Properties

Label 952.2.a.c.1.2
Level $952$
Weight $2$
Character 952.1
Self dual yes
Analytic conductor $7.602$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(1,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.60175827243\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.254102\) of defining polynomial
Character \(\chi\) \(=\) 952.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.745898 q^{3} +0.935432 q^{5} +1.00000 q^{7} -2.44364 q^{9} -0.508203 q^{11} -5.36266 q^{13} -0.697737 q^{15} -1.00000 q^{17} -5.87086 q^{19} -0.745898 q^{21} +3.36266 q^{23} -4.12497 q^{25} +4.06040 q^{27} +1.87086 q^{29} +3.91903 q^{31} +0.379068 q^{33} +0.935432 q^{35} -2.12914 q^{37} +4.00000 q^{39} -9.12497 q^{41} -2.10856 q^{43} -2.28586 q^{45} -2.98359 q^{47} +1.00000 q^{49} +0.745898 q^{51} -11.3145 q^{53} -0.475390 q^{55} +4.37907 q^{57} +6.72532 q^{59} -9.25410 q^{61} -2.44364 q^{63} -5.01641 q^{65} -2.80630 q^{67} -2.50820 q^{69} -3.83805 q^{71} +6.14137 q^{73} +3.07681 q^{75} -0.508203 q^{77} +4.00000 q^{79} +4.30226 q^{81} -9.87086 q^{83} -0.935432 q^{85} -1.39547 q^{87} -17.1044 q^{89} -5.36266 q^{91} -2.92319 q^{93} -5.49180 q^{95} +9.28169 q^{97} +1.24186 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 5 q^{5} + 3 q^{7} + 2 q^{9} - 2 q^{13} + 8 q^{15} - 3 q^{17} - 2 q^{19} - 3 q^{21} - 4 q^{23} + 4 q^{25} - 12 q^{27} - 10 q^{29} + 7 q^{31} - 16 q^{33} - 5 q^{35} - 22 q^{37} + 12 q^{39}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.745898 −0.430645 −0.215322 0.976543i \(-0.569080\pi\)
−0.215322 + 0.976543i \(0.569080\pi\)
\(4\) 0 0
\(5\) 0.935432 0.418338 0.209169 0.977880i \(-0.432924\pi\)
0.209169 + 0.977880i \(0.432924\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.44364 −0.814545
\(10\) 0 0
\(11\) −0.508203 −0.153229 −0.0766145 0.997061i \(-0.524411\pi\)
−0.0766145 + 0.997061i \(0.524411\pi\)
\(12\) 0 0
\(13\) −5.36266 −1.48733 −0.743667 0.668550i \(-0.766915\pi\)
−0.743667 + 0.668550i \(0.766915\pi\)
\(14\) 0 0
\(15\) −0.697737 −0.180155
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −5.87086 −1.34687 −0.673434 0.739247i \(-0.735182\pi\)
−0.673434 + 0.739247i \(0.735182\pi\)
\(20\) 0 0
\(21\) −0.745898 −0.162768
\(22\) 0 0
\(23\) 3.36266 0.701163 0.350582 0.936532i \(-0.385984\pi\)
0.350582 + 0.936532i \(0.385984\pi\)
\(24\) 0 0
\(25\) −4.12497 −0.824993
\(26\) 0 0
\(27\) 4.06040 0.781424
\(28\) 0 0
\(29\) 1.87086 0.347411 0.173705 0.984798i \(-0.444426\pi\)
0.173705 + 0.984798i \(0.444426\pi\)
\(30\) 0 0
\(31\) 3.91903 0.703878 0.351939 0.936023i \(-0.385522\pi\)
0.351939 + 0.936023i \(0.385522\pi\)
\(32\) 0 0
\(33\) 0.379068 0.0659873
\(34\) 0 0
\(35\) 0.935432 0.158117
\(36\) 0 0
\(37\) −2.12914 −0.350028 −0.175014 0.984566i \(-0.555997\pi\)
−0.175014 + 0.984566i \(0.555997\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) −9.12497 −1.42508 −0.712540 0.701631i \(-0.752455\pi\)
−0.712540 + 0.701631i \(0.752455\pi\)
\(42\) 0 0
\(43\) −2.10856 −0.321552 −0.160776 0.986991i \(-0.551400\pi\)
−0.160776 + 0.986991i \(0.551400\pi\)
\(44\) 0 0
\(45\) −2.28586 −0.340755
\(46\) 0 0
\(47\) −2.98359 −0.435202 −0.217601 0.976038i \(-0.569823\pi\)
−0.217601 + 0.976038i \(0.569823\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.745898 0.104447
\(52\) 0 0
\(53\) −11.3145 −1.55417 −0.777083 0.629398i \(-0.783302\pi\)
−0.777083 + 0.629398i \(0.783302\pi\)
\(54\) 0 0
\(55\) −0.475390 −0.0641016
\(56\) 0 0
\(57\) 4.37907 0.580022
\(58\) 0 0
\(59\) 6.72532 0.875562 0.437781 0.899082i \(-0.355764\pi\)
0.437781 + 0.899082i \(0.355764\pi\)
\(60\) 0 0
\(61\) −9.25410 −1.18487 −0.592433 0.805620i \(-0.701833\pi\)
−0.592433 + 0.805620i \(0.701833\pi\)
\(62\) 0 0
\(63\) −2.44364 −0.307869
\(64\) 0 0
\(65\) −5.01641 −0.622209
\(66\) 0 0
\(67\) −2.80630 −0.342844 −0.171422 0.985198i \(-0.554836\pi\)
−0.171422 + 0.985198i \(0.554836\pi\)
\(68\) 0 0
\(69\) −2.50820 −0.301952
\(70\) 0 0
\(71\) −3.83805 −0.455493 −0.227746 0.973720i \(-0.573136\pi\)
−0.227746 + 0.973720i \(0.573136\pi\)
\(72\) 0 0
\(73\) 6.14137 0.718793 0.359397 0.933185i \(-0.382983\pi\)
0.359397 + 0.933185i \(0.382983\pi\)
\(74\) 0 0
\(75\) 3.07681 0.355279
