Properties

Label 952.2.cw.a.129.16
Level $952$
Weight $2$
Character 952.129
Analytic conductor $7.602$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(73,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([0, 0, 8, 15])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.cw (of order \(48\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,0,0,0,0,0,0,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{48})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 129.16
Character \(\chi\) \(=\) 952.129
Dual form 952.2.cw.a.369.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06671 + 2.16308i) q^{3} +(2.76046 - 2.42086i) q^{5} +(1.17475 - 2.37064i) q^{7} +(-1.71474 + 2.23469i) q^{9} +(-2.29799 + 0.150618i) q^{11} +(1.99304 + 1.99304i) q^{13} +(8.18112 + 3.38873i) q^{15} +(-4.11201 - 0.302263i) q^{17} +(0.0932516 + 0.708317i) q^{19} +(6.38101 + 0.0122885i) q^{21} +(6.79424 + 3.35055i) q^{23} +(1.10695 - 8.40815i) q^{25} +(0.433420 + 0.0862126i) q^{27} +(-0.349440 - 1.75675i) q^{29} +(4.43893 - 2.18904i) q^{31} +(-2.77708 - 4.81005i) q^{33} +(-2.49614 - 9.38798i) q^{35} +(0.510302 - 7.78570i) q^{37} +(-2.18510 + 6.43711i) q^{39} +(0.0118819 - 0.0597346i) q^{41} +(2.85983 + 6.90424i) q^{43} +(0.676404 + 10.3199i) q^{45} +(-2.68726 + 10.0290i) q^{47} +(-4.23991 - 5.56985i) q^{49} +(-3.73251 - 9.21702i) q^{51} +(-3.29512 - 4.29429i) q^{53} +(-5.97887 + 5.97887i) q^{55} +(-1.43267 + 0.957279i) q^{57} +(8.47313 + 1.11551i) q^{59} +(-1.00282 - 2.95422i) q^{61} +(3.28327 + 6.69026i) q^{63} +(10.3266 + 0.676841i) q^{65} +(-1.98621 - 1.14674i) q^{67} +18.2705i q^{69} +(-10.2996 - 6.88195i) q^{71} +(-4.04953 - 1.37463i) q^{73} +(19.3683 - 6.57464i) q^{75} +(-2.34250 + 5.62464i) q^{77} +(-3.14173 + 6.37079i) q^{79} +(2.46295 + 9.19186i) q^{81} +(-5.44666 + 13.1494i) q^{83} +(-12.0828 + 9.12022i) q^{85} +(3.42724 - 2.62982i) q^{87} +(5.78735 + 1.55072i) q^{89} +(7.06613 - 2.38346i) q^{91} +(9.47010 + 7.26667i) q^{93} +(1.97215 + 1.72953i) q^{95} +(-18.5103 + 3.68192i) q^{97} +(3.60387 - 5.39357i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 32 q^{15} - 48 q^{21} + 32 q^{29} + 72 q^{31} + 32 q^{35} + 48 q^{37} + 32 q^{39} - 32 q^{43} - 24 q^{47} + 48 q^{49} + 16 q^{53} + 128 q^{57} - 72 q^{61} + 184 q^{63} - 32 q^{65} - 80 q^{71} - 96 q^{73}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.06671 + 2.16308i 0.615866 + 1.24885i 0.951728 + 0.306942i \(0.0993056\pi\)
−0.335862 + 0.941911i \(0.609028\pi\)
\(4\) 0 0
\(5\) 2.76046 2.42086i 1.23452 1.08264i 0.240815 0.970571i \(-0.422585\pi\)
0.993700 0.112070i \(-0.0357482\pi\)
\(6\) 0 0
\(7\) 1.17475 2.37064i 0.444015 0.896019i
\(8\) 0 0
\(9\) −1.71474 + 2.23469i −0.571581 + 0.744898i
\(10\) 0 0
\(11\) −2.29799 + 0.150618i −0.692869 + 0.0454130i −0.407769 0.913085i \(-0.633693\pi\)
−0.285099 + 0.958498i \(0.592027\pi\)
\(12\) 0 0
\(13\) 1.99304 + 1.99304i 0.552771 + 0.552771i 0.927240 0.374469i \(-0.122175\pi\)
−0.374469 + 0.927240i \(0.622175\pi\)
\(14\) 0 0
\(15\) 8.18112 + 3.38873i 2.11236 + 0.874966i
\(16\) 0 0
\(17\) −4.11201 0.302263i −0.997309 0.0733095i
\(18\) 0 0
\(19\) 0.0932516 + 0.708317i 0.0213934 + 0.162499i 0.998807 0.0488377i \(-0.0155517\pi\)
−0.977413 + 0.211337i \(0.932218\pi\)
\(20\) 0 0
\(21\) 6.38101 + 0.0122885i 1.39245 + 0.00268158i
\(22\) 0 0
\(23\) 6.79424 + 3.35055i 1.41670 + 0.698637i 0.979634 0.200794i \(-0.0643520\pi\)
0.437063 + 0.899431i \(0.356019\pi\)
\(24\) 0 0
\(25\) 1.10695 8.40815i 0.221391 1.68163i
\(26\) 0 0
\(27\) 0.433420 + 0.0862126i 0.0834117 + 0.0165916i
\(28\) 0 0
\(29\) −0.349440 1.75675i −0.0648894 0.326221i 0.934682 0.355484i \(-0.115684\pi\)
−0.999572 + 0.0292629i \(0.990684\pi\)
\(30\) 0 0
\(31\) 4.43893 2.18904i 0.797255 0.393163i 0.00242653 0.999997i \(-0.499228\pi\)
0.794828 + 0.606835i \(0.207561\pi\)
\(32\) 0 0
\(33\) −2.77708 4.81005i −0.483428 0.837322i
\(34\) 0 0
\(35\) −2.49614 9.38798i −0.421924 1.58686i
\(36\) 0 0
\(37\) 0.510302 7.78570i 0.0838931 1.27996i −0.723656 0.690161i \(-0.757540\pi\)
0.807549 0.589800i \(-0.200794\pi\)
\(38\) 0 0
\(39\) −2.18510 + 6.43711i −0.349897 + 1.03076i
\(40\) 0 0
\(41\) 0.0118819 0.0597346i 0.00185565 0.00932897i −0.979846 0.199753i \(-0.935986\pi\)
0.981702 + 0.190424i \(0.0609862\pi\)
\(42\) 0 0
\(43\) 2.85983 + 6.90424i 0.436120 + 1.05289i 0.977277 + 0.211965i \(0.0679864\pi\)
−0.541157 + 0.840921i \(0.682014\pi\)
\(44\) 0 0
\(45\) 0.676404 + 10.3199i 0.100832 + 1.53841i
\(46\) 0 0
\(47\) −2.68726 + 10.0290i −0.391978 + 1.46288i 0.434889 + 0.900484i \(0.356787\pi\)
−0.826867 + 0.562397i \(0.809879\pi\)
\(48\) 0 0
\(49\) −4.23991 5.56985i −0.605701 0.795692i
\(50\) 0 0
\(51\) −3.73251 9.21702i −0.522656 1.29064i
\(52\) 0 0
\(53\) −3.29512 4.29429i −0.452620 0.589866i 0.510185 0.860065i \(-0.329577\pi\)
−0.962804 + 0.270199i \(0.912910\pi\)
\(54\) 0 0
\(55\) −5.97887 + 5.97887i −0.806191 + 0.806191i
\(56\) 0 0
\(57\) −1.43267 + 0.957279i −0.189762 + 0.126795i
\(58\) 0 0
\(59\) 8.47313 + 1.11551i 1.10311 + 0.145227i 0.660018 0.751250i \(-0.270549\pi\)
0.443090 + 0.896477i \(0.353882\pi\)
\(60\) 0 0
\(61\) −1.00282 2.95422i −0.128398 0.378249i 0.863653 0.504087i \(-0.168171\pi\)
−0.992051 + 0.125839i \(0.959838\pi\)
\(62\) 0 0
\(63\) 3.28327 + 6.69026i 0.413653 + 0.842893i
\(64\) 0 0
\(65\) 10.3266 + 0.676841i 1.28086 + 0.0839518i
\(66\) 0 0
\(67\) −1.98621 1.14674i −0.242654 0.140096i 0.373742 0.927533i \(-0.378075\pi\)
−0.616396 + 0.787436i \(0.711408\pi\)
\(68\) 0 0
\(69\) 18.2705i 2.19951i
\(70\) 0 0
\(71\) −10.2996 6.88195i −1.22233 0.816737i −0.234479 0.972121i \(-0.575338\pi\)
