 0.0361814i
\(144\) 0 0
\(145\) −4.27381 3.27941i −0.354920 0.272340i
\(146\) 0 0
\(147\) −9.67498 + 4.57569i −0.797979 + 0.377396i
\(148\) 0 0
\(149\) −2.11234 0.566000i −0.173050 0.0463686i 0.171254 0.985227i \(-0.445218\pi\)
−0.344303 + 0.938858i \(0.611885\pi\)
\(150\) 0 0
\(151\) −10.5042 + 8.06018i −0.854822 + 0.655928i −0.940276 0.340414i \(-0.889433\pi\)
0.0854534 + 0.996342i \(0.472766\pi\)
\(152\) 0 0
\(153\) −2.20793 + 1.60759i −0.178501 + 0.129966i
\(154\) 0 0
\(155\) 2.63015 6.34974i 0.211259 0.510024i
\(156\) 0 0
\(157\) −1.37225 5.12132i −0.109518 0.408726i 0.889301 0.457323i \(-0.151192\pi\)
−0.998818 + 0.0485972i \(0.984525\pi\)
\(158\) 0 0
\(159\) 3.26385 6.61844i 0.258840 0.524876i
\(160\) 0 0
\(161\) 4.64449 + 14.0596i 0.366037 + 1.10805i
\(162\) 0 0
\(163\) −8.12571 + 2.75831i −0.636455 + 0.216047i −0.620972 0.783833i \(-0.713262\pi\)
−0.0154830 + 0.999880i \(0.504929\pi\)
\(164\) 0 0
\(165\) −0.440071 0.149384i −0.0342595 0.0116295i
\(166\) 0 0
\(167\) 4.59233 + 3.06849i 0.355365 + 0.237447i 0.720419 0.693539i \(-0.243950\pi\)
−0.365054 + 0.930986i \(0.618950\pi\)
\(168\) 0 0
\(169\) 5.98759i 0.460583i
\(170\) 0 0
\(171\) −0.672078 0.388025i −0.0513951 0.0296730i
\(172\) 0 0
\(173\) 2.09830 + 0.137530i 0.159530 + 0.0104562i 0.144959 0.989438i \(-0.453695\pi\)
0.0145714 + 0.999894i \(0.495362\pi\)
\(174\) 0 0
\(175\) 1.95567 1.47534i 0.147835 0.111525i
\(176\) 0 0
\(177\) 0.164412 + 0.484343i 0.0123580 + 0.0364054i
\(178\) 0 0
\(179\) 20.9579 + 2.75917i 1.56647 + 0.206230i 0.863263 0.504755i \(-0.168417\pi\)
0.703208 + 0.710984i \(0.251750\pi\)
\(180\) 0 0
\(181\) −7.43847 + 4.97023i −0.552897 + 0.369434i −0.800412 0.599450i \(-0.795386\pi\)
0.247515 + 0.968884i \(0.420386\pi\)
\(182\) 0 0
\(183\) 12.8078 12.8078i 0.946780 0.946780i
\(184\) 0 0
\(185\) 13.4249 + 17.4957i 0.987021 + 1.28631i
\(186\) 0 0
\(187\) −0.605740 0.136419i −0.0442961 0.00997591i
\(188\) 0 0
\(189\) −8.12957 12.3852i −0.591339 0.900890i
\(190\) 0 0
\(191\) 4.28149 15.9787i 0.309798 1.15618i −0.618939 0.785439i \(-0.712437\pi\)
0.928736 0.370741i \(-0.120896\pi\)
\(192\) 0 0
\(193\) −0.544167 8.30239i −0.0391700 0.597619i −0.971654 0.236408i \(-0.924030\pi\)
0.932484 0.361211i \(-0.117637\pi\)
\(194\) 0 0
\(195\) 5.14605 + 12.4237i 0.368516 + 0.889677i
\(196\) 0 0
\(197\) −1.59412 + 8.01421i −0.113577 + 0.570989i 0.881525 + 0.472137i \(0.156517\pi\)
−0.995102 + 0.0988521i \(0.968483\pi\)
\(198\) 0 0
\(199\) −5.15241 + 15.1785i −0.365244 + 1.07598i 0.596638 + 0.802511i \(0.296503\pi\)
−0.961882 + 0.273465i \(0.911830\pi\)
\(200\) 0 0
\(201\) −0.287433 + 4.38539i −0.0202740 + 0.309321i
\(202\) 0 0
\(203\) 3.97099 5.83890i 0.278709 0.409810i
\(204\) 0 0
\(205\) 10.5377 + 18.2518i 0.735985 + 1.27476i
\(206\) 0 0
\(207\) −3.32482 + 1.63962i −0.231091 + 0.113962i
\(208\) 0 0
\(209\) −0.0344196 0.173039i −0.00238085 0.0119694i
\(210\) 0 0
\(211\) −17.8656 3.55369i −1.22992 0.244646i −0.462982 0.886368i \(-0.653221\pi\)
−0.766938 + 0.641721i \(0.778221\pi\)
\(212\) 0 0
\(213\) −2.13631 + 16.2269i −0.146377 + 1.11185i
\(214\) 0 0
\(215\) 11.8143 + 5.82616i 0.805727 + 0.397341i
\(216\) 0 0
\(217\) 8.50685 + 2.96562i 0.577483 + 0.201319i
\(218\) 0 0
\(219\) 2.90578 + 22.0716i 0.196355 + 1.49146i
\(220\) 0 0
\(221\) 8.58882 + 15.7804i 0.577747 + 1.06150i
\(222\) 0 0
\(223\) −4.27659 1.77142i −0.286382 0.118623i 0.234868 0.972027i \(-0.424534\pi\)
−0.521250 + 0.853404i \(0.674534\pi\)
\(224\) 0 0
\(225\) 0.433693 + 0.433693i 0.0289129 + 0.0289129i
\(226\) 0 0
\(227\) −11.1238 + 0.729092i −0.738312 + 0.0483915i −0.429919 0.902868i \(-0.641458\pi\)
−0.308393 + 0.951259i \(0.599791\pi\)
\(228\) 0 0
\(229\) 3.05683 3.98374i 0.202001 0.263253i −0.681357 0.731951i \(-0.738610\pi\)
0.883359 + 0.468698i \(0.155277\pi\)
\(230\) 0 0
\(231\) 0.162479 0.587102i 0.0106904 0.0386285i
\(232\) 0 0
\(233\) 18.4542 16.1839i 1.20897 1.06024i 0.212429 0.977176i \(-0.431862\pi\)
0.996544 0.0830650i \(-0.0264709\pi\)
\(234\) 0 0
\(235\) −11.0033 22.3125i −0.717777 1.45551i
\(236\) 0 0
\(237\) 11.3093 0.734621
\(238\) 0 0
\(239\) 14.2607 0.922450 0.461225 0.887283i \(-0.347410\pi\)
0.461225 + 0.887283i \(0.347410\pi\)
\(240\) 0 0
\(241\) 6.68447 + 13.5548i 0.430585 + 0.873140i 0.998738 + 0.0502170i \(0.0159913\pi\)
−0.568154 + 0.822923i \(0.692342\pi\)
\(242\) 0 0
\(243\) 5.07301 4.44891i 0.325434 0.285398i
\(244\) 0 0
\(245\) −9.14066 10.7740i −0.583975 0.688324i
\(246\) 0 0
\(247\) −3.10775 + 4.05010i −0.197742 + 0.257702i