\(76\) 0 0
\(77\) −0.508203 −0.0579151
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 4.30226 0.478029
\(82\) 0 0
\(83\) −9.87086 −1.08347 −0.541734 0.840550i \(-0.682232\pi\)
−0.541734 + 0.840550i \(0.682232\pi\)
\(84\) 0 0
\(85\) −0.935432 −0.101462
\(86\) 0 0
\(87\) −1.39547 −0.149611
\(88\) 0 0
\(89\) −17.1044 −1.81306 −0.906531 0.422139i \(-0.861279\pi\)
−0.906531 + 0.422139i \(0.861279\pi\)
\(90\) 0 0
\(91\) −5.36266 −0.562160
\(92\) 0 0
\(93\) −2.92319 −0.303121
\(94\) 0 0
\(95\) −5.49180 −0.563446
\(96\) 0 0
\(97\) 9.28169 0.942413 0.471206 0.882023i \(-0.343819\pi\)
0.471206 + 0.882023i \(0.343819\pi\)
\(98\) 0 0
\(99\) 1.24186 0.124812
\(100\) 0 0
\(101\) 6.21712 0.618626 0.309313 0.950960i \(-0.399901\pi\)
0.309313 + 0.950960i \(0.399901\pi\)
\(102\) 0 0
\(103\) −1.87086 −0.184342 −0.0921709 0.995743i \(-0.529381\pi\)
−0.0921709 + 0.995743i \(0.529381\pi\)
\(104\) 0 0
\(105\) −0.697737 −0.0680922
\(106\) 0 0
\(107\) 3.65375 0.353221 0.176610 0.984281i \(-0.443487\pi\)
0.176610 + 0.984281i \(0.443487\pi\)
\(108\) 0 0
\(109\) 11.1044 1.06361 0.531804 0.846868i \(-0.321514\pi\)
0.531804 + 0.846868i \(0.321514\pi\)
\(110\) 0 0
\(111\) 1.58812 0.150738
\(112\) 0 0
\(113\) −3.32985 −0.313246 −0.156623 0.987658i \(-0.550061\pi\)
−0.156623 + 0.987658i \(0.550061\pi\)
\(114\) 0 0
\(115\) 3.14554 0.293323
\(116\) 0 0
\(117\) 13.1044 1.21150
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −10.7417 −0.976521
\(122\) 0 0
\(123\) 6.80630 0.613703
\(124\) 0 0
\(125\) −8.53579 −0.763464
\(126\) 0 0
\(127\) 13.7899 1.22365 0.611827 0.790991i \(-0.290435\pi\)
0.611827 + 0.790991i \(0.290435\pi\)
\(128\) 0 0
\(129\) 1.57277 0.138475
\(130\) 0 0
\(131\) −14.3791 −1.25631 −0.628153 0.778090i \(-0.716189\pi\)
−0.628153 + 0.778090i \(0.716189\pi\)
\(132\) 0 0
\(133\) −5.87086 −0.509069
\(134\) 0 0
\(135\) 3.79823 0.326899
\(136\) 0 0
\(137\) 15.6332 1.33563 0.667816 0.744326i \(-0.267229\pi\)
0.667816 + 0.744326i \(0.267229\pi\)
\(138\) 0 0
\(139\) 15.0562 1.27705 0.638526 0.769600i \(-0.279544\pi\)
0.638526 + 0.769600i \(0.279544\pi\)
\(140\) 0 0
\(141\) 2.22546 0.187417
\(142\) 0 0
\(143\) 2.72532 0.227903
\(144\) 0 0
\(145\) 1.75007 0.145335
\(146\) 0 0
\(147\) −0.745898 −0.0615207
\(148\) 0 0
\(149\) −0.366830 −0.0300519 −0.0150260 0.999887i \(-0.504783\pi\)
−0.0150260 + 0.999887i \(0.504783\pi\)
\(150\) 0 0
\(151\) 16.3585 1.33124 0.665618 0.746293i \(-0.268168\pi\)
0.665618 + 0.746293i \(0.268168\pi\)
\(152\) 0 0
\(153\) 2.44364 0.197556
\(154\) 0 0
\(155\) 3.66598 0.294459
\(156\) 0 0
\(157\) −0.887271 −0.0708120 −0.0354060 0.999373i \(-0.511272\pi\)
−0.0354060 + 0.999373i \(0.511272\pi\)
\(158\) 0 0
\(159\) 8.43947 0.669293
\(160\) 0 0
\(161\) 3.36266 0.265015
\(162\) 0 0
\(163\) −13.7417 −1.07634 −0.538168 0.842838i \(-0.680883\pi\)
−0.538168 + 0.842838i \(0.680883\pi\)
\(164\) 0 0
\(165\) 0.354593 0.0276050
\(166\) 0 0
\(167\) −5.09215 −0.394043 −0.197021 0.980399i \(-0.563127\pi\)
−0.197021 + 0.980399i \(0.563127\pi\)
\(168\) 0 0
\(169\) 15.7581 1.21216
\(170\) 0 0
\(171\) 14.3463 1.09709
\(172\) 0 0
\(173\) −8.23769 −0.626300 −0.313150 0.949704i \(-0.601384\pi\)
−0.313150 + 0.949704i \(0.601384\pi\)
\(174\) 0 0
\(175\) −4.12497 −0.311818
\(176\) 0 0
\(177\) −5.01641 −0.377056
\(178\) 0 0
\(179\) 11.8831 0.888185 0.444092 0.895981i \(-0.353526\pi\)
0.444092 + 0.895981i \(0.353526\pi\)
\(180\) 0 0
\(181\) −13.3955 −0.995678 −0.497839 0.867270i \(-0.665873\pi\)
−0.497839 + 0.867270i \(0.665873\pi\)
\(182\) 0 0
\(183\) 6.90262 0.510256
\(184\) 0 0
\(185\) −1.99166 −0.146430
\(186\) 0 0
\(187\) 0.508203 0.0371635
\(188\) 0 0
\(189\) 4.06040 0.295351
\(190\) 0 0
\(191\) 16.4189 1.18803 0.594015 0.804454i \(-0.297542\pi\)
0.594015 + 0.804454i \(0.297542\pi\)
\(192\) 0 0
\(193\) 22.1208 1.59229 0.796145 0.605106i \(-0.206869\pi\)
0.796145 + 0.605106i \(0.206869\pi\)
\(194\) 0 0
\(195\) 3.74173 0.267951
\(196\) 0 0
\(197\) 1.32985 0.0947477 0.0473739 0.998877i \(-0.484915\pi\)
0.0473739 + 0.998877i \(0.484915\pi\)
\(198\) 0 0
\(199\) −9.85029 −0.698268 −0.349134 0.937073i \(-0.613524\pi\)
−0.349134 + 0.937073i \(0.613524\pi\)