−0.987854 + 0.155384i \(0.950338\pi\)
\(72\) 0 0
\(73\) −4.04953 1.37463i −0.473962 0.160888i 0.0742295 0.997241i \(-0.476350\pi\)
−0.548192 + 0.836353i \(0.684684\pi\)
\(74\) 0 0
\(75\) 19.3683 6.57464i 2.23646 0.759174i
\(76\) 0 0
\(77\) −2.34250 + 5.62464i −0.266953 + 0.640988i
\(78\) 0 0
\(79\) −3.14173 + 6.37079i −0.353472 + 0.716770i −0.998892 0.0470574i \(-0.985016\pi\)
0.645420 + 0.763828i \(0.276682\pi\)
\(80\) 0 0
\(81\) 2.46295 + 9.19186i 0.273661 + 1.02132i
\(82\) 0 0
\(83\) −5.44666 + 13.1494i −0.597849 + 1.44333i 0.277921 + 0.960604i \(0.410355\pi\)
−0.875769 + 0.482730i \(0.839645\pi\)
\(84\) 0 0
\(85\) −12.0828 + 9.12022i −1.31056 + 0.989226i
\(86\) 0 0
\(87\) 3.42724 2.62982i 0.367439 0.281946i
\(88\) 0 0
\(89\) 5.78735 + 1.55072i 0.613458 + 0.164376i 0.552152 0.833743i \(-0.313807\pi\)
0.0613061 + 0.998119i \(0.480473\pi\)
\(90\) 0 0
\(91\) 7.06613 2.38346i 0.740732 0.249855i
\(92\) 0 0
\(93\) 9.47010 + 7.26667i 0.982004 + 0.753518i
\(94\) 0 0
\(95\) 1.97215 + 1.72953i 0.202339 + 0.177446i
\(96\) 0 0
\(97\) −18.5103 + 3.68192i −1.87943 + 0.373843i −0.995580 0.0939192i \(-0.970060\pi\)
−0.883854 + 0.467762i \(0.845060\pi\)
\(98\) 0 0
\(99\) 3.60387 5.39357i 0.362202 0.542074i
\(100\) 0 0
\(101\) −6.21702 + 10.7682i −0.618616 + 1.07147i 0.371122 + 0.928584i \(0.378973\pi\)
−0.989738 + 0.142891i \(0.954360\pi\)
\(102\) 0 0
\(103\) −1.29780 + 0.749287i −0.127876 + 0.0738295i −0.562574 0.826747i \(-0.690189\pi\)
0.434697 + 0.900577i \(0.356855\pi\)
\(104\) 0 0
\(105\) 17.6443 15.4136i 1.72190 1.50421i
\(106\) 0 0
\(107\) −7.31692 8.34335i −0.707354 0.806582i 0.280846 0.959753i \(-0.409385\pi\)
−0.988200 + 0.153171i \(0.951052\pi\)
\(108\) 0 0
\(109\) 6.70687 7.64772i 0.642402 0.732519i −0.335394 0.942078i \(-0.608870\pi\)
0.977796 + 0.209559i \(0.0672029\pi\)
\(110\) 0 0
\(111\) 17.3854 7.20127i 1.65015 0.683514i
\(112\) 0 0
\(113\) 5.88874 + 8.81312i 0.553966 + 0.829068i 0.997749 0.0670662i \(-0.0213639\pi\)
−0.443783 + 0.896134i \(0.646364\pi\)
\(114\) 0 0
\(115\) 26.8664 7.19884i 2.50531 0.671295i
\(116\) 0 0
\(117\) −7.87140 + 1.03629i −0.727711 + 0.0958050i
\(118\) 0 0
\(119\) −5.54716 + 9.39303i −0.508507 + 0.861058i
\(120\) 0 0
\(121\) −5.64784 + 0.743553i −0.513440 + 0.0675957i
\(122\) 0 0
\(123\) 0.141885 0.0380180i 0.0127933 0.00342797i
\(124\) 0 0
\(125\) −7.10007 10.6260i −0.635049 0.950418i
\(126\) 0 0
\(127\) −7.27881 + 3.01498i −0.645890 + 0.267536i −0.681487 0.731830i \(-0.738667\pi\)
0.0355975 + 0.999366i \(0.488667\pi\)
\(128\) 0 0
\(129\) −11.8838 + 13.5509i −1.04631 + 1.19309i
\(130\) 0 0
\(131\) −12.1642 13.8707i −1.06279 1.21188i −0.976478 0.215617i \(-0.930824\pi\)
−0.0863159 0.996268i \(-0.527509\pi\)
\(132\) 0 0
\(133\) 1.78871 + 0.611031i 0.155101 + 0.0529831i
\(134\) 0 0
\(135\) 1.40515 0.811262i 0.120936 0.0698223i
\(136\) 0 0
\(137\) 0.700565 1.21341i 0.0598533 0.103669i −0.834546 0.550938i \(-0.814270\pi\)
0.894399 + 0.447269i \(0.147603\pi\)
\(138\) 0 0
\(139\) 0.153609 0.229892i 0.0130290 0.0194992i −0.824898 0.565282i \(-0.808767\pi\)
0.837927 + 0.545782i \(0.183767\pi\)
\(140\) 0 0
\(141\) −24.5600 + 4.88530i −2.06833 + 0.411416i
\(142\) 0 0
\(143\) −4.88017 4.27980i −0.408101 0.357895i
\(144\) 0 0
\(145\) −5.21747 4.00351i −0.433288 0.332473i
\(146\) 0 0
\(147\) 7.52524 15.1127i 0.620671 1.24647i
\(148\) 0 0
\(149\) −6.14659 1.64697i −0.503548 0.134925i −0.00190188 0.999998i \(-0.500605\pi\)
−0.501646 + 0.865073i \(0.667272\pi\)
\(150\) 0 0
\(151\) −5.82110 + 4.46669i −0.473714 + 0.363494i −0.817855 0.575424i \(-0.804837\pi\)
0.344141 + 0.938918i \(0.388170\pi\)
\(152\) 0 0
\(153\) 7.72650 8.67079i 0.624651 0.700992i
\(154\) 0 0
\(155\) 6.95413 16.7888i 0.558570 1.34851i
\(156\) 0 0
\(157\) −5.39247 20.1250i −0.430366 1.60615i −0.751918 0.659256i \(-0.770871\pi\)
0.321552 0.946892i \(-0.395795\pi\)
\(158\) 0 0
\(159\) 5.77392 11.7084i 0.457902 0.928533i
\(160\) 0 0
\(161\) 15.9245 12.1707i 1.25503 0.959182i
\(162\) 0 0
\(163\) −16.8990 + 5.73643i −1.32363 + 0.449312i −0.891713 0.452602i \(-0.850496\pi\)
−0.431917 + 0.901914i \(0.642162\pi\)
\(164\) 0 0
\(165\) −19.3105 6.55503i −1.50332 0.510308i
\(166\) 0 0
\(167\) −2.16897 1.44926i −0.167840 0.112147i 0.468813 0.883297i \(-0.344682\pi\)
−0.636653 + 0.771150i \(0.719682\pi\)
\(168\) 0 0
\(169\) 5.05556i 0.388889i
\(170\) 0 0
\(171\) −1.74277 1.00619i −0.133273 0.0769453i
\(172\) 0 0
\(173\) 8.72033 + 0.571560i 0.662994 + 0.0434549i 0.393186 0.919459i \(-0.371373\pi\)
0.269808 + 0.962914i \(0.413040\pi\)
\(174\) 0 0
\(175\) −18.6323 12.5017i −1.40847 0.945040i
\(176\) 0 0
\(177\) 6.62546 + 19.5180i 0.498000 + 1.46706i
\(178\) 0 0
\(179\) −5.37530 0.707672i −0.401769 0.0528939i −0.0730657 0.997327i \(-0.523278\pi\)
−0.328703 + 0.944433i \(0.606612\pi\)
\(180\) 0 0
\(181\) 5.85329 3.91104i 0.435071 0.290705i −0.318683 0.947861i \(-0.603241\pi\)
0.753755 + 0.657156i \(0.228241\pi\)
\(182\) 0 0
\(183\) 5.32047 5.32047i 0.393301 0.393301i
\(184\) 0 0
\(185\) −17.4394 22.7275i −1.28217 1.67096i
\(186\) 0 0
\(187\) 9.49487 + 0.0752526i 0.694334 + 0.00550302i
\(188\) 0 0
\(189\) 0.713541 0.926206i 0.0519025 0.0673716i
\(190\) 0 0
\(191\) −5.38266 + 20.0883i −0.389475 + 1.45354i 0.441514 + 0.897254i \(0.354441\pi\)
−0.830990 + 0.556288i \(0.812225\pi\)
\(192\) 0 0
\(193\) 1.72538 + 26.3242i 0.124195 + 1.89485i 0.375314 + 0.926898i \(0.377535\pi\)
−0.251119 + 0.967956i \(0.580799\pi\)
\(194\) 0 0
\(195\) 9.55144 + 23.0592i 0.683993 + 1.65130i
\(196\) 0 0
\(197\) −3.03736 + 15.2698i −0.216403 + 1.08793i 0.707912 + 0.706301i \(0.249637\pi\)