\(248\) 0 0
\(249\) −12.8063 + 0.839371i −0.811568 + 0.0531930i
\(250\) 0 0
\(251\) 0.340239 + 0.340239i 0.0214757 + 0.0214757i 0.717763 0.696287i \(-0.245166\pi\)
−0.696287 + 0.717763i \(0.745166\pi\)
\(252\) 0 0
\(253\) −0.778635 0.322521i −0.0489524 0.0202767i
\(254\) 0 0
\(255\) 9.89654 + 7.99743i 0.619745 + 0.500818i
\(256\) 0 0
\(257\) 1.26710 + 9.62458i 0.0790395 + 0.600365i 0.984429 + 0.175783i \(0.0562456\pi\)
−0.905389 + 0.424582i \(0.860421\pi\)
\(258\) 0 0
\(259\) −21.8886 + 18.8809i −1.36009 + 1.17320i
\(260\) 0 0
\(261\) 1.58558 + 0.781923i 0.0981451 + 0.0483998i
\(262\) 0 0
\(263\) 0.0316220 0.240193i 0.00194990 0.0148109i −0.990442 0.137928i \(-0.955956\pi\)
0.992392 + 0.123117i \(0.0392891\pi\)
\(264\) 0 0
\(265\) 9.55497 + 1.90060i 0.586957 + 0.116753i
\(266\) 0 0
\(267\) −2.32903 11.7088i −0.142534 0.716567i
\(268\) 0 0
\(269\) 12.9201 6.37148i 0.787751 0.388476i −0.00347936 0.999994i \(-0.501108\pi\)
0.791230 + 0.611518i \(0.209441\pi\)
\(270\) 0 0
\(271\) −8.96543 15.5286i −0.544611 0.943294i −0.998631 0.0523024i \(-0.983344\pi\)
0.454020 0.890991i \(-0.349989\pi\)
\(272\) 0 0
\(273\) −15.8721 + 7.66629i −0.960626 + 0.463985i
\(274\) 0 0
\(275\) −0.00911961 + 0.139138i −0.000549933 + 0.00839036i
\(276\) 0 0
\(277\) −2.88348 + 8.49446i −0.173252 + 0.510382i −0.998522 0.0543557i \(-0.982690\pi\)
0.825270 + 0.564738i \(0.191023\pi\)
\(278\) 0 0
\(279\) −0.440034 + 2.21220i −0.0263442 + 0.132441i
\(280\) 0 0
\(281\) 1.49391 + 3.60662i 0.0891193 + 0.215153i 0.962155 0.272504i \(-0.0878517\pi\)
−0.873035 + 0.487657i \(0.837852\pi\)
\(282\) 0 0
\(283\) −0.0768909 1.17313i −0.00457069 0.0697352i 0.994964 0.100231i \(-0.0319581\pi\)
−0.999535 + 0.0304956i \(0.990291\pi\)
\(284\) 0 0
\(285\) −0.935751 + 3.49227i −0.0554291 + 0.206864i
\(286\) 0 0
\(287\) −23.0947 + 15.1592i −1.36324 + 0.894822i
\(288\) 0 0
\(289\) 14.2762 + 9.22989i 0.839775 + 0.542935i
\(290\) 0 0
\(291\) −18.2587 23.7952i −1.07034 1.39490i
\(292\) 0 0
\(293\) 2.52125 2.52125i 0.147293 0.147293i −0.629615 0.776908i \(-0.716787\pi\)
0.776908 + 0.629615i \(0.216787\pi\)
\(294\) 0 0
\(295\) −0.561451 + 0.375149i −0.0326889 + 0.0218420i
\(296\) 0 0
\(297\) 0.836036 + 0.110066i 0.0485117 + 0.00638669i
\(298\) 0 0
\(299\) 7.83876 + 23.0922i 0.453327 + 1.33546i
\(300\) 0 0
\(301\) −6.73814 + 15.8977i −0.388380 + 0.916330i
\(302\) 0 0
\(303\) −17.0787 1.11940i −0.981148 0.0643079i
\(304\) 0 0
\(305\) 20.7086 + 11.9561i 1.18577 + 0.684605i
\(306\) 0 0
\(307\) 5.45699i 0.311447i 0.987801 + 0.155723i \(0.0497708\pi\)
−0.987801 + 0.155723i \(0.950229\pi\)
\(308\) 0 0
\(309\) −23.4705 15.6825i −1.33519 0.892146i
\(310\) 0 0
\(311\) 26.7027 + 9.06436i 1.51417 + 0.513992i 0.950157 0.311772i \(-0.100922\pi\)
0.564016 + 0.825764i \(0.309256\pi\)
\(312\) 0 0
\(313\) 16.6856 5.66399i 0.943124 0.320148i 0.192816 0.981235i \(-0.438238\pi\)
0.750309 + 0.661087i \(0.229905\pi\)
\(314\) 0 0
\(315\) 2.35410 2.64039i 0.132639 0.148769i
\(316\) 0 0
\(317\) 2.77367 5.62444i 0.155785 0.315900i −0.804962 0.593326i \(-0.797815\pi\)
0.960747 + 0.277426i \(0.0894813\pi\)
\(318\) 0 0
\(319\) 0.104024 + 0.388224i 0.00582425 + 0.0217364i
\(320\) 0 0
\(321\) −3.44012 + 8.30517i −0.192009 + 0.463550i
\(322\) 0 0
\(323\) −0.750806 + 4.77176i −0.0417760 + 0.265508i
\(324\) 0 0
\(325\) 3.20091 2.45615i 0.177555 0.136243i
\(326\) 0 0
\(327\) 22.4442 + 6.01390i 1.24117 + 0.332569i
\(328\) 0 0
\(329\) 28.3738 16.0732i 1.56430 0.886143i
\(330\) 0 0
\(331\) −3.87963 2.97695i −0.213244 0.163628i 0.496617 0.867970i \(-0.334575\pi\)
−0.709861 + 0.704342i \(0.751242\pi\)
\(332\) 0 0
\(333\) −5.44127 4.77187i −0.298180 0.261497i
\(334\) 0 0
\(335\) −5.69040 + 1.13189i −0.310900 + 0.0618419i
\(336\) 0 0
\(337\) −3.88152 + 5.80910i −0.211440 + 0.316442i −0.921997 0.387198i \(-0.873443\pi\)
0.710557 + 0.703640i \(0.248443\pi\)
\(338\) 0 0
\(339\) 8.38100 14.5163i 0.455193 0.788418i
\(340\) 0 0
\(341\) −0.444081 + 0.256390i −0.0240483 + 0.0138843i
\(342\) 0 0
\(343\) 13.4136 12.7701i 0.724268 0.689519i
\(344\) 0 0
\(345\) 11.3874 + 12.9849i 0.613079 + 0.699082i
\(346\) 0 0
\(347\) 17.6816 20.1620i 0.949198 1.08235i −0.0473119 0.998880i \(-0.515065\pi\)
0.996510 0.0834729i \(-0.0266012\pi\)
\(348\) 0 0
\(349\) 11.2136 4.64482i 0.600250 0.248632i −0.0618036 0.998088i \(-0.519685\pi\)
0.662053 + 0.749457i \(0.269685\pi\)
\(350\) 0 0
\(351\) −13.5558 20.2877i −0.723555 1.08288i
\(352\) 0 0
\(353\) −16.4320 + 4.40293i −0.874585 + 0.234344i −0.668070 0.744099i \(-0.732879\pi\)