\(200\) 0 0
\(201\) 2.09321 0.147644
\(202\) 0 0
\(203\) 1.87086 0.131309
\(204\) 0 0
\(205\) −8.53579 −0.596165
\(206\) 0 0
\(207\) −8.21712 −0.571129
\(208\) 0 0
\(209\) 2.98359 0.206379
\(210\) 0 0
\(211\) 16.8873 1.16257 0.581284 0.813701i \(-0.302551\pi\)
0.581284 + 0.813701i \(0.302551\pi\)
\(212\) 0 0
\(213\) 2.86280 0.196156
\(214\) 0 0
\(215\) −1.97241 −0.134518
\(216\) 0 0
\(217\) 3.91903 0.266041
\(218\) 0 0
\(219\) −4.58084 −0.309544
\(220\) 0 0
\(221\) 5.36266 0.360732
\(222\) 0 0
\(223\) −20.8545 −1.39652 −0.698259 0.715845i \(-0.746042\pi\)
−0.698259 + 0.715845i \(0.746042\pi\)
\(224\) 0 0
\(225\) 10.0799 0.671994
\(226\) 0 0
\(227\) −15.9107 −1.05603 −0.528015 0.849235i \(-0.677063\pi\)
−0.528015 + 0.849235i \(0.677063\pi\)
\(228\) 0 0
\(229\) −7.49180 −0.495072 −0.247536 0.968879i \(-0.579621\pi\)
−0.247536 + 0.968879i \(0.579621\pi\)
\(230\) 0 0
\(231\) 0.379068 0.0249408
\(232\) 0 0
\(233\) 22.3379 1.46341 0.731703 0.681624i \(-0.238726\pi\)
0.731703 + 0.681624i \(0.238726\pi\)
\(234\) 0 0
\(235\) −2.79095 −0.182061
\(236\) 0 0
\(237\) −2.98359 −0.193805
\(238\) 0 0
\(239\) 15.6004 1.00910 0.504552 0.863382i \(-0.331658\pi\)
0.504552 + 0.863382i \(0.331658\pi\)
\(240\) 0 0
\(241\) 12.2653 0.790076 0.395038 0.918665i \(-0.370731\pi\)
0.395038 + 0.918665i \(0.370731\pi\)
\(242\) 0 0
\(243\) −15.3902 −0.987285
\(244\) 0 0
\(245\) 0.935432 0.0597626
\(246\) 0 0
\(247\) 31.4835 2.00324
\(248\) 0 0
\(249\) 7.36266 0.466590
\(250\) 0 0
\(251\) −1.87086 −0.118088 −0.0590440 0.998255i \(-0.518805\pi\)
−0.0590440 + 0.998255i \(0.518805\pi\)
\(252\) 0 0
\(253\) −1.70892 −0.107439
\(254\) 0 0
\(255\) 0.697737 0.0436940
\(256\) 0 0
\(257\) −2.31344 −0.144308 −0.0721542 0.997393i \(-0.522987\pi\)
−0.0721542 + 0.997393i \(0.522987\pi\)
\(258\) 0 0
\(259\) −2.12914 −0.132298
\(260\) 0 0
\(261\) −4.57171 −0.282982
\(262\) 0 0
\(263\) −29.4506 −1.81600 −0.908002 0.418965i \(-0.862393\pi\)
−0.908002 + 0.418965i \(0.862393\pi\)
\(264\) 0 0
\(265\) −10.5839 −0.650167
\(266\) 0 0
\(267\) 12.7581 0.780785
\(268\) 0 0
\(269\) −6.08798 −0.371191 −0.185595 0.982626i \(-0.559421\pi\)
−0.185595 + 0.982626i \(0.559421\pi\)
\(270\) 0 0
\(271\) 18.3463 1.11446 0.557228 0.830360i \(-0.311865\pi\)
0.557228 + 0.830360i \(0.311865\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 0 0
\(275\) 2.09632 0.126413
\(276\) 0 0
\(277\) −22.8461 −1.37269 −0.686345 0.727276i \(-0.740786\pi\)
−0.686345 + 0.727276i \(0.740786\pi\)
\(278\) 0 0
\(279\) −9.57667 −0.573340
\(280\) 0 0
\(281\) 17.2817 1.03094 0.515470 0.856908i \(-0.327618\pi\)
0.515470 + 0.856908i \(0.327618\pi\)
\(282\) 0 0
\(283\) 7.47645 0.444429 0.222214 0.974998i \(-0.428672\pi\)
0.222214 + 0.974998i \(0.428672\pi\)
\(284\) 0 0
\(285\) 4.09632 0.242645
\(286\) 0 0
\(287\) −9.12497 −0.538630
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −6.92319 −0.405845
\(292\) 0 0
\(293\) −14.3791 −0.840034 −0.420017 0.907516i \(-0.637976\pi\)
−0.420017 + 0.907516i \(0.637976\pi\)
\(294\) 0 0
\(295\) 6.29108 0.366281
\(296\) 0 0
\(297\) −2.06351 −0.119737
\(298\) 0 0
\(299\) −18.0328 −1.04286
\(300\) 0 0
\(301\) −2.10856 −0.121535
\(302\) 0 0
\(303\) −4.63734 −0.266408
\(304\) 0 0
\(305\) −8.65659 −0.495675
\(306\) 0 0
\(307\) 25.7334 1.46868 0.734341 0.678781i \(-0.237491\pi\)
0.734341 + 0.678781i \(0.237491\pi\)
\(308\) 0 0
\(309\) 1.39547 0.0793858
\(310\) 0 0
\(311\) 14.5480 0.824943 0.412471 0.910971i \(-0.364666\pi\)
0.412471 + 0.910971i \(0.364666\pi\)
\(312\) 0 0
\(313\) 7.05623 0.398842 0.199421 0.979914i \(-0.436094\pi\)
0.199421 + 0.979914i \(0.436094\pi\)
\(314\) 0 0
\(315\) −2.28586 −0.128793
\(316\) 0 0
\(317\) −26.7253 −1.50104 −0.750522 0.660846i \(-0.770198\pi\)
−0.750522 + 0.660846i \(0.770198\pi\)
\(318\) 0 0
\(319\) −0.950780 −0.0532334
\(320\) 0 0
\(321\) −2.72532 −0.152113
\(322\) 0 0
\(323\) 5.87086 0.326664
\(324\) 0 0
\(325\) 22.1208 1.22704
\(326\) 0 0
\(327\) −8.28275 −0.458037
\(328\) 0 0
\(329\) −2.98359 −0.164491
\(330\) 0 0
\(331\) −27.4025 −1.50618 −0.753088 0.657919i \(-0.771437\pi\)
−0.753088 + 0.657919i \(0.771437\pi\)
\(332\) 0 0
\(333\) 5.20283 0.285113
\(334\) 0 0