−0.924315 + 0.381630i \(0.875363\pi\)
\(198\) 0 0
\(199\) 8.88399 26.1714i 0.629769 1.85524i 0.124628 0.992203i \(-0.460226\pi\)
0.505141 0.863037i \(-0.331441\pi\)
\(200\) 0 0
\(201\) 0.361771 5.51955i 0.0255173 0.389319i
\(202\) 0 0
\(203\) −4.57515 1.23536i −0.321112 0.0867049i
\(204\) 0 0
\(205\) −0.111809 0.193659i −0.00780910 0.0135258i
\(206\) 0 0
\(207\) −19.1378 + 9.43772i −1.33017 + 0.655967i
\(208\) 0 0
\(209\) −0.320976 1.61366i −0.0222024 0.111619i
\(210\) 0 0
\(211\) 6.87193 + 1.36691i 0.473083 + 0.0941020i 0.425873 0.904783i \(-0.359967\pi\)
0.0472099 + 0.998885i \(0.484967\pi\)
\(212\) 0 0
\(213\) 3.89952 29.6198i 0.267191 2.02951i
\(214\) 0 0
\(215\) 24.6086 + 12.1356i 1.67830 + 0.827644i
\(216\) 0 0
\(217\) 0.0252177 13.0947i 0.00171189 0.888926i
\(218\) 0 0
\(219\) −1.34625 10.2258i −0.0909712 0.690995i
\(220\) 0 0
\(221\) −7.59299 8.79784i −0.510760 0.591807i
\(222\) 0 0
\(223\) 22.6463 + 9.38040i 1.51651 + 0.628158i 0.976888 0.213751i \(-0.0685682\pi\)
0.539619 + 0.841909i \(0.318568\pi\)
\(224\) 0 0
\(225\) 16.8915 + 16.8915i 1.12610 + 1.12610i
\(226\) 0 0
\(227\) −23.3216 + 1.52858i −1.54791 + 0.101455i −0.815238 0.579126i \(-0.803394\pi\)
−0.732672 + 0.680582i \(0.761727\pi\)
\(228\) 0 0
\(229\) 3.13646 4.08751i 0.207263 0.270110i −0.678142 0.734931i \(-0.737215\pi\)
0.885405 + 0.464821i \(0.153881\pi\)
\(230\) 0 0
\(231\) −14.6653 + 0.932855i −0.964907 + 0.0613774i
\(232\) 0 0
\(233\) 16.4571 14.4325i 1.07814 0.945504i 0.0794590 0.996838i \(-0.474681\pi\)
0.998682 + 0.0513343i \(0.0163474\pi\)
\(234\) 0 0
\(235\) 16.8607 + 34.1902i 1.09987 + 2.23032i
\(236\) 0 0
\(237\) −17.1318 −1.11283
\(238\) 0 0
\(239\) 10.0530 0.650277 0.325139 0.945666i \(-0.394589\pi\)
0.325139 + 0.945666i \(0.394589\pi\)
\(240\) 0 0
\(241\) −0.258197 0.523573i −0.0166320 0.0337263i 0.888398 0.459074i \(-0.151819\pi\)
−0.905030 + 0.425347i \(0.860152\pi\)
\(242\) 0 0
\(243\) −16.2587 + 14.2585i −1.04300 + 0.914683i
\(244\) 0 0
\(245\) −25.1879 5.11112i −1.60920 0.326537i
\(246\) 0 0
\(247\) −1.22585 + 1.59756i −0.0779990 + 0.101650i
\(248\) 0 0
\(249\) −34.2532 + 2.24507i −2.17071 + 0.142276i
\(250\) 0 0
\(251\) 5.44772 + 5.44772i 0.343857 + 0.343857i 0.857815 0.513958i \(-0.171821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(252\) 0 0
\(253\) −16.1177 6.67617i −1.01331 0.419727i
\(254\) 0 0
\(255\) −32.6166 16.4073i −2.04253 1.02747i
\(256\) 0 0
\(257\) 0.765321 + 5.81319i 0.0477394 + 0.362617i 0.998595 + 0.0529834i \(0.0168730\pi\)
−0.950856 + 0.309634i \(0.899794\pi\)
\(258\) 0 0
\(259\) −17.8576 10.3560i −1.10962 0.643492i
\(260\) 0 0
\(261\) 4.52501 + 2.23149i 0.280091 + 0.138126i
\(262\) 0 0
\(263\) −0.392045 + 2.97788i −0.0241745 + 0.183624i −0.999272 0.0381534i \(-0.987852\pi\)
0.975097 + 0.221777i \(0.0711858\pi\)
\(264\) 0 0
\(265\) −19.4919 3.87718i −1.19738 0.238173i
\(266\) 0 0
\(267\) 2.81912 + 14.1727i 0.172527 + 0.867352i
\(268\) 0 0
\(269\) −7.91352 + 3.90252i −0.482496 + 0.237941i −0.667235 0.744847i \(-0.732522\pi\)
0.184740 + 0.982787i \(0.440856\pi\)
\(270\) 0 0
\(271\) 2.04973 + 3.55024i 0.124513 + 0.215662i 0.921542 0.388278i \(-0.126930\pi\)
−0.797030 + 0.603940i \(0.793597\pi\)
\(272\) 0 0
\(273\) 12.6931 + 12.7421i 0.768223 + 0.771188i
\(274\) 0 0
\(275\) −1.27735 + 19.4885i −0.0770269 + 1.17520i
\(276\) 0 0
\(277\) −4.30274 + 12.6755i −0.258526 + 0.761594i 0.737726 + 0.675100i \(0.235900\pi\)
−0.996252 + 0.0864939i \(0.972434\pi\)
\(278\) 0 0
\(279\) −2.71978 + 13.6733i −0.162829 + 0.818598i
\(280\) 0 0
\(281\) 9.63060 + 23.2503i 0.574514 + 1.38700i 0.897676 + 0.440655i \(0.145254\pi\)
−0.323163 + 0.946343i \(0.604746\pi\)
\(282\) 0 0
\(283\) −0.128960 1.96755i −0.00766587 0.116959i 0.992311 0.123770i \(-0.0394985\pi\)
−0.999977 + 0.00681146i \(0.997832\pi\)
\(284\) 0 0
\(285\) −1.63739 + 6.11083i −0.0969907 + 0.361974i
\(286\) 0 0
\(287\) −0.127651 0.0983412i −0.00753500 0.00580490i
\(288\) 0 0
\(289\) 16.8173 + 2.48582i 0.989251 + 0.146224i
\(290\) 0 0
\(291\) −27.7094 36.1116i −1.62435 2.11690i
\(292\) 0 0
\(293\) −9.26976 + 9.26976i −0.541545 + 0.541545i −0.923982 0.382437i \(-0.875085\pi\)
0.382437 + 0.923982i \(0.375085\pi\)
\(294\) 0 0
\(295\) 26.0902 17.4329i 1.51903 1.01499i
\(296\) 0 0
\(297\) −1.00898 0.132834i −0.0585468 0.00770784i
\(298\) 0 0
\(299\) 6.86342 + 20.2190i 0.396922 + 1.16929i
\(300\) 0 0
\(301\) 19.7271 + 1.33114i 1.13705 + 0.0767257i
\(302\) 0 0
\(303\) −29.9242 1.96133i −1.71910 0.112676i
\(304\) 0 0
\(305\) −9.91999 5.72731i −0.568017 0.327945i
\(306\) 0 0
\(307\) 15.6482i 0.893089i −0.894761 0.446545i \(-0.852654\pi\)
0.894761 0.446545i \(-0.147346\pi\)
\(308\) 0 0
\(309\) −3.00515 2.00797i −0.170957 0.114230i
\(310\) 0 0
\(311\) −23.6213 8.01836i −1.33944 0.454679i −0.442477 0.896780i \(-0.645900\pi\)
−0.896966 + 0.442100i \(0.854233\pi\)
\(312\) 0 0
\(313\) 32.3702 10.9882i 1.82967 0.621090i 0.831861 0.554985i \(-0.187276\pi\)
0.997813 0.0661056i \(-0.0210574\pi\)
\(314\) 0 0
\(315\) 25.2595 + 10.5199i 1.42321 + 0.592727i
\(316\) 0 0
\(317\) −2.01295 + 4.08186i −0.113058 + 0.229260i −0.946046 0.324031i \(-0.894962\pi\)
0.832988 + 0.553291i \(0.186628\pi\)
\(318\) 0 0
\(319\) 1.06761 + 3.98437i 0.0597745 + 0.223082i
\(320\) 0 0
\(321\) 10.2423 24.7270i 0.571667 1.38013i
\(322\) 0 0
\(323\) −0.169354 2.94079i −0.00942312 0.163630i
\(324\) 0 0
\(325\) 18.9640 14.5516i 1.05193 0.807178i
\(326\) 0 0
\(327\) 23.6969 + 6.34956i 1.31044 + 0.351132i
\(328\) 0 0
\(329\) 20.6183 + 18.1522i 1.13673 + 1.00076i
\(330\) 0 0