−0.206516 + 0.978443i \(0.566212\pi\)
\(354\) 0 0
\(355\) −21.4222 + 2.82029i −1.13697 + 0.149685i
\(356\) 0 0
\(357\) −9.72342 + 13.5510i −0.514618 + 0.717193i
\(358\) 0 0
\(359\) −28.2214 + 3.71542i −1.48947 + 0.196092i −0.830898 0.556425i \(-0.812173\pi\)
−0.658572 + 0.752518i \(0.728839\pi\)
\(360\) 0 0
\(361\) 17.0268 4.56232i 0.896148 0.240122i
\(362\) 0 0
\(363\) −9.32438 13.9549i −0.489403 0.732443i
\(364\) 0 0
\(365\) −27.1526 + 11.2470i −1.42123 + 0.588693i
\(366\) 0 0
\(367\) 5.32951 6.07715i 0.278198 0.317224i −0.595819 0.803119i \(-0.703173\pi\)
0.874018 + 0.485894i \(0.161506\pi\)
\(368\) 0 0
\(369\) −4.56036 5.20009i −0.237403 0.270706i
\(370\) 0 0
\(371\) −1.77046 + 12.6466i −0.0919179 + 0.656580i
\(372\) 0 0
\(373\) 19.9742 11.5321i 1.03422 0.597110i 0.116033 0.993245i \(-0.462982\pi\)
0.918192 + 0.396135i \(0.129649\pi\)
\(374\) 0 0
\(375\) 9.14376 15.8375i 0.472182 0.817843i
\(376\) 0 0
\(377\) 6.46111 9.66974i 0.332764 0.498017i
\(378\) 0 0
\(379\) 3.44973 0.686195i 0.177201 0.0352475i −0.105692 0.994399i \(-0.533706\pi\)
0.282893 + 0.959151i \(0.408706\pi\)
\(380\) 0 0
\(381\) −8.28548 7.26617i −0.424478 0.372257i
\(382\) 0 0
\(383\) −20.7537 15.9248i −1.06046 0.813721i −0.0774013 0.997000i \(-0.524662\pi\)
−0.983061 + 0.183279i \(0.941329\pi\)
\(384\) 0 0
\(385\) 0.804183 + 0.00658740i 0.0409849 + 0.000335725i
\(386\) 0 0
\(387\) −4.17571 1.11888i −0.212263 0.0568757i
\(388\) 0 0
\(389\) 25.6985 19.7192i 1.30297 0.999801i 0.304078 0.952647i \(-0.401652\pi\)
0.998888 0.0471539i \(-0.0150151\pi\)
\(390\) 0 0
\(391\) 16.9602 + 15.6460i 0.857716 + 0.791250i
\(392\) 0 0
\(393\) −3.94562 + 9.52558i −0.199030 + 0.480502i
\(394\) 0 0
\(395\) 3.86424 + 14.4215i 0.194431 + 0.725627i
\(396\) 0 0
\(397\) 8.60861 17.4565i 0.432054 0.876118i −0.566587 0.824002i \(-0.691737\pi\)
0.998641 0.0521166i \(-0.0165967\pi\)
\(398\) 0 0
\(399\) −4.64033 0.962599i −0.232307 0.0481902i
\(400\) 0 0
\(401\) −6.09357 + 2.06849i −0.304298 + 0.103295i −0.469412 0.882979i \(-0.655534\pi\)
0.165114 + 0.986275i \(0.447201\pi\)
\(402\) 0 0
\(403\) 14.0501 + 4.76936i 0.699884 + 0.237579i
\(404\) 0 0
\(405\) −11.0329 7.37197i −0.548231 0.366316i
\(406\) 0 0
\(407\) 1.64534i 0.0815565i
\(408\) 0 0
\(409\) 1.95406 + 1.12817i 0.0966218 + 0.0557846i 0.547532 0.836785i \(-0.315567\pi\)
−0.450910 + 0.892569i \(0.648901\pi\)
\(410\) 0 0
\(411\) 2.18996 + 0.143538i 0.108023 + 0.00708019i
\(412\) 0 0
\(413\) −0.533054 0.706599i −0.0262299 0.0347694i
\(414\) 0 0
\(415\) −5.44609 16.0437i −0.267338 0.787553i
\(416\) 0 0
\(417\) 8.75307 + 1.15236i 0.428639 + 0.0564315i
\(418\) 0 0
\(419\) 13.8163 9.23178i 0.674972 0.451002i −0.170262 0.985399i \(-0.554461\pi\)
0.845234 + 0.534397i \(0.179461\pi\)
\(420\) 0 0
\(421\) −22.2012 + 22.2012i −1.08202 + 1.08202i −0.0857016 + 0.996321i \(0.527313\pi\)
−0.996321 + 0.0857016i \(0.972687\pi\)
\(422\) 0 0
\(423\) 4.97021 + 6.47730i 0.241660 + 0.314937i
\(424\) 0 0
\(425\) 1.54924 3.48918i 0.0751491 0.169250i
\(426\) 0 0
\(427\) −14.0929 + 27.9971i −0.682002 + 1.35487i
\(428\) 0 0
\(429\) 0.259670 0.969100i 0.0125370 0.0467886i
\(430\) 0 0
\(431\) 1.25839 + 19.1993i 0.0606143 + 0.924796i 0.914564 + 0.404440i \(0.132534\pi\)
−0.853950 + 0.520355i \(0.825800\pi\)
\(432\) 0 0
\(433\) −5.73803 13.8528i −0.275752 0.665724i 0.723957 0.689845i \(-0.242321\pi\)
−0.999709 + 0.0241207i \(0.992321\pi\)
\(434\) 0 0
\(435\) 1.60682 8.07805i 0.0770414 0.387313i
\(436\) 0 0
\(437\) −2.10755 + 6.20863i −0.100818 + 0.296999i
\(438\) 0 0
\(439\) 1.53055 23.3517i 0.0730491 1.11451i −0.791236 0.611511i \(-0.790562\pi\)
0.864285 0.503003i \(-0.167771\pi\)
\(440\) 0 0
\(441\) 3.63192 + 2.88262i 0.172949 + 0.137268i
\(442\) 0 0
\(443\) −14.3352 24.8294i −0.681088 1.17968i −0.974649 0.223739i \(-0.928174\pi\)
0.293561 0.955940i \(-0.405160\pi\)
\(444\) 0 0
\(445\) 14.1351 6.97068i 0.670070 0.330442i
\(446\) 0 0
\(447\) −0.652290 3.27928i −0.0308523 0.155105i
\(448\) 0 0
\(449\) −2.71151 0.539353i −0.127964 0.0254537i 0.130693 0.991423i \(-0.458280\pi\)
−0.258657 + 0.965969i \(0.583280\pi\)
\(450\) 0 0
\(451\) 0.205241 1.55896i 0.00966442 0.0734086i
\(452\) 0 0
\(453\) −18.1557 8.95340i −0.853029 0.420667i
\(454\) 0 0
\(455\) −15.1992 17.6205i −0.712551 0.826062i
\(456\) 0 0
\(457\) 0.835027 + 6.34266i 0.0390609 + 0.296697i 0.999814 + 0.0192918i \(0.00614116\pi\)
−0.960753 + 0.277405i \(0.910526\pi\)
\(458\) 0 0
\(459\) −20.4430 10.7291i −0.954197 0.500791i