\(335\) −2.62510 −0.143425
\(336\) 0 0
\(337\) 14.8133 0.806932 0.403466 0.914995i \(-0.367805\pi\)
0.403466 + 0.914995i \(0.367805\pi\)
\(338\) 0 0
\(339\) 2.48373 0.134898
\(340\) 0 0
\(341\) −1.99166 −0.107855
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −2.34625 −0.126318
\(346\) 0 0
\(347\) 5.67610 0.304709 0.152355 0.988326i \(-0.451314\pi\)
0.152355 + 0.988326i \(0.451314\pi\)
\(348\) 0 0
\(349\) 7.61259 0.407493 0.203746 0.979024i \(-0.434688\pi\)
0.203746 + 0.979024i \(0.434688\pi\)
\(350\) 0 0
\(351\) −21.7745 −1.16224
\(352\) 0 0
\(353\) 19.2992 1.02719 0.513595 0.858033i \(-0.328313\pi\)
0.513595 + 0.858033i \(0.328313\pi\)
\(354\) 0 0
\(355\) −3.59024 −0.190550
\(356\) 0 0
\(357\) 0.745898 0.0394771
\(358\) 0 0
\(359\) −19.4025 −1.02402 −0.512012 0.858978i \(-0.671100\pi\)
−0.512012 + 0.858978i \(0.671100\pi\)
\(360\) 0 0
\(361\) 15.4671 0.814055
\(362\) 0 0
\(363\) 8.01224 0.420533
\(364\) 0 0
\(365\) 5.74484 0.300699
\(366\) 0 0
\(367\) −24.1414 −1.26017 −0.630085 0.776526i \(-0.716980\pi\)
−0.630085 + 0.776526i \(0.716980\pi\)
\(368\) 0 0
\(369\) 22.2981 1.16079
\(370\) 0 0
\(371\) −11.3145 −0.587420
\(372\) 0 0
\(373\) −26.4241 −1.36819 −0.684095 0.729393i \(-0.739802\pi\)
−0.684095 + 0.729393i \(0.739802\pi\)
\(374\) 0 0
\(375\) 6.36683 0.328782
\(376\) 0 0
\(377\) −10.0328 −0.516716
\(378\) 0 0
\(379\) 33.9588 1.74435 0.872174 0.489195i \(-0.162709\pi\)
0.872174 + 0.489195i \(0.162709\pi\)
\(380\) 0 0
\(381\) −10.2859 −0.526960
\(382\) 0 0
\(383\) −27.9037 −1.42581 −0.712906 0.701260i \(-0.752621\pi\)
−0.712906 + 0.701260i \(0.752621\pi\)
\(384\) 0 0
\(385\) −0.475390 −0.0242281
\(386\) 0 0
\(387\) 5.15255 0.261919
\(388\) 0 0
\(389\) 31.6524 1.60484 0.802421 0.596759i \(-0.203545\pi\)
0.802421 + 0.596759i \(0.203545\pi\)
\(390\) 0 0
\(391\) −3.36266 −0.170057
\(392\) 0 0
\(393\) 10.7253 0.541021
\(394\) 0 0
\(395\) 3.74173 0.188267
\(396\) 0 0
\(397\) 1.19370 0.0599102 0.0299551 0.999551i \(-0.490464\pi\)
0.0299551 + 0.999551i \(0.490464\pi\)
\(398\) 0 0
\(399\) 4.37907 0.219228
\(400\) 0 0
\(401\) 0.821644 0.0410310 0.0205155 0.999790i \(-0.493469\pi\)
0.0205155 + 0.999790i \(0.493469\pi\)
\(402\) 0 0
\(403\) −21.0164 −1.04690
\(404\) 0 0
\(405\) 4.02448 0.199978
\(406\) 0 0
\(407\) 1.08203 0.0536344
\(408\) 0 0
\(409\) 32.6290 1.61340 0.806700 0.590961i \(-0.201251\pi\)
0.806700 + 0.590961i \(0.201251\pi\)
\(410\) 0 0
\(411\) −11.6608 −0.575183
\(412\) 0 0
\(413\) 6.72532 0.330931
\(414\) 0 0
\(415\) −9.23353 −0.453256
\(416\) 0 0
\(417\) −11.2304 −0.549956
\(418\) 0 0
\(419\) −35.8144 −1.74965 −0.874823 0.484442i \(-0.839023\pi\)
−0.874823 + 0.484442i \(0.839023\pi\)
\(420\) 0 0
\(421\) −30.0346 −1.46380 −0.731898 0.681414i \(-0.761365\pi\)
−0.731898 + 0.681414i \(0.761365\pi\)
\(422\) 0 0
\(423\) 7.29081 0.354492
\(424\) 0 0
\(425\) 4.12497 0.200090
\(426\) 0 0
\(427\) −9.25410 −0.447837
\(428\) 0 0
\(429\) −2.03281 −0.0981452
\(430\) 0 0
\(431\) −19.9588 −0.961384 −0.480692 0.876890i \(-0.659614\pi\)
−0.480692 + 0.876890i \(0.659614\pi\)
\(432\) 0 0
\(433\) −13.0492 −0.627106 −0.313553 0.949571i \(-0.601519\pi\)
−0.313553 + 0.949571i \(0.601519\pi\)
\(434\) 0 0
\(435\) −1.30537 −0.0625878
\(436\) 0 0
\(437\) −19.7417 −0.944375
\(438\) 0 0
\(439\) 10.1742 0.485587 0.242794 0.970078i \(-0.421936\pi\)
0.242794 + 0.970078i \(0.421936\pi\)
\(440\) 0 0
\(441\) −2.44364 −0.116364
\(442\) 0 0
\(443\) 6.72532 0.319530 0.159765 0.987155i \(-0.448926\pi\)
0.159765 + 0.987155i \(0.448926\pi\)
\(444\) 0 0
\(445\) −16.0000 −0.758473
\(446\) 0 0
\(447\) 0.273618 0.0129417
\(448\) 0 0
\(449\) −19.1924 −0.905744 −0.452872 0.891576i \(-0.649601\pi\)
−0.452872 + 0.891576i \(0.649601\pi\)
\(450\) 0 0
\(451\) 4.63734 0.218364
\(452\) 0 0
\(453\) −12.2018 −0.573289
\(454\) 0 0
\(455\) −5.01641 −0.235173
\(456\) 0 0
\(457\) −17.8779 −0.836292 −0.418146 0.908380i \(-0.637320\pi\)
−0.418146 + 0.908380i \(0.637320\pi\)
\(458\) 0 0
\(459\) −4.06040 −0.189523
\(460\) 0 0
\(461\) 19.1924 0.893878 0.446939 0.894564i \(-0.352514\pi\)
0.446939 + 0.894564i \(0.352514\pi\)
\(462\) 0 0
\(463\) −24.8339 −1.15413 −0.577064 0.816699i \(-0.695802\pi\)