\(331\) −9.92203 7.61344i −0.545364 0.418472i 0.298992 0.954256i \(-0.403350\pi\)
−0.844356 + 0.535783i \(0.820016\pi\)
\(332\) 0 0
\(333\) 16.5236 + 14.4908i 0.905489 + 0.794093i
\(334\) 0 0
\(335\) −8.25893 + 1.64280i −0.451234 + 0.0897560i
\(336\) 0 0
\(337\) 17.4862 26.1700i 0.952535 1.42557i 0.0481559 0.998840i \(-0.484666\pi\)
0.904379 0.426730i \(-0.140334\pi\)
\(338\) 0 0
\(339\) −12.7819 + 22.1388i −0.694215 + 1.20242i
\(340\) 0 0
\(341\) −9.87088 + 5.69896i −0.534538 + 0.308616i
\(342\) 0 0
\(343\) −18.1850 + 3.50812i −0.981896 + 0.189421i
\(344\) 0 0
\(345\) 44.2304 + 50.4351i 2.38128 + 2.71533i
\(346\) 0 0
\(347\) −4.69736 + 5.35632i −0.252168 + 0.287542i −0.864049 0.503407i \(-0.832080\pi\)
0.611882 + 0.790949i \(0.290413\pi\)
\(348\) 0 0
\(349\) 21.9119 9.07621i 1.17292 0.485838i 0.290761 0.956796i \(-0.406091\pi\)
0.882156 + 0.470957i \(0.156091\pi\)
\(350\) 0 0
\(351\) 0.691999 + 1.03565i 0.0369362 + 0.0552789i
\(352\) 0 0
\(353\) 17.3686 4.65391i 0.924439 0.247703i 0.234957 0.972006i \(-0.424505\pi\)
0.689482 + 0.724303i \(0.257838\pi\)
\(354\) 0 0
\(355\) −45.0918 + 5.93644i −2.39322 + 0.315074i
\(356\) 0 0
\(357\) −26.2351 1.97927i −1.38851 0.104754i
\(358\) 0 0
\(359\) −29.9869 + 3.94785i −1.58265 + 0.208360i −0.869961 0.493121i \(-0.835856\pi\)
−0.712689 + 0.701481i \(0.752523\pi\)
\(360\) 0 0
\(361\) 17.8596 4.78546i 0.939978 0.251866i
\(362\) 0 0
\(363\) −7.63298 11.4236i −0.400627 0.599581i
\(364\) 0 0
\(365\) −14.5064 + 6.00874i −0.759298 + 0.314512i
\(366\) 0 0
\(367\) 19.7614 22.5335i 1.03153 1.17624i 0.0473892 0.998877i \(-0.484910\pi\)
0.984145 0.177363i \(-0.0567568\pi\)
\(368\) 0 0
\(369\) 0.113114 + 0.128982i 0.00588848 + 0.00671453i
\(370\) 0 0
\(371\) −14.0512 + 2.76683i −0.729501 + 0.143647i
\(372\) 0 0
\(373\) 19.3065 11.1466i 0.999651 0.577149i 0.0915058 0.995805i \(-0.470832\pi\)
0.908145 + 0.418656i \(0.137499\pi\)
\(374\) 0 0
\(375\) 15.4111 26.6929i 0.795827 1.37841i
\(376\) 0 0
\(377\) 2.80484 4.19774i 0.144457 0.216195i
\(378\) 0 0
\(379\) −11.8997 + 2.36700i −0.611248 + 0.121585i −0.491001 0.871159i \(-0.663369\pi\)
−0.120247 + 0.992744i \(0.538369\pi\)
\(380\) 0 0
\(381\) −14.2860 12.5285i −0.731895 0.641855i
\(382\) 0 0
\(383\) 1.15285 + 0.884613i 0.0589079 + 0.0452016i 0.637796 0.770206i \(-0.279846\pi\)
−0.578888 + 0.815407i \(0.696513\pi\)
\(384\) 0 0
\(385\) 7.15008 + 21.1975i 0.364402 + 1.08032i
\(386\) 0 0
\(387\) −20.3327 5.44814i −1.03357 0.276945i
\(388\) 0 0
\(389\) −29.3380 + 22.5119i −1.48750 + 1.14140i −0.531866 + 0.846828i \(0.678509\pi\)
−0.955631 + 0.294568i \(0.904824\pi\)
\(390\) 0 0
\(391\) −26.9252 15.8311i −1.36167 0.800615i
\(392\) 0 0
\(393\) 17.0275 41.1081i 0.858926 2.07363i
\(394\) 0 0
\(395\) 6.75018 + 25.1920i 0.339638 + 1.26755i
\(396\) 0 0
\(397\) −3.41712 + 6.92923i −0.171500 + 0.347768i −0.965605 0.260012i \(-0.916273\pi\)
0.794105 + 0.607781i \(0.207940\pi\)
\(398\) 0 0
\(399\) 0.586335 + 4.52092i 0.0293535 + 0.226329i
\(400\) 0 0
\(401\) −27.1512 + 9.21658i −1.35586 + 0.460254i −0.902353 0.430997i \(-0.858162\pi\)
−0.453511 + 0.891251i \(0.649829\pi\)
\(402\) 0 0
\(403\) 13.2098 + 4.48413i 0.658028 + 0.223370i
\(404\) 0 0
\(405\) 29.0511 + 19.4113i 1.44356 + 0.964556i
\(406\) 0 0
\(407\) 17.9683i 0.890655i
\(408\) 0 0
\(409\) 6.22083 + 3.59160i 0.307600 + 0.177593i 0.645852 0.763462i \(-0.276502\pi\)
−0.338252 + 0.941056i \(0.609836\pi\)
\(410\) 0 0
\(411\) 3.37201 + 0.221013i 0.166329 + 0.0109018i
\(412\) 0 0
\(413\) 12.5983 18.7763i 0.619923 0.923923i
\(414\) 0 0
\(415\) 16.7976 + 49.4840i 0.824560 + 2.42907i
\(416\) 0 0
\(417\) 0.661131 + 0.0870395i 0.0323757 + 0.00426234i
\(418\) 0 0
\(419\) 21.7169 14.5108i 1.06094 0.708898i 0.102658 0.994717i \(-0.467265\pi\)
0.958284 + 0.285818i \(0.0922654\pi\)
\(420\) 0 0
\(421\) 1.79698 1.79698i 0.0875794 0.0875794i −0.661960 0.749539i \(-0.730275\pi\)
0.749539 + 0.661960i \(0.230275\pi\)
\(422\) 0 0
\(423\) −17.8038 23.2024i −0.865651 1.12814i
\(424\) 0 0
\(425\) −7.09328 + 34.2398i −0.344075 + 1.66088i
\(426\) 0 0
\(427\) −8.18146 1.09314i −0.395929 0.0529009i
\(428\) 0 0
\(429\) 4.05179 15.1215i 0.195622 0.730072i
\(430\) 0 0
\(431\) −2.14118 32.6681i −0.103137 1.57357i −0.665323 0.746555i \(-0.731706\pi\)
0.562187 0.827010i \(-0.309960\pi\)
\(432\) 0 0
\(433\) −3.82740 9.24017i −0.183933 0.444054i 0.804837 0.593495i \(-0.202253\pi\)
−0.988771 + 0.149441i \(0.952253\pi\)
\(434\) 0 0
\(435\) 3.09436 15.5564i 0.148363 0.745871i
\(436\) 0 0
\(437\) −1.73967 + 5.12491i −0.0832199 + 0.245158i
\(438\) 0 0
\(439\) −1.04997 + 16.0195i −0.0501126 + 0.764570i 0.896671 + 0.442698i \(0.145979\pi\)
−0.946783 + 0.321872i \(0.895688\pi\)
\(440\) 0 0
\(441\) 19.7173 + 0.0759432i 0.938917 + 0.00361634i
\(442\) 0 0
\(443\) −13.3181 23.0677i −0.632764 1.09598i −0.986984 0.160817i \(-0.948587\pi\)
0.354220 0.935162i \(-0.384746\pi\)
\(444\) 0 0
\(445\) 19.7298 9.72967i 0.935284 0.461231i
\(446\) 0 0
\(447\) −2.99410 15.0524i −0.141616 0.711953i
\(448\) 0 0
\(449\) 31.7904 + 6.32351i 1.50028 + 0.298425i 0.875823 0.482632i \(-0.160319\pi\)
0.624460 + 0.781057i \(0.285319\pi\)
\(450\) 0 0
\(451\) −0.0183074 + 0.139059i −0.000862064 + 0.00654802i
\(452\) 0 0
\(453\) −15.8712 7.82682i −0.745695 0.367736i
\(454\) 0 0
\(455\) 13.7358 23.6856i 0.643942 1.11040i
\(456\) 0 0
\(457\) −2.00306 15.2147i −0.0936992 0.711716i −0.972230 0.234029i \(-0.924809\pi\)
0.878530 0.477686i \(-0.158525\pi\)
\(458\) 0 0
\(459\) −1.75617 0.485514i −0.0819709 0.0226618i
\(460\) 0 0
\(461\) 1.44901 + 0.600201i 0.0674873 + 0.0279542i 0.416172 0.909286i \(-0.363372\pi\)