\(460\) 0 0
\(461\) −18.9108 7.83313i −0.880766 0.364825i −0.103972 0.994580i \(-0.533155\pi\)
−0.776794 + 0.629755i \(0.783155\pi\)
\(462\) 0 0
\(463\) −3.60403 3.60403i −0.167493 0.167493i 0.618383 0.785877i \(-0.287788\pi\)
−0.785877 + 0.618383i \(0.787788\pi\)
\(464\) 0 0
\(465\) 10.4856 0.687264i 0.486259 0.0318711i
\(466\) 0 0
\(467\) 7.47719 9.74446i 0.346003 0.450920i −0.587641 0.809122i \(-0.699943\pi\)
0.933644 + 0.358202i \(0.116610\pi\)
\(468\) 0 0
\(469\) −1.90810 7.36181i −0.0881079 0.339937i
\(470\) 0 0
\(471\) 6.09464 5.34485i 0.280826 0.246278i
\(472\) 0 0
\(473\) −0.434683 0.881450i −0.0199867 0.0405291i
\(474\) 0 0
\(475\) 1.08477 0.0497726
\(476\) 0 0
\(477\) −3.19717 −0.146388
\(478\) 0 0
\(479\) −9.06902 18.3902i −0.414374 0.840268i −0.999568 0.0293745i \(-0.990648\pi\)
0.585194 0.810893i \(-0.301018\pi\)
\(480\) 0 0
\(481\) −35.7940 + 31.3905i −1.63207 + 1.43128i
\(482\) 0 0
\(483\) −16.1384 + 15.8761i −0.734322 + 0.722389i
\(484\) 0 0
\(485\) 24.1046 31.4137i 1.09453 1.42642i
\(486\) 0 0
\(487\) 9.81941 0.643598i 0.444960 0.0291642i 0.158723 0.987323i \(-0.449262\pi\)
0.286237 + 0.958159i \(0.407596\pi\)
\(488\) 0 0
\(489\) −9.27712 9.27712i −0.419526 0.419526i
\(490\) 0 0
\(491\) −12.2643 5.08005i −0.553481 0.229259i 0.0883712 0.996088i \(-0.471834\pi\)
−0.641852 + 0.766828i \(0.721834\pi\)
\(492\) 0 0
\(493\) 0.995772 10.9590i 0.0448473 0.493570i
\(494\) 0 0
\(495\) 0.0262810 + 0.199624i 0.00118125 + 0.00897245i
\(496\) 0 0
\(497\) −5.29771 27.8225i −0.237635 1.24801i
\(498\) 0 0
\(499\) −32.7455 16.1483i −1.46589 0.722897i −0.478045 0.878336i \(-0.658654\pi\)
−0.987846 + 0.155438i \(0.950321\pi\)
\(500\) 0 0
\(501\) −1.10222 + 8.37219i −0.0492436 + 0.374042i
\(502\) 0 0
\(503\) 31.8541 + 6.33618i 1.42031 + 0.282516i 0.844713 0.535220i \(-0.179771\pi\)
0.575593 + 0.817736i \(0.304771\pi\)
\(504\) 0 0
\(505\) −4.40812 22.1611i −0.196159 0.986156i
\(506\) 0 0
\(507\) −8.21045 + 4.04895i −0.364639 + 0.179820i
\(508\) 0 0
\(509\) 21.9032 + 37.9375i 0.970844 + 1.68155i 0.693018 + 0.720920i \(0.256281\pi\)
0.277826 + 0.960631i \(0.410386\pi\)
\(510\) 0 0
\(511\) −16.7551 34.6894i −0.741202 1.53457i
\(512\) 0 0
\(513\) 0.429056 6.54613i 0.0189433 0.289019i
\(514\) 0 0
\(515\) 11.9786 35.2878i 0.527840 1.55497i
\(516\) 0 0
\(517\) −0.362113 + 1.82046i −0.0159257 + 0.0800640i
\(518\) 0 0
\(519\) 1.23033 + 2.97028i 0.0540055 + 0.130381i
\(520\) 0 0
\(521\) 1.64357 + 25.0760i 0.0720059 + 1.09860i 0.869065 + 0.494697i \(0.164721\pi\)
−0.797059 + 0.603901i \(0.793612\pi\)
\(522\) 0 0
\(523\) 10.0589 37.5405i 0.439847 1.64153i −0.289347 0.957224i \(-0.593438\pi\)
0.729194 0.684307i \(-0.239895\pi\)
\(524\) 0 0
\(525\) 3.34553 + 1.68404i 0.146011 + 0.0734974i
\(526\) 0 0
\(527\) 13.8343 2.39163i 0.602629 0.104181i
\(528\) 0 0
\(529\) 5.06510 + 6.60096i 0.220222 + 0.286998i
\(530\) 0 0
\(531\) 0.156697 0.156697i 0.00680006 0.00680006i
\(532\) 0 0
\(533\) −37.8305 + 25.2775i −1.63862 + 1.09489i
\(534\) 0 0
\(535\) −11.7661 1.54904i −0.508693 0.0669706i
\(536\) 0 0
\(537\) 10.3888 + 30.6043i 0.448308 + 1.32067i
\(538\) 0 0
\(539\) 0.0517037 + 1.05288i 0.00222704 + 0.0453509i
\(540\) 0 0
\(541\) −40.3469 2.64448i −1.73465 0.113695i −0.834984 0.550275i \(-0.814523\pi\)
−0.899666 + 0.436580i \(0.856190\pi\)
\(542\) 0 0
\(543\) −11.8455 6.83898i −0.508338 0.293489i
\(544\) 0 0
\(545\) 30.6754i 1.31399i
\(546\) 0 0
\(547\) −17.0416 11.3868i −0.728645 0.486865i 0.135076 0.990835i \(-0.456872\pi\)
−0.863721 + 0.503970i \(0.831872\pi\)
\(548\) 0 0
\(549\) −7.43101 2.52249i −0.317148 0.107657i
\(550\) 0 0
\(551\) 2.96085 1.00507i 0.126136 0.0428175i
\(552\) 0 0
\(553\) −18.5828 + 6.13872i −0.790221 + 0.261045i
\(554\) 0 0
\(555\) −14.9127 + 30.2399i −0.633008 + 1.28361i
\(556\) 0 0
\(557\) −7.01242 26.1707i −0.297126 1.10889i −0.939514 0.342509i \(-0.888723\pi\)
0.642389 0.766379i \(-0.277943\pi\)
\(558\) 0 0
\(559\) −10.8827 + 26.2731i −0.460288 + 1.11123i
\(560\) 0 0
\(561\) −0.222553 0.922868i −0.00939618 0.0389635i
\(562\) 0 0
\(563\) 2.14666 1.64719i 0.0904707 0.0694206i −0.562536 0.826773i \(-0.690174\pi\)
0.653006 + 0.757352i \(0.273507\pi\)
\(564\) 0 0
\(565\) 21.3747 + 5.72733i 0.899240 + 0.240951i
\(566\) 0 0
\(567\) 8.81967 14.9912i 0.370391 0.629570i
\(568\) 0 0
\(569\) 24.4632 + 18.7713i 1.02555 + 0.786934i 0.977291 0.211900i \(-0.0679653\pi\)
0.0482614 + 0.998835i \(0.484632\pi\)
\(570\) 0 0
\(571\) 29.2415 + 25.6441i 1.22372 + 1.07317i 0.995020 + 0.0996756i \(0.0317805\pi\)