−0.577064 + 0.816699i \(0.695802\pi\)
\(464\) 0 0
\(465\) −2.73445 −0.126807
\(466\) 0 0
\(467\) −41.1372 −1.90360 −0.951801 0.306715i \(-0.900770\pi\)
−0.951801 + 0.306715i \(0.900770\pi\)
\(468\) 0 0
\(469\) −2.80630 −0.129583
\(470\) 0 0
\(471\) 0.661814 0.0304948
\(472\) 0 0
\(473\) 1.07158 0.0492712
\(474\) 0 0
\(475\) 24.2171 1.11116
\(476\) 0 0
\(477\) 27.6485 1.26594
\(478\) 0 0
\(479\) −28.3585 −1.29573 −0.647866 0.761754i \(-0.724338\pi\)
−0.647866 + 0.761754i \(0.724338\pi\)
\(480\) 0 0
\(481\) 11.4178 0.520608
\(482\) 0 0
\(483\) −2.50820 −0.114127
\(484\) 0 0
\(485\) 8.68239 0.394247
\(486\) 0 0
\(487\) 41.4095 1.87644 0.938222 0.346035i \(-0.112472\pi\)
0.938222 + 0.346035i \(0.112472\pi\)
\(488\) 0 0
\(489\) 10.2499 0.463518
\(490\) 0 0
\(491\) −0.0809744 −0.00365432 −0.00182716 0.999998i \(-0.500582\pi\)
−0.00182716 + 0.999998i \(0.500582\pi\)
\(492\) 0 0
\(493\) −1.87086 −0.0842595
\(494\) 0 0
\(495\) 1.16168 0.0522136
\(496\) 0 0
\(497\) −3.83805 −0.172160
\(498\) 0 0
\(499\) 34.5962 1.54874 0.774369 0.632734i \(-0.218067\pi\)
0.774369 + 0.632734i \(0.218067\pi\)
\(500\) 0 0
\(501\) 3.79823 0.169692
\(502\) 0 0
\(503\) 6.64435 0.296257 0.148128 0.988968i \(-0.452675\pi\)
0.148128 + 0.988968i \(0.452675\pi\)
\(504\) 0 0
\(505\) 5.81569 0.258795
\(506\) 0 0
\(507\) −11.7540 −0.522012
\(508\) 0 0
\(509\) 9.74173 0.431795 0.215897 0.976416i \(-0.430732\pi\)
0.215897 + 0.976416i \(0.430732\pi\)
\(510\) 0 0
\(511\) 6.14137 0.271678
\(512\) 0 0
\(513\) −23.8381 −1.05248
\(514\) 0 0
\(515\) −1.75007 −0.0771172
\(516\) 0 0
\(517\) 1.51627 0.0666856
\(518\) 0 0
\(519\) 6.14448 0.269713
\(520\) 0 0
\(521\) −21.6660 −0.949204 −0.474602 0.880201i \(-0.657408\pi\)
−0.474602 + 0.880201i \(0.657408\pi\)
\(522\) 0 0
\(523\) −3.42829 −0.149909 −0.0749543 0.997187i \(-0.523881\pi\)
−0.0749543 + 0.997187i \(0.523881\pi\)
\(524\) 0 0
\(525\) 3.07681 0.134283
\(526\) 0 0
\(527\) −3.91903 −0.170715
\(528\) 0 0
\(529\) −11.6925 −0.508370
\(530\) 0 0
\(531\) −16.4342 −0.713185
\(532\) 0 0
\(533\) 48.9341 2.11957
\(534\) 0 0
\(535\) 3.41783 0.147766
\(536\) 0 0
\(537\) −8.86359 −0.382492
\(538\) 0 0
\(539\) −0.508203 −0.0218899
\(540\) 0 0
\(541\) −29.3955 −1.26381 −0.631905 0.775046i \(-0.717727\pi\)
−0.631905 + 0.775046i \(0.717727\pi\)
\(542\) 0 0
\(543\) 9.99166 0.428783
\(544\) 0 0
\(545\) 10.3874 0.444948
\(546\) 0 0
\(547\) 31.5470 1.34885 0.674425 0.738343i \(-0.264391\pi\)
0.674425 + 0.738343i \(0.264391\pi\)
\(548\) 0 0
\(549\) 22.6137 0.965127
\(550\) 0 0
\(551\) −10.9836 −0.467917
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 0 0
\(555\) 1.48558 0.0630592
\(556\) 0 0
\(557\) −21.6761 −0.918446 −0.459223 0.888321i \(-0.651872\pi\)
−0.459223 + 0.888321i \(0.651872\pi\)
\(558\) 0 0
\(559\) 11.3075 0.478256
\(560\) 0 0
\(561\) −0.379068 −0.0160043
\(562\) 0 0
\(563\) −16.9201 −0.713097 −0.356548 0.934277i \(-0.616046\pi\)
−0.356548 + 0.934277i \(0.616046\pi\)
\(564\) 0 0
\(565\) −3.11485 −0.131043
\(566\) 0 0
\(567\) 4.30226 0.180678
\(568\) 0 0
\(569\) −21.8831 −0.917387 −0.458694 0.888594i \(-0.651682\pi\)
−0.458694 + 0.888594i \(0.651682\pi\)
\(570\) 0 0
\(571\) −24.6842 −1.03300 −0.516500 0.856287i \(-0.672765\pi\)
−0.516500 + 0.856287i \(0.672765\pi\)
\(572\) 0 0
\(573\) −12.2468 −0.511618
\(574\) 0 0
\(575\) −13.8709 −0.578455
\(576\) 0 0
\(577\) 22.7581 0.947434 0.473717 0.880677i \(-0.342912\pi\)
0.473717 + 0.880677i \(0.342912\pi\)
\(578\) 0 0
\(579\) −16.4999 −0.685711
\(580\) 0 0
\(581\) −9.87086 −0.409512
\(582\) 0 0
\(583\) 5.75007 0.238143
\(584\) 0 0
\(585\) 12.2583 0.506817
\(586\) 0 0
\(587\) −20.1208 −0.830474 −0.415237 0.909713i \(-0.636301\pi\)
−0.415237 + 0.909713i \(0.636301\pi\)
\(588\) 0 0
\(589\) −23.0081 −0.948031
\(590\) 0 0
\(591\) −0.991931 −0.0408026
\(592\) 0 0
\(593\) 14.9753 0.614960 0.307480 0.951555i \(-0.400514\pi\)
0.307480 + 0.951555i \(0.400514\pi\)
\(594\) 0 0
\(595\) −0.935432 −0.0383490
\(596\) 0 0
\(597\) 7.34731 0.300706
\(598\) 0 0
\(599\) −2.58395 −0.105577 −0.0527887 0.998606i \(-0.516811\pi\)
−0.0527887 + 0.998606i \(0.516811\pi\)
\(600\) 0 0