−0.348684 + 0.937240i \(0.613372\pi\)
\(462\) 0 0
\(463\) 25.2907 + 25.2907i 1.17536 + 1.17536i 0.980913 + 0.194445i \(0.0622907\pi\)
0.194445 + 0.980913i \(0.437709\pi\)
\(464\) 0 0
\(465\) 43.7334 2.86644i 2.02809 0.132928i
\(466\) 0 0
\(467\) 17.8060 23.2052i 0.823964 1.07381i −0.172092 0.985081i \(-0.555053\pi\)
0.996056 0.0887295i \(-0.0282807\pi\)
\(468\) 0 0
\(469\) −5.05181 + 3.36146i −0.233271 + 0.155218i
\(470\) 0 0
\(471\) 37.7796 33.1319i 1.74079 1.52664i
\(472\) 0 0
\(473\) −7.61175 15.4351i −0.349989 0.709707i
\(474\) 0 0
\(475\) 6.05886 0.277999
\(476\) 0 0
\(477\) 15.2467 0.698098
\(478\) 0 0
\(479\) 6.85778 + 13.9062i 0.313340 + 0.635391i 0.995390 0.0959153i \(-0.0305778\pi\)
−0.682049 + 0.731306i \(0.738911\pi\)
\(480\) 0 0
\(481\) 16.5343 14.5002i 0.753899 0.661151i
\(482\) 0 0
\(483\) 43.3129 + 21.4634i 1.97081 + 0.976616i
\(484\) 0 0
\(485\) −42.1835 + 54.9746i −1.91545 + 2.49627i
\(486\) 0 0
\(487\) 15.1242 0.991289i 0.685341 0.0449196i 0.281245 0.959636i \(-0.409253\pi\)
0.404096 + 0.914717i \(0.367586\pi\)
\(488\) 0 0
\(489\) −30.4346 30.4346i −1.37630 1.37630i
\(490\) 0 0
\(491\) 25.3990 + 10.5206i 1.14624 + 0.474789i 0.873272 0.487233i \(-0.161994\pi\)
0.272970 + 0.962022i \(0.411994\pi\)
\(492\) 0 0
\(493\) 0.905901 + 7.32942i 0.0407997 + 0.330100i
\(494\) 0 0
\(495\) −3.10873 23.6132i −0.139727 1.06133i
\(496\) 0 0
\(497\) −28.4141 + 16.3320i −1.27455 + 0.732591i
\(498\) 0 0
\(499\) 12.9955 + 6.40866i 0.581757 + 0.286891i 0.709260 0.704947i \(-0.249029\pi\)
−0.127502 + 0.991838i \(0.540696\pi\)
\(500\) 0 0
\(501\) 0.821194 6.23759i 0.0366883 0.278675i
\(502\) 0 0
\(503\) 21.3666 + 4.25008i 0.952688 + 0.189501i 0.646880 0.762592i \(-0.276073\pi\)
0.305808 + 0.952093i \(0.401073\pi\)
\(504\) 0 0
\(505\) 8.90644 + 44.7757i 0.396331 + 1.99249i
\(506\) 0 0
\(507\) 10.9356 5.39282i 0.485665 0.239504i
\(508\) 0 0
\(509\) −15.8527 27.4576i −0.702657 1.21704i −0.967530 0.252755i \(-0.918663\pi\)
0.264873 0.964283i \(-0.414670\pi\)
\(510\) 0 0
\(511\) −8.01597 + 7.98515i −0.354606 + 0.353242i
\(512\) 0 0
\(513\) −0.0206487 + 0.315038i −0.000911661 + 0.0139093i
\(514\) 0 0
\(515\) −1.76862 + 5.21018i −0.0779346 + 0.229588i
\(516\) 0 0
\(517\) 4.66475 23.4513i 0.205155 1.03139i
\(518\) 0 0
\(519\) 8.06574 + 19.4724i 0.354047 + 0.854744i
\(520\) 0 0
\(521\) 0.0305083 + 0.465467i 0.00133659 + 0.0203925i 0.998475 0.0552035i \(-0.0175807\pi\)
−0.997139 + 0.0755960i \(0.975914\pi\)
\(522\) 0 0
\(523\) 1.36510 5.09461i 0.0596915 0.222772i −0.929636 0.368478i \(-0.879879\pi\)
0.989328 + 0.145707i \(0.0465455\pi\)
\(524\) 0 0
\(525\) 7.16681 53.6389i 0.312785 2.34099i
\(526\) 0 0
\(527\) −18.9146 + 7.65962i −0.823932 + 0.333658i
\(528\) 0 0
\(529\) 20.9340 + 27.2817i 0.910173 + 1.18616i
\(530\) 0 0
\(531\) −17.0221 + 17.0221i −0.738694 + 0.738694i
\(532\) 0 0
\(533\) 0.142735 0.0953723i 0.00618253 0.00413103i
\(534\) 0 0
\(535\) −40.3962 5.31825i −1.74648 0.229928i
\(536\) 0 0
\(537\) −4.20315 12.3821i −0.181379 0.534326i
\(538\) 0 0
\(539\) 10.5822 + 12.1608i 0.455806 + 0.523803i
\(540\) 0 0
\(541\) 10.9965 + 0.720747i 0.472775 + 0.0309873i 0.299929 0.953961i \(-0.403037\pi\)
0.172846 + 0.984949i \(0.444704\pi\)
\(542\) 0 0
\(543\) 14.7036 + 8.48915i 0.630994 + 0.364304i
\(544\) 0 0
\(545\) 37.3476i 1.59980i
\(546\) 0 0
\(547\) 17.2118 + 11.5005i 0.735922 + 0.491727i 0.866167 0.499754i \(-0.166576\pi\)
−0.130245 + 0.991482i \(0.541576\pi\)
\(548\) 0 0
\(549\) 8.32135 + 2.82472i 0.355147 + 0.120556i
\(550\) 0 0
\(551\) 1.21175 0.411335i 0.0516224 0.0175234i
\(552\) 0 0
\(553\) 11.4121 + 14.9320i 0.485293 + 0.634974i
\(554\) 0 0
\(555\) 30.5585 61.9665i 1.29713 2.63033i
\(556\) 0 0
\(557\) 0.879762 + 3.28332i 0.0372767 + 0.139119i 0.982056 0.188588i \(-0.0603910\pi\)
−0.944780 + 0.327706i \(0.893724\pi\)
\(558\) 0 0
\(559\) −8.06068 + 19.4602i −0.340931 + 0.823079i
\(560\) 0 0
\(561\) 9.96550 + 20.6184i 0.420744 + 0.870509i
\(562\) 0 0
\(563\) −2.41821 + 1.85556i −0.101915 + 0.0782024i −0.658462 0.752614i \(-0.728793\pi\)
0.556547 + 0.830816i \(0.312126\pi\)
\(564\) 0 0
\(565\) 37.5909 + 10.0725i 1.58146 + 0.423752i
\(566\) 0 0
\(567\) 24.6840 + 4.95939i 1.03663 + 0.208275i
\(568\) 0 0
\(569\) −32.9796 25.3061i −1.38258 1.06089i −0.989985 0.141175i \(-0.954912\pi\)
−0.392592 0.919713i \(-0.628421\pi\)
\(570\) 0 0
\(571\) −6.23157 5.46494i −0.260783 0.228701i 0.518963 0.854797i \(-0.326318\pi\)
−0.779746 + 0.626096i \(0.784652\pi\)
\(572\) 0 0
\(573\) −49.1944 + 9.78537i −2.05512 + 0.408790i
\(574\) 0 0
\(575\) 35.6928 53.4181i 1.48849 2.22769i
\(576\) 0 0
\(577\) 7.57427 13.1190i 0.315321 0.546152i −0.664185 0.747569i \(-0.731221\pi\)
0.979506 + 0.201416i \(0.0645545\pi\)
\(578\) 0 0
\(579\) −55.1007 + 31.8124i −2.28991 + 1.32208i
\(580\) 0 0
\(581\) 24.7741 + 28.3594i 1.02780 + 1.17655i
\(582\) 0 0
\(583\) 8.21894 + 9.37190i 0.340394 + 0.388145i
\(584\) 0 0
\(585\) −19.2200 + 21.9162i −0.794648 + 0.906123i
\(586\) 0 0
\(587\) −12.7221 + 5.26966i −0.525097 + 0.217502i −0.629454 0.777038i \(-0.716721\pi\)
0.104357 + 0.994540i \(0.466721\pi\)
\(588\) 0 0
\(589\) 1.96447 + 2.94003i 0.0809445 + 0.121142i
\(590\) 0 0
\(591\) −36.2698 + 9.71847i −1.49194 + 0.399764i
\(592\) 0 0
\(593\) 12.2388 1.61127i 0.502587 0.0661668i 0.125029 0.992153i \(-0.460097\pi\)
0.377557 + 0.925986i \(0.376764\pi\)
\(594\) 0 0
\(595\) 7.42650 + 39.3580i 0.304457 + 1.61352i
\(596\) 0 0
\(597\) 66.0874 8.70056i 2.70478 0.356090i
\(598\) 0 0
\(599\) −29.1444 + 7.80921i −1.19081 + 0.319076i −0.799205 0.601059i \(-0.794746\pi\)