0.228699 + 0.973497i \(0.426553\pi\)
\(572\) 0 0
\(573\) 24.8060 4.93422i 1.03629 0.206130i
\(574\) 0 0
\(575\) 2.87889 4.30856i 0.120058 0.179679i
\(576\) 0 0
\(577\) 3.89672 6.74931i 0.162223 0.280978i −0.773443 0.633866i \(-0.781467\pi\)
0.935665 + 0.352888i \(0.114800\pi\)
\(578\) 0 0
\(579\) 11.0166 6.36046i 0.457836 0.264332i
\(580\) 0 0
\(581\) 20.5869 8.33048i 0.854090 0.345607i
\(582\) 0 0
\(583\) −0.479247 0.546476i −0.0198484 0.0226327i
\(584\) 0 0
\(585\) 3.84138 4.38026i 0.158822 0.181101i
\(586\) 0 0
\(587\) −8.00066 + 3.31398i −0.330223 + 0.136783i −0.541634 0.840615i \(-0.682194\pi\)
0.211411 + 0.977397i \(0.432194\pi\)
\(588\) 0 0
\(589\) 2.21630 + 3.31693i 0.0913212 + 0.136672i
\(590\) 0 0
\(591\) −12.0674 + 3.23346i −0.496388 + 0.133007i
\(592\) 0 0
\(593\) −27.2774 + 3.59114i −1.12015 + 0.147470i −0.667779 0.744360i \(-0.732755\pi\)
−0.452370 + 0.891830i \(0.649421\pi\)
\(594\) 0 0
\(595\) −20.6024 7.76903i −0.844615 0.318499i
\(596\) 0 0
\(597\) −24.2976 + 3.19884i −0.994436 + 0.130920i
\(598\) 0 0
\(599\) 12.5772 3.37004i 0.513889 0.137696i 0.00745047 0.999972i \(-0.497628\pi\)
0.506438 + 0.862276i \(0.330962\pi\)
\(600\) 0 0
\(601\) −20.5102 30.6957i −0.836629 1.25210i −0.965490 0.260441i \(-0.916132\pi\)
0.128861 0.991663i \(-0.458868\pi\)
\(602\) 0 0
\(603\) 1.75912 0.728650i 0.0716367 0.0296729i
\(604\) 0 0
\(605\) 14.6091 16.6585i 0.593946 0.677265i
\(606\) 0 0
\(607\) 5.41245 + 6.17172i 0.219685 + 0.250502i 0.851176 0.524881i \(-0.175890\pi\)
−0.631491 + 0.775383i \(0.717557\pi\)
\(608\) 0 0
\(609\) 10.6918 + 1.49680i 0.433255 + 0.0606535i
\(610\) 0 0
\(611\) 46.5124 26.8539i 1.88169 1.08639i
\(612\) 0 0
\(613\) −3.66172 + 6.34229i −0.147896 + 0.256163i −0.930450 0.366420i \(-0.880583\pi\)
0.782554 + 0.622583i \(0.213917\pi\)
\(614\) 0 0
\(615\) −17.9019 + 26.7921i −0.721875 + 1.08036i
\(616\) 0 0
\(617\) −12.2532 + 2.43731i −0.493295 + 0.0981225i −0.435468 0.900204i \(-0.643417\pi\)
−0.0578268 + 0.998327i \(0.518417\pi\)
\(618\) 0 0
\(619\) 36.0802 + 31.6415i 1.45019 + 1.27178i 0.899396 + 0.437134i \(0.144007\pi\)
0.550789 + 0.834644i \(0.314327\pi\)
\(620\) 0 0
\(621\) −24.8617 19.0771i −0.997666 0.765536i
\(622\) 0 0
\(623\) 10.1825 + 17.9750i 0.407952 + 0.720152i
\(624\) 0 0
\(625\) 18.8482 + 5.05036i 0.753928 + 0.202014i
\(626\) 0 0
\(627\) 0.214004 0.164211i 0.00854648 0.00655795i
\(628\) 0 0
\(629\) −15.5489 + 42.2794i −0.619977 + 1.68579i
\(630\) 0 0
\(631\) 16.5973 40.0693i 0.660727 1.59514i −0.135940 0.990717i \(-0.543406\pi\)
0.796667 0.604418i \(-0.206594\pi\)
\(632\) 0 0
\(633\) −7.20817 26.9012i −0.286499 1.06923i
\(634\) 0 0
\(635\) 6.43470 13.0483i 0.255353 0.517805i
\(636\) 0 0
\(637\) 21.9188 21.2122i 0.868456 0.840457i
\(638\) 0 0
\(639\) 6.71466 2.27932i 0.265628 0.0901685i
\(640\) 0 0
\(641\) −18.6854 6.34282i −0.738027 0.250527i −0.0729859 0.997333i \(-0.523253\pi\)
−0.665041 + 0.746806i \(0.731586\pi\)
\(642\) 0 0
\(643\) −13.8431 9.24968i −0.545920 0.364772i 0.251820 0.967774i \(-0.418971\pi\)
−0.797739 + 0.603002i \(0.793971\pi\)
\(644\) 0 0
\(645\) 20.1401i 0.793014i
\(646\) 0 0
\(647\) 2.58347 + 1.49157i 0.101567 + 0.0586395i 0.549923 0.835215i \(-0.314657\pi\)
−0.448356 + 0.893855i \(0.647990\pi\)
\(648\) 0 0
\(649\) 0.0502719 + 0.00329499i 0.00197334 + 0.000129340i
\(650\) 0 0
\(651\) 1.68595 + 13.6704i 0.0660774 + 0.535786i
\(652\) 0 0
\(653\) −1.66909 4.91697i −0.0653165 0.192416i 0.909372 0.415984i \(-0.136563\pi\)
−0.974688 + 0.223568i \(0.928229\pi\)
\(654\) 0 0
\(655\) −13.4951 1.77666i −0.527296 0.0694198i
\(656\) 0 0
\(657\) 8.01959 5.35852i 0.312874 0.209056i
\(658\) 0 0
\(659\) −3.41046 + 3.41046i −0.132853 + 0.132853i −0.770406 0.637553i \(-0.779946\pi\)
0.637553 + 0.770406i \(0.279946\pi\)
\(660\) 0 0
\(661\) 9.72128 + 12.6690i 0.378114 + 0.492768i 0.943182 0.332277i \(-0.107817\pi\)
−0.565068 + 0.825044i \(0.691150\pi\)
\(662\) 0 0
\(663\) −15.8308 + 22.4485i −0.614819 + 0.871826i
\(664\) 0 0
\(665\) −0.358040 6.24620i −0.0138842 0.242217i
\(666\) 0 0
\(667\) 3.86583 14.4275i 0.149686 0.558634i
\(668\) 0 0
\(669\) −0.462877 7.06214i −0.0178959 0.273038i
\(670\) 0 0
\(671\) −0.682732 1.64826i −0.0263566 0.0636304i
\(672\) 0 0
\(673\) 1.65735 8.33204i 0.0638860 0.321177i −0.935606 0.353046i \(-0.885146\pi\)
0.999492 + 0.0318692i \(0.0101460\pi\)
\(674\) 0 0
\(675\) −1.66657 + 4.90955i −0.0641462 + 0.188969i
\(676\) 0 0
\(677\) 1.85697 28.3318i 0.0713690 1.08888i −0.800561 0.599251i \(-0.795465\pi\)