\(601\) −3.01641 −0.123042 −0.0615209 0.998106i \(-0.519595\pi\)
−0.0615209 + 0.998106i \(0.519595\pi\)
\(602\) 0 0
\(603\) 6.85757 0.279262
\(604\) 0 0
\(605\) −10.0482 −0.408516
\(606\) 0 0
\(607\) −5.62794 −0.228431 −0.114216 0.993456i \(-0.536435\pi\)
−0.114216 + 0.993456i \(0.536435\pi\)
\(608\) 0 0
\(609\) −1.39547 −0.0565475
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) −6.99060 −0.282348 −0.141174 0.989985i \(-0.545088\pi\)
−0.141174 + 0.989985i \(0.545088\pi\)
\(614\) 0 0
\(615\) 6.36683 0.256735
\(616\) 0 0
\(617\) −41.7006 −1.67880 −0.839401 0.543513i \(-0.817094\pi\)
−0.839401 + 0.543513i \(0.817094\pi\)
\(618\) 0 0
\(619\) −21.1044 −0.848257 −0.424129 0.905602i \(-0.639420\pi\)
−0.424129 + 0.905602i \(0.639420\pi\)
\(620\) 0 0
\(621\) 13.6537 0.547906
\(622\) 0 0
\(623\) −17.1044 −0.685273
\(624\) 0 0
\(625\) 12.6402 0.505607
\(626\) 0 0
\(627\) −2.22546 −0.0888762
\(628\) 0 0
\(629\) 2.12914 0.0848942
\(630\) 0 0
\(631\) −28.8391 −1.14807 −0.574033 0.818832i \(-0.694622\pi\)
−0.574033 + 0.818832i \(0.694622\pi\)
\(632\) 0 0
\(633\) −12.5962 −0.500653
\(634\) 0 0
\(635\) 12.8995 0.511901
\(636\) 0 0
\(637\) −5.36266 −0.212476
\(638\) 0 0
\(639\) 9.37880 0.371020
\(640\) 0 0
\(641\) 15.8709 0.626861 0.313431 0.949611i \(-0.398522\pi\)
0.313431 + 0.949611i \(0.398522\pi\)
\(642\) 0 0
\(643\) −38.2377 −1.50795 −0.753974 0.656905i \(-0.771865\pi\)
−0.753974 + 0.656905i \(0.771865\pi\)
\(644\) 0 0
\(645\) 1.47122 0.0579293
\(646\) 0 0
\(647\) −7.64541 −0.300572 −0.150286 0.988643i \(-0.548019\pi\)
−0.150286 + 0.988643i \(0.548019\pi\)
\(648\) 0 0
\(649\) −3.41783 −0.134162
\(650\) 0 0
\(651\) −2.92319 −0.114569
\(652\) 0 0
\(653\) −43.5386 −1.70380 −0.851899 0.523706i \(-0.824549\pi\)
−0.851899 + 0.523706i \(0.824549\pi\)
\(654\) 0 0
\(655\) −13.4506 −0.525560
\(656\) 0 0
\(657\) −15.0073 −0.585490
\(658\) 0 0
\(659\) 18.3861 0.716220 0.358110 0.933679i \(-0.383421\pi\)
0.358110 + 0.933679i \(0.383421\pi\)
\(660\) 0 0
\(661\) 30.0140 1.16741 0.583705 0.811966i \(-0.301602\pi\)
0.583705 + 0.811966i \(0.301602\pi\)
\(662\) 0 0
\(663\) −4.00000 −0.155347
\(664\) 0 0
\(665\) −5.49180 −0.212963
\(666\) 0 0
\(667\) 6.29108 0.243592
\(668\) 0 0
\(669\) 15.5553 0.601403
\(670\) 0 0
\(671\) 4.70297 0.181556
\(672\) 0 0
\(673\) −16.2088 −0.624803 −0.312401 0.949950i \(-0.601133\pi\)
−0.312401 + 0.949950i \(0.601133\pi\)
\(674\) 0 0
\(675\) −16.7490 −0.644670
\(676\) 0 0
\(677\) 8.05517 0.309585 0.154793 0.987947i \(-0.450529\pi\)
0.154793 + 0.987947i \(0.450529\pi\)
\(678\) 0 0
\(679\) 9.28169 0.356198
\(680\) 0 0
\(681\) 11.8678 0.454773
\(682\) 0 0
\(683\) −19.4506 −0.744258 −0.372129 0.928181i \(-0.621372\pi\)
−0.372129 + 0.928181i \(0.621372\pi\)
\(684\) 0 0
\(685\) 14.6238 0.558746
\(686\) 0 0
\(687\) 5.58812 0.213200
\(688\) 0 0
\(689\) 60.6758 2.31157
\(690\) 0 0
\(691\) 22.7376 0.864978 0.432489 0.901639i \(-0.357636\pi\)
0.432489 + 0.901639i \(0.357636\pi\)
\(692\) 0 0
\(693\) 1.24186 0.0471745
\(694\) 0 0
\(695\) 14.0841 0.534240
\(696\) 0 0
\(697\) 9.12497 0.345633
\(698\) 0 0
\(699\) −16.6618 −0.630208
\(700\) 0 0
\(701\) −8.22546 −0.310671 −0.155336 0.987862i \(-0.549646\pi\)
−0.155336 + 0.987862i \(0.549646\pi\)
\(702\) 0 0
\(703\) 12.4999 0.471441
\(704\) 0 0
\(705\) 2.08176 0.0784038
\(706\) 0 0
\(707\) 6.21712 0.233819
\(708\) 0 0
\(709\) −18.7909 −0.705709 −0.352854 0.935678i \(-0.614789\pi\)
−0.352854 + 0.935678i \(0.614789\pi\)
\(710\) 0 0
\(711\) −9.77454 −0.366574
\(712\) 0 0
\(713\) 13.1784 0.493533
\(714\) 0 0
\(715\) 2.54935 0.0953405
\(716\) 0 0
\(717\) −11.6363 −0.434565
\(718\) 0 0
\(719\) 18.6496 0.695512 0.347756 0.937585i \(-0.386944\pi\)
0.347756 + 0.937585i \(0.386944\pi\)
\(720\) 0 0
\(721\) −1.87086 −0.0696746
\(722\) 0 0
\(723\) −9.14865 −0.340242
\(724\) 0 0
\(725\) −7.71725 −0.286612
\(726\) 0 0
\(727\) 17.9917 0.667274 0.333637 0.942702i \(-0.391724\pi\)
0.333637 + 0.942702i \(0.391724\pi\)
\(728\) 0 0
\(729\) −1.42723 −0.0528603
\(730\) 0 0
\(731\) 2.10856 0.0779879
\(732\) 0 0
\(733\) −8.98359 −0.331817 −0.165908 0.986141i \(-0.553056\pi\)
−0.165908 + 0.986141i \(0.553056\pi\)
\(734\) 0 0
\(735\) −0.697737 −0.0257364