−0.391602 + 0.920135i \(0.628079\pi\)
\(600\) 0 0
\(601\) −12.6028 18.8614i −0.514078 0.769372i 0.480089 0.877220i \(-0.340604\pi\)
−0.994167 + 0.107847i \(0.965604\pi\)
\(602\) 0 0
\(603\) 5.96844 2.47221i 0.243054 0.100676i
\(604\) 0 0
\(605\) −13.7906 + 15.7252i −0.560668 + 0.639319i
\(606\) 0 0
\(607\) 21.6670 + 24.7065i 0.879438 + 1.00281i 0.999949 + 0.0100951i \(0.00321343\pi\)
−0.120511 + 0.992712i \(0.538453\pi\)
\(608\) 0 0
\(609\) −2.20819 11.2142i −0.0894805 0.454421i
\(610\) 0 0
\(611\) −25.3441 + 14.6324i −1.02531 + 0.591964i
\(612\) 0 0
\(613\) −15.6837 + 27.1649i −0.633457 + 1.09718i 0.353382 + 0.935479i \(0.385031\pi\)
−0.986840 + 0.161701i \(0.948302\pi\)
\(614\) 0 0
\(615\) 0.299632 0.448431i 0.0120823 0.0180825i
\(616\) 0 0
\(617\) 5.21544 1.03741i 0.209966 0.0417647i −0.0889867 0.996033i \(-0.528363\pi\)
0.298952 + 0.954268i \(0.403363\pi\)
\(618\) 0 0
\(619\) −10.7629 9.43881i −0.432598 0.379378i 0.415172 0.909743i \(-0.363721\pi\)
−0.847769 + 0.530365i \(0.822055\pi\)
\(620\) 0 0
\(621\) 2.65590 + 2.03794i 0.106578 + 0.0817798i
\(622\) 0 0
\(623\) 10.4749 11.8980i 0.419668 0.476685i
\(624\) 0 0
\(625\) −4.36485 1.16956i −0.174594 0.0467824i
\(626\) 0 0
\(627\) 3.14807 2.41560i 0.125722 0.0964698i
\(628\) 0 0
\(629\) −4.45169 + 31.8606i −0.177501 + 1.27037i
\(630\) 0 0
\(631\) 6.51666 15.7326i 0.259424 0.626305i −0.739477 0.673182i \(-0.764927\pi\)
0.998901 + 0.0468773i \(0.0149270\pi\)
\(632\) 0 0
\(633\) 4.37363 + 16.3226i 0.173836 + 0.648765i
\(634\) 0 0
\(635\) −12.7940 + 25.9437i −0.507715 + 1.02954i
\(636\) 0 0
\(637\) 2.65062 19.5513i 0.105021 0.774649i
\(638\) 0 0
\(639\) 33.0401 11.2156i 1.30705 0.443683i
\(640\) 0 0
\(641\) −13.6409 4.63047i −0.538784 0.182893i 0.0387651 0.999248i \(-0.487658\pi\)
−0.577549 + 0.816356i \(0.695991\pi\)
\(642\) 0 0
\(643\) 10.4968 + 7.01373i 0.413953 + 0.276595i 0.745058 0.666999i \(-0.232422\pi\)
−0.331105 + 0.943594i \(0.607422\pi\)
\(644\) 0 0
\(645\) 66.1756i 2.60566i
\(646\) 0 0
\(647\) 24.9088 + 14.3811i 0.979266 + 0.565379i 0.902048 0.431635i \(-0.142063\pi\)
0.0772175 + 0.997014i \(0.475396\pi\)
\(648\) 0 0
\(649\) −19.6392 1.28722i −0.770904 0.0505277i
\(650\) 0 0
\(651\) 28.3517 13.9137i 1.11119 0.545321i
\(652\) 0 0
\(653\) 5.15957 + 15.1996i 0.201910 + 0.594807i 0.999970 0.00777114i \(-0.00247365\pi\)
−0.798060 + 0.602578i \(0.794140\pi\)
\(654\) 0 0
\(655\) −67.1578 8.84149i −2.62407 0.345466i
\(656\) 0 0
\(657\) 10.0158 6.69234i 0.390753 0.261093i
\(658\) 0 0
\(659\) −24.7581 + 24.7581i −0.964437 + 0.964437i −0.999389 0.0349516i \(-0.988872\pi\)
0.0349516 + 0.999389i \(0.488872\pi\)
\(660\) 0 0
\(661\) −2.24056 2.91996i −0.0871478 0.113573i 0.747744 0.663987i \(-0.231137\pi\)
−0.834892 + 0.550413i \(0.814470\pi\)
\(662\) 0 0
\(663\) 10.9309 25.8090i 0.424520 1.00234i
\(664\) 0 0
\(665\) 6.41690 2.64350i 0.248837 0.102510i
\(666\) 0 0
\(667\) 3.51191 13.1066i 0.135982 0.507491i
\(668\) 0 0
\(669\) 3.86653 + 58.9918i 0.149489 + 2.28076i
\(670\) 0 0
\(671\) 2.74943 + 6.63770i 0.106140 + 0.256246i
\(672\) 0 0
\(673\) 3.20669 16.1211i 0.123609 0.621423i −0.868463 0.495753i \(-0.834892\pi\)
0.992072 0.125670i \(-0.0401079\pi\)
\(674\) 0 0
\(675\) 1.20466 3.54883i 0.0463676 0.136594i
\(676\) 0 0
\(677\) 1.67787 25.5994i 0.0644860 0.983866i −0.835930 0.548836i \(-0.815071\pi\)
0.900416 0.435030i \(-0.143262\pi\)
\(678\) 0 0
\(679\) −13.0165 + 48.2066i −0.499527 + 1.85000i
\(680\) 0 0
\(681\) −28.1839 48.8159i −1.08001 1.87063i
\(682\) 0 0
\(683\) 5.53174 2.72795i 0.211666 0.104382i −0.333366 0.942798i \(-0.608184\pi\)
0.545032 + 0.838416i \(0.316518\pi\)
\(684\) 0 0
\(685\) −1.00362 5.04556i −0.0383465 0.192781i
\(686\) 0 0
\(687\) 12.1873 + 2.42420i 0.464974 + 0.0924892i
\(688\) 0 0
\(689\) 1.99138 15.1260i 0.0758655 0.576255i
\(690\) 0 0
\(691\) −37.4507 18.4687i −1.42469 0.702581i −0.443619 0.896215i \(-0.646306\pi\)
−0.981074 + 0.193635i \(0.937972\pi\)
\(692\) 0 0
\(693\) −8.55257 14.8796i −0.324885 0.565229i
\(694\) 0 0
\(695\) −0.132505 1.00647i −0.00502620 0.0381777i
\(696\) 0 0
\(697\) −0.0669142 + 0.242038i −0.00253456 + 0.00916783i
\(698\) 0 0
\(699\) 48.7735 + 20.2027i 1.84478 + 0.764135i
\(700\) 0 0
\(701\) −23.3027 23.3027i −0.880132 0.880132i 0.113416 0.993548i \(-0.463821\pi\)
−0.993548 + 0.113416i \(0.963821\pi\)
\(702\) 0 0
\(703\) 5.56233 0.364574i 0.209787 0.0137502i
\(704\) 0 0
\(705\) −55.9704 + 72.9421i −2.10797 + 2.74716i
\(706\) 0 0
\(707\) 18.2241 + 27.3883i 0.685387 + 1.03004i
\(708\) 0 0
\(709\) −29.3207 + 25.7136i −1.10116 + 0.965693i −0.999576 0.0291337i \(-0.990725\pi\)
−0.101586 + 0.994827i \(0.532392\pi\)
\(710\) 0 0
\(711\) −8.84953 17.9451i −0.331883 0.672993i
\(712\) 0 0
\(713\) 37.4936 1.40415
\(714\) 0 0
\(715\) −23.8323 −0.891278
\(716\) 0 0
\(717\) 10.7237 + 21.7455i 0.400484 + 0.812100i
\(718\) 0 0
\(719\) 22.7923 19.9883i 0.850009 0.745438i −0.118887 0.992908i \(-0.537933\pi\)
0.968896 + 0.247470i \(0.0795992\pi\)
\(720\) 0 0
\(721\) 0.251694 + 3.95686i 0.00937359 + 0.147361i
\(722\) 0 0
\(723\) 0.857105 1.11700i 0.0318761 0.0415417i
\(724\) 0 0
\(725\) −15.1579 + 0.993500i −0.562949 + 0.0368977i
\(726\) 0 0
\(727\) −5.84869 5.84869i −0.216916 0.216916i 0.590282 0.807197i \(-0.299017\pi\)
−0.807197 + 0.590282i \(0.799017\pi\)
\(728\) 0 0
\(729\) −21.8103 9.03413i −0.807789 0.334597i
\(730\) 0 0
\(731\) −9.67276 29.2547i −0.357760 1.08203i
\(732\) 0 0
\(733\) −2.88268 21.8962i −0.106474 0.808753i −0.958468 0.285201i \(-0.907940\pi\)
0.851994 0.523552i \(-0.175394\pi\)
\(734\) 0 0