0.871930 0.489630i \(-0.162868\pi\)
\(678\) 0 0
\(679\) 42.9175 + 29.1879i 1.64702 + 1.12013i
\(680\) 0 0
\(681\) −8.52193 14.7604i −0.326561 0.565621i
\(682\) 0 0
\(683\) −31.4512 + 15.5100i −1.20345 + 0.593473i −0.929696 0.368328i \(-0.879930\pi\)
−0.273749 + 0.961801i \(0.588264\pi\)
\(684\) 0 0
\(685\) 0.565241 + 2.84166i 0.0215967 + 0.108574i
\(686\) 0 0
\(687\) 7.52979 + 1.49777i 0.287280 + 0.0571435i
\(688\) 0 0
\(689\) −2.74519 + 20.8518i −0.104584 + 0.794391i
\(690\) 0 0
\(691\) −7.10358 3.50310i −0.270233 0.133264i 0.302124 0.953269i \(-0.402304\pi\)
−0.572357 + 0.820004i \(0.693971\pi\)
\(692\) 0 0
\(693\) −0.259266 + 0.0493670i −0.00984870 + 0.00187530i
\(694\) 0 0
\(695\) 1.52132 + 11.5555i 0.0577068 + 0.438327i
\(696\) 0 0
\(697\) −20.0066 + 38.1201i −0.757803 + 1.44390i
\(698\) 0 0
\(699\) 34.6712 + 14.3613i 1.31139 + 0.543194i
\(700\) 0 0
\(701\) 17.5719 + 17.5719i 0.663680 + 0.663680i 0.956246 0.292565i \(-0.0945089\pi\)
−0.292565 + 0.956246i \(0.594509\pi\)
\(702\) 0 0
\(703\) −12.7727 + 0.837170i −0.481733 + 0.0315745i
\(704\) 0 0
\(705\) 23.1552 30.1765i 0.872077 1.13651i
\(706\) 0 0
\(707\) 28.6703 7.43103i 1.07826 0.279473i
\(708\) 0 0
\(709\) 24.5980 21.5719i 0.923799 0.810150i −0.0583421 0.998297i \(-0.518581\pi\)
0.982141 + 0.188147i \(0.0602481\pi\)
\(710\) 0 0
\(711\) −2.16712 4.39449i −0.0812735 0.164806i
\(712\) 0 0
\(713\) 19.0563 0.713665
\(714\) 0 0
\(715\) 1.32451 0.0495339
\(716\) 0 0
\(717\) 9.64344 + 19.5550i 0.360141 + 0.730294i
\(718\) 0 0
\(719\) 18.3287 16.0739i 0.683546 0.599453i −0.245510 0.969394i \(-0.578955\pi\)
0.929055 + 0.369941i \(0.120622\pi\)
\(720\) 0 0
\(721\) 47.0778 + 13.0287i 1.75327 + 0.485213i
\(722\) 0 0
\(723\) −14.0667 + 18.3321i −0.523147 + 0.681779i
\(724\) 0 0
\(725\) −2.46590 + 0.161624i −0.0915812 + 0.00600255i
\(726\) 0 0
\(727\) −10.5936 10.5936i −0.392896 0.392896i 0.482822 0.875719i \(-0.339612\pi\)
−0.875719 + 0.482822i \(0.839612\pi\)
\(728\) 0 0
\(729\) 27.7518 + 11.4952i 1.02784 + 0.425747i
\(730\) 0 0
\(731\) 2.83986 + 26.7580i 0.105036 + 0.989680i
\(732\) 0 0
\(733\) 1.46077 + 11.0956i 0.0539547 + 0.409827i 0.997015 + 0.0772054i \(0.0245997\pi\)
−0.943061 + 0.332621i \(0.892067\pi\)
\(734\) 0 0
\(735\) 8.59263 19.8197i 0.316944 0.731061i
\(736\) 0 0
\(737\) 0.388231 + 0.191455i 0.0143007 + 0.00705232i
\(738\) 0 0
\(739\) −0.945559 + 7.18223i −0.0347830 + 0.264203i 0.965213 + 0.261464i \(0.0842052\pi\)
−0.999996 + 0.00273900i \(0.999128\pi\)
\(740\) 0 0
\(741\) −7.65522 1.52272i −0.281222 0.0559385i
\(742\) 0 0
\(743\) 8.45984 + 42.5305i 0.310361 + 1.56029i 0.749581 + 0.661912i \(0.230255\pi\)
−0.439220 + 0.898380i \(0.644745\pi\)
\(744\) 0 0
\(745\) 3.95882 1.95228i 0.145040 0.0715259i
\(746\) 0 0
\(747\) 2.78013 + 4.81533i 0.101720 + 0.176184i
\(748\) 0 0
\(749\) 1.14453 15.5138i 0.0418200 0.566863i
\(750\) 0 0
\(751\) 2.31713 35.3526i 0.0845533 1.29003i −0.719088 0.694919i \(-0.755440\pi\)
0.803641 0.595114i \(-0.202893\pi\)
\(752\) 0 0
\(753\) −0.236474 + 0.696630i −0.00861759 + 0.0253866i
\(754\) 0 0
\(755\) 5.21373 26.2112i 0.189747 0.953922i
\(756\) 0 0
\(757\) −11.2470 27.1527i −0.408779 0.986880i −0.985460 0.169910i \(-0.945652\pi\)
0.576680 0.816970i \(-0.304348\pi\)
\(758\) 0 0
\(759\) −0.0842755 1.28580i −0.00305901 0.0466715i
\(760\) 0 0
\(761\) −4.52207 + 16.8766i −0.163925 + 0.611775i 0.834250 + 0.551386i \(0.185901\pi\)
−0.998175 + 0.0603893i \(0.980766\pi\)
\(762\) 0 0
\(763\) −40.1432 + 2.30106i −1.45328 + 0.0833039i
\(764\) 0 0
\(765\) 1.21118 5.37800i 0.0437902 0.194442i
\(766\) 0 0
\(767\) −0.887427 1.15652i −0.0320431 0.0417594i
\(768\) 0 0
\(769\) −6.94855 + 6.94855i −0.250571 + 0.250571i −0.821205 0.570634i \(-0.806698\pi\)
0.570634 + 0.821205i \(0.306698\pi\)
\(770\) 0 0
\(771\) −12.3408 + 8.24588i −0.444444 + 0.296968i
\(772\) 0 0
\(773\) 18.0760 + 2.37975i 0.650148 + 0.0855936i 0.448385 0.893841i \(-0.352000\pi\)
0.201763 + 0.979434i \(0.435333\pi\)
\(774\) 0 0
\(775\) −1.01344 2.98549i −0.0364038 0.107242i
\(776\) 0 0
\(777\) −40.6920 17.2470i −1.45982 0.618733i
\(778\) 0 0
\(779\) −12.2066 0.800063i −0.437347 0.0286652i
\(780\) 0 0
\(781\) 1.39610 + 0.806040i 0.0499565 + 0.0288424i
\(782\) 0 0
\(783\) 14.9446i 0.534077i
\(784\) 0 0
\(785\) 8.89814 + 5.94555i 0.317588 + 0.212206i
\(786\) 0 0
\(787\) −2.82978 0.960582i −0.100871 0.0342411i 0.270548 0.962707i \(-0.412795\pi\)
−0.371419 + 0.928465i \(0.621129\pi\)
\(788\) 0 0
\(789\) 0.350747 0.119063i 0.0124869 0.00423874i