\(736\) 0 0
\(737\) 1.42617 0.0525336
\(738\) 0 0
\(739\) 49.6576 1.82669 0.913343 0.407191i \(-0.133492\pi\)
0.913343 + 0.407191i \(0.133492\pi\)
\(740\) 0 0
\(741\) −23.4835 −0.862686
\(742\) 0 0
\(743\) −17.8709 −0.655618 −0.327809 0.944744i \(-0.606310\pi\)
−0.327809 + 0.944744i \(0.606310\pi\)
\(744\) 0 0
\(745\) −0.343145 −0.0125719
\(746\) 0 0
\(747\) 24.1208 0.882534
\(748\) 0 0
\(749\) 3.65375 0.133505
\(750\) 0 0
\(751\) 21.1127 0.770414 0.385207 0.922830i \(-0.374130\pi\)
0.385207 + 0.922830i \(0.374130\pi\)
\(752\) 0 0
\(753\) 1.39547 0.0508539
\(754\) 0 0
\(755\) 15.3023 0.556906
\(756\) 0 0
\(757\) 22.8339 0.829912 0.414956 0.909842i \(-0.363797\pi\)
0.414956 + 0.909842i \(0.363797\pi\)
\(758\) 0 0
\(759\) 1.27468 0.0462679
\(760\) 0 0
\(761\) 1.78288 0.0646294 0.0323147 0.999478i \(-0.489712\pi\)
0.0323147 + 0.999478i \(0.489712\pi\)
\(762\) 0 0
\(763\) 11.1044 0.402006
\(764\) 0 0
\(765\) 2.28586 0.0826453
\(766\) 0 0
\(767\) −36.0656 −1.30225
\(768\) 0 0
\(769\) −34.5962 −1.24757 −0.623785 0.781596i \(-0.714406\pi\)
−0.623785 + 0.781596i \(0.714406\pi\)
\(770\) 0 0
\(771\) 1.72559 0.0621457
\(772\) 0 0
\(773\) −25.1700 −0.905303 −0.452651 0.891688i \(-0.649522\pi\)
−0.452651 + 0.891688i \(0.649522\pi\)
\(774\) 0 0
\(775\) −16.1658 −0.580694
\(776\) 0 0
\(777\) 1.58812 0.0569734
\(778\) 0 0
\(779\) 53.5714 1.91940
\(780\) 0 0
\(781\) 1.95051 0.0697948
\(782\) 0 0
\(783\) 7.59646 0.271475
\(784\) 0 0
\(785\) −0.829982 −0.0296233
\(786\) 0 0
\(787\) 13.3627 0.476327 0.238164 0.971225i \(-0.423455\pi\)
0.238164 + 0.971225i \(0.423455\pi\)
\(788\) 0 0
\(789\) 21.9672 0.782053
\(790\) 0 0
\(791\) −3.32985 −0.118396
\(792\) 0 0
\(793\) 49.6266 1.76229
\(794\) 0 0
\(795\) 7.89455 0.279991
\(796\) 0 0
\(797\) −23.4751 −0.831531 −0.415766 0.909472i \(-0.636486\pi\)
−0.415766 + 0.909472i \(0.636486\pi\)
\(798\) 0 0
\(799\) 2.98359 0.105552
\(800\) 0 0
\(801\) 41.7969 1.47682
\(802\) 0 0
\(803\) −3.12107 −0.110140
\(804\) 0 0
\(805\) 3.14554 0.110866
\(806\) 0 0
\(807\) 4.54102 0.159851
\(808\) 0 0
\(809\) 21.4835 0.755318 0.377659 0.925945i \(-0.376729\pi\)
0.377659 + 0.925945i \(0.376729\pi\)
\(810\) 0 0
\(811\) −15.7540 −0.553197 −0.276598 0.960986i \(-0.589207\pi\)
−0.276598 + 0.960986i \(0.589207\pi\)
\(812\) 0 0
\(813\) −13.6844 −0.479934
\(814\) 0 0
\(815\) −12.8545 −0.450272
\(816\) 0 0
\(817\) 12.3791 0.433089
\(818\) 0 0
\(819\) 13.1044 0.457904
\(820\) 0 0
\(821\) 30.6290 1.06896 0.534480 0.845181i \(-0.320508\pi\)
0.534480 + 0.845181i \(0.320508\pi\)
\(822\) 0 0
\(823\) −28.0796 −0.978795 −0.489397 0.872061i \(-0.662783\pi\)
−0.489397 + 0.872061i \(0.662783\pi\)
\(824\) 0 0
\(825\) −1.56364 −0.0544391
\(826\) 0 0
\(827\) 24.1291 0.839052 0.419526 0.907743i \(-0.362196\pi\)
0.419526 + 0.907743i \(0.362196\pi\)
\(828\) 0 0
\(829\) 12.9284 0.449023 0.224511 0.974471i \(-0.427921\pi\)
0.224511 + 0.974471i \(0.427921\pi\)
\(830\) 0 0
\(831\) 17.0409 0.591142
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −4.76336 −0.164843
\(836\) 0 0
\(837\) 15.9128 0.550027
\(838\) 0 0
\(839\) 41.5163 1.43330 0.716650 0.697433i \(-0.245674\pi\)
0.716650 + 0.697433i \(0.245674\pi\)
\(840\) 0 0
\(841\) −25.4999 −0.879306
\(842\) 0 0
\(843\) −12.8904 −0.443968
\(844\) 0 0
\(845\) 14.7407 0.507094
\(846\) 0 0
\(847\) −10.7417 −0.369090
\(848\) 0 0
\(849\) −5.57667 −0.191391
\(850\) 0 0
\(851\) −7.15956 −0.245427
\(852\) 0 0
\(853\) −1.39547 −0.0477801 −0.0238901 0.999715i \(-0.507605\pi\)
−0.0238901 + 0.999715i \(0.507605\pi\)
\(854\) 0 0
\(855\) 13.4200 0.458953
\(856\) 0 0
\(857\) −47.1219 −1.60965 −0.804826 0.593511i \(-0.797741\pi\)
−0.804826 + 0.593511i \(0.797741\pi\)
\(858\) 0 0
\(859\) 12.0656 0.411674 0.205837 0.978586i \(-0.434008\pi\)
0.205837 + 0.978586i \(0.434008\pi\)
\(860\) 0 0
\(861\) 6.80630 0.231958
\(862\) 0 0
\(863\) 14.3064 0.486997 0.243498 0.969901i \(-0.421705\pi\)
0.243498 + 0.969901i \(0.421705\pi\)
\(864\) 0 0
\(865\) −7.70581 −0.262005
\(866\) 0 0
\(867\) −0.745898 −0.0253320
\(868\) 0 0
\(869\) −2.03281 −0.0689585
\(870\) 0 0
\(871\) 15.0492 0.509923
\(872\) 0 0
\(873\) −22.6811 −0.767638
\(874\) 0 0