\(735\) −15.8125 59.9355i −0.583253 2.21075i
\(736\) 0 0
\(737\) 4.73699 + 2.33603i 0.174489 + 0.0860486i
\(738\) 0 0
\(739\) −2.10461 + 15.9861i −0.0774195 + 0.588059i 0.908132 + 0.418684i \(0.137508\pi\)
−0.985552 + 0.169376i \(0.945825\pi\)
\(740\) 0 0
\(741\) −4.76327 0.947474i −0.174983 0.0348063i
\(742\) 0 0
\(743\) 2.89689 + 14.5636i 0.106277 + 0.534288i 0.996840 + 0.0794301i \(0.0253101\pi\)
−0.890564 + 0.454858i \(0.849690\pi\)
\(744\) 0 0
\(745\) −20.9545 + 10.3336i −0.767714 + 0.378594i
\(746\) 0 0
\(747\) −20.0453 34.7194i −0.733418 1.27032i
\(748\) 0 0
\(749\) −28.3747 + 7.54444i −1.03679 + 0.275668i
\(750\) 0 0
\(751\) −1.08634 + 16.5744i −0.0396413 + 0.604809i 0.931113 + 0.364732i \(0.118839\pi\)
−0.970754 + 0.240077i \(0.922827\pi\)
\(752\) 0 0
\(753\) −5.97269 + 17.5950i −0.217657 + 0.641197i
\(754\) 0 0
\(755\) −5.25570 + 26.4222i −0.191274 + 0.961601i
\(756\) 0 0
\(757\) −0.893771 2.15775i −0.0324846 0.0784249i 0.906805 0.421551i \(-0.138514\pi\)
−0.939289 + 0.343126i \(0.888514\pi\)
\(758\) 0 0
\(759\) −2.75187 41.9854i −0.0998865 1.52397i
\(760\) 0 0
\(761\) −13.1671 + 49.1402i −0.477307 + 1.78133i 0.135146 + 0.990826i \(0.456850\pi\)
−0.612453 + 0.790507i \(0.709817\pi\)
\(762\) 0 0
\(763\) −10.2511 24.8838i −0.371115 0.900853i
\(764\) 0 0
\(765\) 0.337949 42.6401i 0.0122186 1.54166i
\(766\) 0 0
\(767\) 14.6641 + 19.1106i 0.529489 + 0.690043i
\(768\) 0 0
\(769\) −15.2609 + 15.2609i −0.550323 + 0.550323i −0.926534 0.376211i \(-0.877227\pi\)
0.376211 + 0.926534i \(0.377227\pi\)
\(770\) 0 0
\(771\) −11.7580 + 7.85644i −0.423454 + 0.282943i
\(772\) 0 0
\(773\) −37.8948 4.98895i −1.36298 0.179440i −0.586689 0.809812i \(-0.699569\pi\)
−0.776293 + 0.630372i \(0.782902\pi\)
\(774\) 0 0
\(775\) −13.4921 39.7463i −0.484649 1.42773i
\(776\) 0 0
\(777\) 3.35191 49.6743i 0.120249 1.78206i
\(778\) 0 0
\(779\) 0.0434190 + 0.00284583i 0.00155565 + 0.000101962i
\(780\) 0 0
\(781\) 24.7048 + 14.2633i 0.884007 + 0.510382i
\(782\) 0 0
\(783\) 0.791539i 0.0282873i
\(784\) 0 0
\(785\) −63.6054 42.4998i −2.27018 1.51688i
\(786\) 0 0
\(787\) −0.421478 0.143073i −0.0150241 0.00509999i 0.313917 0.949450i \(-0.398359\pi\)
−0.328941 + 0.944350i \(0.606692\pi\)
\(788\) 0 0
\(789\) −6.85957 + 2.32851i −0.244207 + 0.0828972i
\(790\) 0 0
\(791\) 27.8106 3.60686i 0.988830 0.128245i
\(792\) 0 0
\(793\) 3.88921 7.88655i 0.138110 0.280059i
\(794\) 0 0
\(795\) −12.4056 46.2983i −0.439981 1.64203i
\(796\) 0 0
\(797\) 18.9454 45.7383i 0.671081 1.62013i −0.108696 0.994075i \(-0.534668\pi\)
0.779777 0.626057i \(-0.215332\pi\)
\(798\) 0 0
\(799\) 14.0815 40.4271i 0.498166 1.43021i
\(800\) 0 0
\(801\) −13.3892 + 10.2739i −0.473084 + 0.363010i
\(802\) 0 0
\(803\) 9.51282 + 2.54895i 0.335700 + 0.0899505i
\(804\) 0 0
\(805\) 14.4955 72.1476i 0.510901 2.54287i
\(806\) 0 0
\(807\) −16.8829 12.9547i −0.594305 0.456027i
\(808\) 0 0
\(809\) 20.5371 + 18.0105i 0.722046 + 0.633217i 0.939379 0.342880i \(-0.111403\pi\)
−0.217333 + 0.976097i \(0.569736\pi\)
\(810\) 0 0
\(811\) 2.32146 0.461767i 0.0815174 0.0162148i −0.154163 0.988045i \(-0.549268\pi\)
0.235681 + 0.971831i \(0.424268\pi\)
\(812\) 0 0
\(813\) −5.49297 + 8.22082i −0.192647 + 0.288317i
\(814\) 0 0
\(815\) −32.7619 + 56.7452i −1.14760 + 1.98770i
\(816\) 0 0
\(817\) −4.62370 + 2.66950i −0.161763 + 0.0933939i
\(818\) 0 0
\(819\) −6.79028 + 19.8777i −0.237272 + 0.694582i
\(820\) 0 0
\(821\) 8.22923 + 9.38364i 0.287202 + 0.327491i 0.877393 0.479773i \(-0.159281\pi\)
−0.590191 + 0.807264i \(0.700948\pi\)
\(822\) 0 0
\(823\) 0.743288 0.847557i 0.0259094 0.0295440i −0.738740 0.673991i \(-0.764579\pi\)
0.764649 + 0.644447i \(0.222912\pi\)
\(824\) 0 0
\(825\) −43.5177 + 18.0256i −1.51509 + 0.627572i
\(826\) 0 0
\(827\) −10.8571 16.2488i −0.377538 0.565025i 0.593234 0.805030i \(-0.297851\pi\)
−0.970772 + 0.240005i \(0.922851\pi\)
\(828\) 0 0
\(829\) 35.7717 9.58500i 1.24240 0.332901i 0.423006 0.906127i \(-0.360975\pi\)
0.819397 + 0.573226i \(0.194308\pi\)
\(830\) 0 0
\(831\) −32.0077 + 4.21390i −1.11034 + 0.146179i
\(832\) 0 0
\(833\) 15.7510 + 24.1848i 0.545740 + 0.837955i
\(834\) 0 0
\(835\) −9.49581 + 1.25015i −0.328616 + 0.0432631i
\(836\) 0 0
\(837\) 2.11264 0.566081i 0.0730236 0.0195666i
\(838\) 0 0
\(839\) 12.9021 + 19.3094i 0.445432 + 0.666636i 0.984451 0.175658i \(-0.0562052\pi\)
−0.539020 + 0.842293i \(0.681205\pi\)
\(840\) 0 0
\(841\) 23.8284 9.87006i 0.821670 0.340347i
\(842\) 0 0
\(843\) −40.0192 + 45.6331i −1.37833 + 1.57169i
\(844\) 0 0
\(845\) −12.2388 13.9557i −0.421027 0.480090i
\(846\) 0 0
\(847\) −4.87212 + 14.2625i −0.167408 + 0.490066i
\(848\) 0 0
\(849\) 4.11839 2.37775i 0.141343 0.0816043i
\(850\) 0 0
\(851\) 29.5535 51.1881i 1.01308 1.75471i
\(852\) 0 0
\(853\) −0.769738 + 1.15199i −0.0263553 + 0.0394435i −0.844413 0.535692i \(-0.820051\pi\)
0.818058 + 0.575136i \(0.195051\pi\)
\(854\) 0 0
\(855\) −7.24671 + 1.44146i −0.247832 + 0.0492969i
\(856\) 0 0
\(857\) 38.0628 + 33.3801i 1.30020 + 1.14024i 0.981306 + 0.192453i \(0.0616443\pi\)
0.318893 + 0.947791i \(0.396689\pi\)
\(858\) 0 0
\(859\) 8.11484 + 6.22673i 0.276875 + 0.212453i 0.737859 0.674955i \(-0.235837\pi\)
−0.460984 + 0.887408i \(0.652504\pi\)
\(860\) 0 0
\(861\) 0.0765528 0.381021i 0.00260891 0.0129851i
\(862\) 0 0
\(863\) 5.09774 + 1.36594i 0.173529 + 0.0464970i 0.344537 0.938773i \(-0.388036\pi\)
−0.171008 + 0.985270i \(0.554702\pi\)
\(864\) 0 0
\(865\) 25.4558 19.5329i 0.865523 0.664139i
\(866\) 0 0
\(867\) 12.5622 + 39.0287i 0.426634 + 1.32548i
\(868\) 0 0
\(869\) 6.26009 15.1132i 0.212359 0.512680i