\(790\) 0 0
\(791\) −5.89166 + 28.4015i −0.209483 + 1.00984i
\(792\) 0 0
\(793\) −22.8321 + 46.2989i −0.810791 + 1.64412i
\(794\) 0 0
\(795\) 3.85510 + 14.3874i 0.136726 + 0.510270i
\(796\) 0 0
\(797\) 3.78937 9.14835i 0.134226 0.324051i −0.842448 0.538778i \(-0.818886\pi\)
0.976674 + 0.214727i \(0.0688862\pi\)
\(798\) 0 0
\(799\) 26.5089 43.3574i 0.937818 1.53387i
\(800\) 0 0
\(801\) −4.10342 + 3.14866i −0.144987 + 0.111253i
\(802\) 0 0
\(803\) 2.11802 + 0.567522i 0.0747433 + 0.0200274i
\(804\) 0 0
\(805\) −25.7593 15.1548i −0.907897 0.534137i
\(806\) 0 0
\(807\) 17.4737 + 13.4081i 0.615104 + 0.471986i
\(808\) 0 0
\(809\) 9.48643 + 8.31937i 0.333525 + 0.292494i 0.809685 0.586865i \(-0.199638\pi\)
−0.476160 + 0.879359i \(0.657972\pi\)
\(810\) 0 0
\(811\) 33.9297 6.74904i 1.19143 0.236991i 0.440736 0.897637i \(-0.354718\pi\)
0.750698 + 0.660646i \(0.229718\pi\)
\(812\) 0 0
\(813\) 15.2309 22.7946i 0.534170 0.799441i
\(814\) 0 0
\(815\) 8.66021 14.9999i 0.303354 0.525424i
\(816\) 0 0
\(817\) −6.62151 + 3.82293i −0.231657 + 0.133747i
\(818\) 0 0
\(819\) 6.02036 + 4.69843i 0.210368 + 0.164176i
\(820\) 0 0
\(821\) 2.02599 + 2.31020i 0.0707076 + 0.0806266i 0.786112 0.618084i \(-0.212091\pi\)
−0.715404 + 0.698711i \(0.753758\pi\)
\(822\) 0 0
\(823\) −4.57859 + 5.22088i −0.159600 + 0.181988i −0.826113 0.563505i \(-0.809453\pi\)
0.666513 + 0.745493i \(0.267786\pi\)
\(824\) 0 0
\(825\) −0.196960 + 0.0815834i −0.00685726 + 0.00284037i
\(826\) 0 0
\(827\) 27.6963 + 41.4504i 0.963095 + 1.44137i 0.896219 + 0.443612i \(0.146303\pi\)
0.0668758 + 0.997761i \(0.478697\pi\)
\(828\) 0 0
\(829\) −3.21405 + 0.861202i −0.111629 + 0.0299108i −0.314201 0.949357i \(-0.601737\pi\)
0.202572 + 0.979267i \(0.435070\pi\)
\(830\) 0 0
\(831\) −13.5979 + 1.79019i −0.471705 + 0.0621011i
\(832\) 0 0
\(833\) 8.62145 27.5440i 0.298715 0.954342i
\(834\) 0 0
\(835\) −11.0527 + 1.45512i −0.382496 + 0.0503565i
\(836\) 0 0
\(837\) −18.4171 + 4.93484i −0.636587 + 0.170573i
\(838\) 0 0
\(839\) 9.93755 + 14.8726i 0.343082 + 0.513459i 0.962384 0.271694i \(-0.0875840\pi\)
−0.619301 + 0.785153i \(0.712584\pi\)
\(840\) 0 0
\(841\) 20.2117 8.37194i 0.696954 0.288688i
\(842\) 0 0
\(843\) −3.93535 + 4.48740i −0.135541 + 0.154554i
\(844\) 0 0
\(845\) −7.96856 9.08640i −0.274127 0.312582i
\(846\) 0 0
\(847\) 22.8960 + 17.8686i 0.786715 + 0.613971i
\(848\) 0 0
\(849\) 1.55665 0.898733i 0.0534241 0.0308444i
\(850\) 0 0
\(851\) −30.5727 + 52.9535i −1.04802 + 1.81522i
\(852\) 0 0
\(853\) 6.49269 9.71700i 0.222306 0.332704i −0.703506 0.710689i \(-0.748383\pi\)
0.925811 + 0.377986i \(0.123383\pi\)
\(854\) 0 0
\(855\) 1.53631 0.305591i 0.0525406 0.0104510i
\(856\) 0 0
\(857\) −23.4655 20.5787i −0.801567 0.702955i 0.157070 0.987587i \(-0.449795\pi\)
−0.958637 + 0.284632i \(0.908128\pi\)
\(858\) 0 0
\(859\) −7.89827 6.06055i −0.269485 0.206783i 0.465175 0.885219i \(-0.345992\pi\)
−0.734660 + 0.678436i \(0.762658\pi\)
\(860\) 0 0
\(861\) −36.4042 21.4175i −1.24065 0.729906i
\(862\) 0 0
\(863\) 10.6310 + 2.84857i 0.361884 + 0.0969665i 0.435179 0.900344i \(-0.356685\pi\)
−0.0732955 + 0.997310i \(0.523352\pi\)
\(864\) 0 0
\(865\) −3.36728 + 2.58380i −0.114491 + 0.0878519i
\(866\) 0 0
\(867\) −3.00256 + 25.8176i −0.101972 + 0.876812i
\(868\) 0 0
\(869\) 0.426283 1.02914i 0.0144607 0.0349111i
\(870\) 0 0
\(871\) −3.24179 12.0985i −0.109844 0.409943i
\(872\) 0 0
\(873\) −5.74736 + 11.6545i −0.194519 + 0.394445i
\(874\) 0 0
\(875\) −6.42787 + 30.9864i −0.217302 + 1.04753i
\(876\) 0 0
\(877\) −21.0509 + 7.14581i −0.710838 + 0.241297i −0.653357 0.757050i \(-0.726640\pi\)
−0.0574805 + 0.998347i \(0.518307\pi\)
\(878\) 0 0
\(879\) 5.16218 + 1.75232i 0.174116 + 0.0591044i
\(880\) 0 0
\(881\) −36.1875 24.1797i −1.21919 0.814636i −0.231772 0.972770i \(-0.574452\pi\)
−0.987418 + 0.158134i \(0.949452\pi\)
\(882\) 0 0
\(883\) 2.75706i 0.0927826i −0.998923 0.0463913i \(-0.985228\pi\)
0.998923 0.0463913i \(-0.0147721\pi\)
\(884\) 0 0
\(885\) −0.894088 0.516202i −0.0300545 0.0173519i
\(886\) 0 0
\(887\) −44.6321 2.92534i −1.49860 0.0982233i −0.706107 0.708106i \(-0.749550\pi\)
−0.792492 + 0.609882i \(0.791217\pi\)
\(888\) 0 0
\(889\) 17.5583 + 7.44195i 0.588885 + 0.249595i
\(890\) 0 0
\(891\) 0.318225 + 0.937460i 0.0106609 + 0.0314061i
\(892\) 0 0
\(893\) 14.3165 + 1.88480i 0.479083 + 0.0630724i
\(894\) 0 0
\(895\) −35.4766 + 23.7047i −1.18585 + 0.792360i
\(896\) 0 0
\(897\) −26.3644 + 26.3644i −0.880281 + 0.880281i
\(898\) 0 0