\(875\) −8.53579 −0.288562
\(876\) 0 0
\(877\) −15.8792 −0.536203 −0.268101 0.963391i \(-0.586396\pi\)
−0.268101 + 0.963391i \(0.586396\pi\)
\(878\) 0 0
\(879\) 10.7253 0.361756
\(880\) 0 0
\(881\) −10.5564 −0.355653 −0.177826 0.984062i \(-0.556907\pi\)
−0.177826 + 0.984062i \(0.556907\pi\)
\(882\) 0 0
\(883\) 17.0974 0.575373 0.287686 0.957725i \(-0.407114\pi\)
0.287686 + 0.957725i \(0.407114\pi\)
\(884\) 0 0
\(885\) −4.69251 −0.157737
\(886\) 0 0
\(887\) 47.8367 1.60620 0.803100 0.595844i \(-0.203182\pi\)
0.803100 + 0.595844i \(0.203182\pi\)
\(888\) 0 0
\(889\) 13.7899 0.462498
\(890\) 0 0
\(891\) −2.18642 −0.0732480
\(892\) 0 0
\(893\) 17.5163 0.586160
\(894\) 0 0
\(895\) 11.1158 0.371561
\(896\) 0 0
\(897\) 13.4506 0.449104
\(898\) 0 0
\(899\) 7.33197 0.244535
\(900\) 0 0
\(901\) 11.3145 0.376941
\(902\) 0 0
\(903\) 1.57277 0.0523385
\(904\) 0 0
\(905\) −12.5306 −0.416530
\(906\) 0 0
\(907\) 50.4342 1.67464 0.837321 0.546712i \(-0.184121\pi\)
0.837321 + 0.546712i \(0.184121\pi\)
\(908\) 0 0
\(909\) −15.1924 −0.503899
\(910\) 0 0
\(911\) −47.0081 −1.55745 −0.778723 0.627367i \(-0.784132\pi\)
−0.778723 + 0.627367i \(0.784132\pi\)
\(912\) 0 0
\(913\) 5.01641 0.166019
\(914\) 0 0
\(915\) 6.45693 0.213460
\(916\) 0 0
\(917\) −14.3791 −0.474839
\(918\) 0 0
\(919\) 30.8011 1.01603 0.508017 0.861347i \(-0.330379\pi\)
0.508017 + 0.861347i \(0.330379\pi\)
\(920\) 0 0
\(921\) −19.1945 −0.632480
\(922\) 0 0
\(923\) 20.5822 0.677470
\(924\) 0 0
\(925\) 8.78261 0.288770
\(926\) 0 0
\(927\) 4.57171 0.150155
\(928\) 0 0
\(929\) −25.7816 −0.845865 −0.422933 0.906161i \(-0.638999\pi\)
−0.422933 + 0.906161i \(0.638999\pi\)
\(930\) 0 0
\(931\) −5.87086 −0.192410
\(932\) 0 0
\(933\) −10.8513 −0.355257
\(934\) 0 0
\(935\) 0.475390 0.0155469
\(936\) 0 0
\(937\) −34.5550 −1.12886 −0.564432 0.825480i \(-0.690905\pi\)
−0.564432 + 0.825480i \(0.690905\pi\)
\(938\) 0 0
\(939\) −5.26323 −0.171759
\(940\) 0 0
\(941\) 33.9711 1.10743 0.553713 0.832708i \(-0.313211\pi\)
0.553713 + 0.832708i \(0.313211\pi\)
\(942\) 0 0
\(943\) −30.6842 −0.999214
\(944\) 0 0
\(945\) 3.79823 0.123556
\(946\) 0 0
\(947\) −6.54102 −0.212554 −0.106277 0.994337i \(-0.533893\pi\)
−0.106277 + 0.994337i \(0.533893\pi\)
\(948\) 0 0
\(949\) −32.9341 −1.06909
\(950\) 0 0
\(951\) 19.9344 0.646416
\(952\) 0 0
\(953\) 16.4272 0.532130 0.266065 0.963955i \(-0.414276\pi\)
0.266065 + 0.963955i \(0.414276\pi\)
\(954\) 0 0
\(955\) 15.3588 0.496998
\(956\) 0 0
\(957\) 0.709185 0.0229247
\(958\) 0 0
\(959\) 15.6332 0.504821
\(960\) 0 0
\(961\) −15.6412 −0.504556
\(962\) 0 0
\(963\) −8.92842 −0.287714
\(964\) 0 0
\(965\) 20.6925 0.666115
\(966\) 0 0
\(967\) −43.1083 −1.38627 −0.693135 0.720808i \(-0.743771\pi\)
−0.693135 + 0.720808i \(0.743771\pi\)
\(968\) 0 0
\(969\) −4.37907 −0.140676
\(970\) 0 0
\(971\) 36.0140 1.15574 0.577872 0.816127i \(-0.303883\pi\)
0.577872 + 0.816127i \(0.303883\pi\)
\(972\) 0 0
\(973\) 15.0562 0.482681
\(974\) 0 0
\(975\) −16.4999 −0.528419
\(976\) 0 0
\(977\) −17.9602 −0.574597 −0.287298 0.957841i \(-0.592757\pi\)
−0.287298 + 0.957841i \(0.592757\pi\)
\(978\) 0 0
\(979\) 8.69251 0.277814
\(980\) 0 0
\(981\) −27.1351 −0.866357
\(982\) 0 0
\(983\) 1.00106 0.0319288 0.0159644 0.999873i \(-0.494918\pi\)
0.0159644 + 0.999873i \(0.494918\pi\)
\(984\) 0 0
\(985\) 1.24398 0.0396366
\(986\) 0 0
\(987\) 2.22546 0.0708371
\(988\) 0 0
\(989\) −7.09037 −0.225461
\(990\) 0 0
\(991\) 33.5714 1.06643 0.533216 0.845979i \(-0.320983\pi\)
0.533216 + 0.845979i \(0.320983\pi\)
\(992\) 0 0
\(993\) 20.4395 0.648627
\(994\) 0 0
\(995\) −9.21428 −0.292112
\(996\) 0 0
\(997\) −32.2210 −1.02045 −0.510225 0.860041i \(-0.670438\pi\)
−0.510225 + 0.860041i \(0.670438\pi\)
\(998\) 0 0
\(999\) −8.64514 −0.273520
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.a.c.1.2 3
3.2 odd 2 8568.2.a.be.1.1 3
4.3 odd 2 1904.2.a.o.1.2 3
7.6 odd 2 6664.2.a.m.1.2 3
8.3 odd 2 7616.2.a.bb.1.2 3
8.5 even 2 7616.2.a.bh.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.c.1.2 3 1.1 even 1 trivial
1904.2.a.o.1.2 3 4.3 odd 2
6664.2.a.m.1.2 3 7.6 odd 2
7616.2.a.bb.1.2 3 8.3 odd 2
7616.2.a.bh.1.2 3 8.5 even 2
8568.2.a.be.1.1 3 3.2 odd 2