\(870\) 0 0
\(871\) −1.67310 6.24409i −0.0566908 0.211573i
\(872\) 0 0
\(873\) 23.5124 47.6784i 0.795773 1.61367i
\(874\) 0 0
\(875\) −33.5313 + 4.34880i −1.13356 + 0.147016i
\(876\) 0 0
\(877\) −20.3787 + 6.91762i −0.688139 + 0.233592i −0.643539 0.765413i \(-0.722535\pi\)
−0.0445996 + 0.999005i \(0.514201\pi\)
\(878\) 0 0
\(879\) −29.9393 10.1630i −1.00983 0.342791i
\(880\) 0 0
\(881\) 19.2029 + 12.8310i 0.646963 + 0.432287i 0.835283 0.549821i \(-0.185304\pi\)
−0.188320 + 0.982108i \(0.560304\pi\)
\(882\) 0 0
\(883\) 10.1303i 0.340911i −0.985365 0.170455i \(-0.945476\pi\)
0.985365 0.170455i \(-0.0545239\pi\)
\(884\) 0 0
\(885\) 65.5395 + 37.8393i 2.20309 + 1.27195i
\(886\) 0 0
\(887\) 50.2716 + 3.29497i 1.68795 + 0.110634i 0.878871 0.477059i \(-0.158297\pi\)
0.809084 + 0.587694i \(0.199964\pi\)
\(888\) 0 0
\(889\) −1.40336 + 20.7973i −0.0470671 + 0.697520i
\(890\) 0 0
\(891\) −7.04429 20.7518i −0.235992 0.695211i
\(892\) 0 0
\(893\) −7.35430 0.968212i −0.246102 0.0324000i
\(894\) 0 0
\(895\) −16.5515 + 11.0594i −0.553255 + 0.369673i
\(896\) 0 0
\(897\) −36.4139 + 36.4139i −1.21583 + 1.21583i
\(898\) 0 0
\(899\) −5.39674 7.03317i −0.179991 0.234569i
\(900\) 0 0
\(901\) 12.2516 + 18.6541i 0.408159 + 0.621460i
\(902\) 0 0
\(903\) 18.1638 + 44.0911i 0.604452 + 1.46726i
\(904\) 0 0
\(905\) 6.68969 24.9663i 0.222373 0.829906i
\(906\) 0 0
\(907\) 0.886502 + 13.5254i 0.0294358 + 0.449104i 0.986983 + 0.160826i \(0.0514159\pi\)
−0.957547 + 0.288278i \(0.906917\pi\)
\(908\) 0 0
\(909\) −13.4030 32.3578i −0.444551 1.07324i
\(910\) 0 0
\(911\) −0.450078 + 2.26269i −0.0149117 + 0.0749664i −0.987525 0.157465i \(-0.949668\pi\)
0.972613 + 0.232431i \(0.0746680\pi\)
\(912\) 0 0
\(913\) 10.5358 31.0375i 0.348684 1.02719i
\(914\) 0 0
\(915\) 1.80684 27.5671i 0.0597323 0.911340i
\(916\) 0 0
\(917\) −47.1724 + 12.5425i −1.55777 + 0.414189i
\(918\) 0 0
\(919\) −8.73139 15.1232i −0.288022 0.498868i 0.685316 0.728246i \(-0.259664\pi\)
−0.973337 + 0.229378i \(0.926331\pi\)
\(920\) 0 0
\(921\) 33.8482 16.6921i 1.11534 0.550023i
\(922\) 0 0
\(923\) −6.81145 34.2435i −0.224202 1.12714i
\(924\) 0 0
\(925\) −64.8985 12.9091i −2.13385 0.424449i
\(926\) 0 0
\(927\) 0.550969 4.18503i 0.0180962 0.137454i
\(928\) 0 0
\(929\) −48.0656 23.7033i −1.57698 0.777681i −0.577725 0.816232i \(-0.696059\pi\)
−0.999257 + 0.0385508i \(0.987726\pi\)
\(930\) 0 0
\(931\) 3.54983 3.52259i 0.116341 0.115448i
\(932\) 0 0
\(933\) −7.85281 59.6480i −0.257089 1.95279i
\(934\) 0 0
\(935\) 26.3924 22.7780i 0.863123 0.744921i
\(936\) 0 0
\(937\) −47.4988 19.6746i −1.55172 0.642742i −0.568091 0.822966i \(-0.692318\pi\)
−0.983626 + 0.180223i \(0.942318\pi\)
\(938\) 0 0
\(939\) 58.2980 + 58.2980i 1.90248 + 1.90248i
\(940\) 0 0
\(941\) 34.1774 2.24010i 1.11415 0.0730253i 0.502813 0.864395i \(-0.332299\pi\)
0.611337 + 0.791370i \(0.290632\pi\)
\(942\) 0 0
\(943\) 0.280872 0.366040i 0.00914646 0.0119199i
\(944\) 0 0
\(945\) −0.272512 4.28414i −0.00886483 0.139363i
\(946\) 0 0
\(947\) 14.1910 12.4452i 0.461147 0.404415i −0.397000 0.917818i \(-0.629949\pi\)
0.858147 + 0.513403i \(0.171616\pi\)
\(948\) 0 0
\(949\) −5.33120 10.8106i −0.173058 0.350927i
\(950\) 0 0
\(951\) −10.9766 −0.355941
\(952\) 0 0
\(953\) 4.74186 0.153604 0.0768020 0.997046i \(-0.475529\pi\)
0.0768020 + 0.997046i \(0.475529\pi\)
\(954\) 0 0
\(955\) 33.7725 + 68.4838i 1.09285 + 2.21608i
\(956\) 0 0
\(957\) −7.47966 + 6.55948i −0.241783 + 0.212038i
\(958\) 0 0
\(959\) −2.05358 3.08625i −0.0663137 0.0996604i
\(960\) 0 0
\(961\) −3.95942 + 5.16001i −0.127723 + 0.166452i
\(962\) 0 0
\(963\) 31.1915 2.04440i 1.00513 0.0658798i
\(964\) 0 0
\(965\) 68.4899 + 68.4899i 2.20477 + 2.20477i
\(966\) 0 0
\(967\) −23.1024 9.56934i −0.742924 0.307729i −0.0210734 0.999778i \(-0.506708\pi\)
−0.721851 + 0.692049i \(0.756708\pi\)
\(968\) 0 0
\(969\) 6.18051 3.50330i 0.198546 0.112542i
\(970\) 0 0
\(971\) −1.09714 8.33358i −0.0352088 0.267437i −0.999990 0.00438512i \(-0.998604\pi\)
0.964782 0.263052i \(-0.0847292\pi\)
\(972\) 0 0
\(973\) −0.364540 0.634219i −0.0116866 0.0203321i
\(974\) 0 0
\(975\) 51.7053 + 25.4983i 1.65590 + 0.816598i
\(976\) 0 0
\(977\) 3.61261 27.4405i 0.115578 0.877899i −0.831192 0.555986i \(-0.812341\pi\)
0.946769 0.321913i \(-0.104326\pi\)
\(978\) 0 0
\(979\) −13.5328 2.69184i −0.432511 0.0860317i
\(980\) 0 0
\(981\) 5.58977 + 28.1017i 0.178468 + 0.897217i
\(982\) 0 0
\(983\) −9.58744 + 4.72800i −0.305792 + 0.150800i −0.588710 0.808344i \(-0.700364\pi\)
0.282918 + 0.959144i \(0.408697\pi\)
\(984\) 0 0
\(985\) 28.5816 + 49.5048i 0.910686 + 1.57735i
\(986\) 0 0
\(987\) −17.2707 + 63.9621i −0.549732 + 2.03594i
\(988\) 0 0
\(989\) −3.70262 + 56.4910i −0.117736 + 1.79631i
\(990\) 0 0
\(991\) −6.12893 + 18.0553i −0.194692 + 0.573544i −0.999808 0.0195726i \(-0.993769\pi\)
0.805116 + 0.593117i \(0.202103\pi\)
\(992\) 0 0
\(993\) 5.88451 29.5834i 0.186739 0.938802i
\(994\) 0 0
\(995\) −38.8333 93.7520i −1.23110 2.97214i
\(996\) 0 0
\(997\) −3.47145 52.9641i −0.109942 1.67739i −0.595631 0.803258i \(-0.703098\pi\)
0.485690 0.874131i \(-0.338569\pi\)
\(998\) 0 0
\(999\) 0.892400 3.33048i 0.0282343 0.105372i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.cw.a.129.16 288
7.5 odd 6 inner 952.2.cw.a.537.16 yes 288
17.12 odd 16 inner 952.2.cw.a.913.16 yes 288
119.12 even 48 inner 952.2.cw.a.369.16 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.cw.a.129.16 288 1.1 even 1 trivial
952.2.cw.a.369.16 yes 288 119.12 even 48 inner
952.2.cw.a.537.16 yes 288 7.5 odd 6 inner
952.2.cw.a.913.16 yes 288 17.12 odd 16 inner