\(899\) −5.53231 7.20985i −0.184513 0.240462i
\(900\) 0 0
\(901\) 7.15058 + 18.5715i 0.238220 + 0.618706i
\(902\) 0 0
\(903\) −26.3562 + 1.51077i −0.877079 + 0.0502753i
\(904\) 0 0
\(905\) 4.67356 17.4420i 0.155355 0.579791i
\(906\) 0 0
\(907\) −3.67143 56.0151i −0.121908 1.85995i −0.422709 0.906266i \(-0.638921\pi\)
0.300801 0.953687i \(-0.402746\pi\)
\(908\) 0 0
\(909\) 2.83770 + 6.85082i 0.0941206 + 0.227227i
\(910\) 0 0
\(911\) −9.38431 + 47.1781i −0.310916 + 1.56308i 0.437108 + 0.899409i \(0.356003\pi\)
−0.748024 + 0.663671i \(0.768997\pi\)
\(912\) 0 0
\(913\) −0.406327 + 1.19700i −0.0134475 + 0.0396149i
\(914\) 0 0
\(915\) −2.39113 + 36.4816i −0.0790483 + 1.20604i
\(916\) 0 0
\(917\) 1.31271 17.7935i 0.0433494 0.587594i
\(918\) 0 0
\(919\) 26.2085 + 45.3945i 0.864540 + 1.49743i 0.867504 + 0.497431i \(0.165723\pi\)
−0.00296381 + 0.999996i \(0.500943\pi\)
\(920\) 0 0
\(921\) −7.48287 + 3.69014i −0.246569 + 0.121594i
\(922\) 0 0
\(923\) −9.10022 45.7499i −0.299537 1.50588i
\(924\) 0 0
\(925\) 9.92195 + 1.97360i 0.326232 + 0.0648915i
\(926\) 0 0
\(927\) −1.59630 + 12.1251i −0.0524293 + 0.398240i
\(928\) 0 0
\(929\) −17.7808 8.76853i −0.583370 0.287686i 0.126560 0.991959i \(-0.459607\pi\)
−0.709929 + 0.704273i \(0.751273\pi\)
\(930\) 0 0
\(931\) 8.14721 0.937095i 0.267014 0.0307121i
\(932\) 0 0
\(933\) 5.62756 + 42.7455i 0.184238 + 1.39943i
\(934\) 0 0
\(935\) 1.10079 0.599127i 0.0359996 0.0195936i
\(936\) 0 0
\(937\) 31.8711 + 13.2014i 1.04118 + 0.431272i 0.836736 0.547606i \(-0.184461\pi\)
0.204446 + 0.978878i \(0.434461\pi\)
\(938\) 0 0
\(939\) 19.0499 + 19.0499i 0.621670 + 0.621670i
\(940\) 0 0
\(941\) 2.33431 0.152999i 0.0760964 0.00498762i −0.0273074 0.999627i \(-0.508693\pi\)
0.103404 + 0.994639i \(0.467027\pi\)
\(942\) 0 0
\(943\) −35.5731 + 46.3597i −1.15842 + 1.50968i
\(944\) 0 0
\(945\) 28.8197 + 7.97580i 0.937506 + 0.259453i
\(946\) 0 0
\(947\) 9.72575 8.52925i 0.316044 0.277164i −0.486595 0.873627i \(-0.661761\pi\)
0.802640 + 0.596464i \(0.203428\pi\)
\(948\) 0 0
\(949\) −28.0622 56.9045i −0.910937 1.84720i
\(950\) 0 0
\(951\) 9.58811 0.310916
\(952\) 0 0
\(953\) 32.3766 1.04878 0.524391 0.851478i \(-0.324293\pi\)
0.524391 + 0.851478i \(0.324293\pi\)
\(954\) 0 0
\(955\) 14.7679 + 29.9464i 0.477879 + 0.969042i
\(956\) 0 0
\(957\) −0.462007 + 0.405169i −0.0149346 + 0.0130973i
\(958\) 0 0
\(959\) −3.67632 + 0.952861i −0.118715 + 0.0307695i
\(960\) 0 0
\(961\) −11.8133 + 15.3954i −0.381075 + 0.496627i
\(962\) 0 0
\(963\) 3.88636 0.254725i 0.125236 0.00820841i
\(964\) 0 0
\(965\) 11.8750 + 11.8750i 0.382270 + 0.382270i
\(966\) 0 0
\(967\) 14.9642 + 6.19838i 0.481217 + 0.199326i 0.610086 0.792335i \(-0.291135\pi\)
−0.128870 + 0.991662i \(0.541135\pi\)
\(968\) 0 0
\(969\) −7.05097 + 2.19724i −0.226510 + 0.0705854i
\(970\) 0 0
\(971\) −1.35195 10.2691i −0.0433860 0.329550i −0.999349 0.0360639i \(-0.988518\pi\)
0.955963 0.293486i \(-0.0948153\pi\)
\(972\) 0 0
\(973\) −15.0080 + 2.85768i −0.481134 + 0.0916131i
\(974\) 0 0
\(975\) 5.53252 + 2.72834i 0.177182 + 0.0873767i
\(976\) 0 0
\(977\) −1.22800 + 9.32756i −0.0392871 + 0.298415i 0.960510 + 0.278247i \(0.0897534\pi\)
−0.999797 + 0.0201679i \(0.993580\pi\)
\(978\) 0 0
\(979\) −1.15328 0.229401i −0.0368589 0.00733169i
\(980\) 0 0
\(981\) −1.96397 9.87356i −0.0627049 0.315239i
\(982\) 0 0
\(983\) −31.3051 + 15.4380i −0.998478 + 0.492395i −0.866671 0.498881i \(-0.833745\pi\)
−0.131807 + 0.991275i \(0.542078\pi\)
\(984\) 0 0
\(985\) −8.24653 14.2834i −0.262756 0.455108i
\(986\) 0 0
\(987\) 41.2273 + 28.0384i 1.31228 + 0.892471i
\(988\) 0 0
\(989\) −2.38876 + 36.4455i −0.0759583 + 1.15890i
\(990\) 0 0
\(991\) −10.6707 + 31.4348i −0.338965 + 0.998560i 0.635127 + 0.772408i \(0.280948\pi\)
−0.974092 + 0.226152i \(0.927385\pi\)
\(992\) 0 0
\(993\) 1.45863 7.33301i 0.0462881 0.232706i
\(994\) 0 0
\(995\) −12.3813 29.8911i −0.392513 0.947610i
\(996\) 0 0
\(997\) −1.85732 28.3372i −0.0588219 0.897449i −0.920685 0.390308i \(-0.872369\pi\)
0.861863 0.507142i \(-0.169298\pi\)
\(998\) 0 0
\(999\) 15.8343 59.0943i 0.500974 1.86966i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.cw.b.129.14 288
7.5 odd 6 inner 952.2.cw.b.537.14 yes 288
17.12 odd 16 inner 952.2.cw.b.913.14 yes 288
119.12 even 48 inner 952.2.cw.b.369.14 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.cw.b.129.14 288 1.1 even 1 trivial
952.2.cw.b.369.14 yes 288 119.12 even 48 inner
952.2.cw.b.537.14 yes 288 7.5 odd 6 inner
952.2.cw.b.913.14 yes 288 17.12 odd 16 inner