Properties

Label 952.2.a.b.1.1
Level $952$
Weight $2$
Character 952.1
Self dual yes
Analytic conductor $7.602$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [952,2,Mod(1,952)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(952, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("952.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.60175827243\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 952.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.30278 q^{3} +0.302776 q^{5} -1.00000 q^{7} -1.30278 q^{9} +4.60555 q^{11} -4.00000 q^{13} -0.394449 q^{15} +1.00000 q^{17} +4.60555 q^{19} +1.30278 q^{21} -6.00000 q^{23} -4.90833 q^{25} +5.60555 q^{27} -8.60555 q^{29} -4.90833 q^{31} -6.00000 q^{33} -0.302776 q^{35} -4.60555 q^{37} +5.21110 q^{39} +0.697224 q^{41} -2.69722 q^{43} -0.394449 q^{45} +9.21110 q^{47} +1.00000 q^{49} -1.30278 q^{51} -7.69722 q^{53} +1.39445 q^{55} -6.00000 q^{57} -5.21110 q^{59} -4.69722 q^{61} +1.30278 q^{63} -1.21110 q^{65} -13.5139 q^{67} +7.81665 q^{69} +0.605551 q^{71} -5.90833 q^{73} +6.39445 q^{75} -4.60555 q^{77} -1.21110 q^{79} -3.39445 q^{81} -17.8167 q^{83} +0.302776 q^{85} +11.2111 q^{87} +17.2111 q^{89} +4.00000 q^{91} +6.39445 q^{93} +1.39445 q^{95} +4.30278 q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 3 q^{5} - 2 q^{7} + q^{9} + 2 q^{11} - 8 q^{13} - 8 q^{15} + 2 q^{17} + 2 q^{19} - q^{21} - 12 q^{23} + q^{25} + 4 q^{27} - 10 q^{29} + q^{31} - 12 q^{33} + 3 q^{35} - 2 q^{37} - 4 q^{39}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.30278 −0.752158 −0.376079 0.926588i \(-0.622728\pi\)
−0.376079 + 0.926588i \(0.622728\pi\)
\(4\) 0 0
\(5\) 0.302776 0.135405 0.0677027 0.997706i \(-0.478433\pi\)
0.0677027 + 0.997706i \(0.478433\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.30278 −0.434259
\(10\) 0 0
\(11\) 4.60555 1.38863 0.694313 0.719673i \(-0.255708\pi\)
0.694313 + 0.719673i \(0.255708\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −0.394449 −0.101846
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 4.60555 1.05659 0.528293 0.849062i \(-0.322832\pi\)
0.528293 + 0.849062i \(0.322832\pi\)
\(20\) 0 0
\(21\) 1.30278 0.284289
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −4.90833 −0.981665
\(26\) 0 0
\(27\) 5.60555 1.07879
\(28\) 0 0
\(29\) −8.60555 −1.59801 −0.799005 0.601324i \(-0.794640\pi\)
−0.799005 + 0.601324i \(0.794640\pi\)
\(30\) 0 0
\(31\) −4.90833 −0.881562 −0.440781 0.897615i \(-0.645298\pi\)
−0.440781 + 0.897615i \(0.645298\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) −0.302776 −0.0511784
\(36\) 0 0
\(37\) −4.60555 −0.757148 −0.378574 0.925571i \(-0.623585\pi\)
−0.378574 + 0.925571i \(0.623585\pi\)
\(38\) 0 0
\(39\) 5.21110 0.834444
\(40\) 0 0
\(41\) 0.697224 0.108888 0.0544441 0.998517i \(-0.482661\pi\)
0.0544441 + 0.998517i \(0.482661\pi\)
\(42\) 0 0
\(43\) −2.69722 −0.411323 −0.205661 0.978623i \(-0.565935\pi\)
−0.205661 + 0.978623i \(0.565935\pi\)
\(44\) 0 0
\(45\) −0.394449 −0.0588009
\(46\) 0 0
\(47\) 9.21110 1.34358 0.671789 0.740743i \(-0.265526\pi\)
0.671789 + 0.740743i \(0.265526\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.30278 −0.182425
\(52\) 0 0
\(53\) −7.69722 −1.05730 −0.528648 0.848841i \(-0.677301\pi\)
−0.528648 + 0.848841i \(0.677301\pi\)
\(54\) 0 0
\(55\) 1.39445 0.188027
\(56\) 0 0
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) −5.21110 −0.678428 −0.339214 0.940709i \(-0.610161\pi\)
−0.339214 + 0.940709i \(0.610161\pi\)
\(60\) 0 0
\(61\) −4.69722 −0.601418 −0.300709 0.953716i \(-0.597223\pi\)
−0.300709 + 0.953716i \(0.597223\pi\)
\(62\) 0 0
\(63\) 1.30278 0.164134
\(64\) 0 0
\(65\) −1.21110 −0.150219
\(66\) 0 0
\(67\) −13.5139 −1.65098 −0.825491 0.564415i \(-0.809102\pi\)
−0.825491 + 0.564415i \(0.809102\pi\)
\(68\) 0 0
\(69\) 7.81665 0.941015
\(70\) 0 0
\(71\) 0.605551 0.0718657 0.0359329 0.999354i \(-0.488560\pi\)
0.0359329 + 0.999354i \(0.488560\pi\)
\(72\) 0 0
\(73\) −5.90833 −0.691517 −0.345759 0.938323i \(-0.612378\pi\)
−0.345759 + 0.938323i \(0.612378\pi\)
\(74\) 0 0
\(75\) 6.39445 0.738367
\(76\) 0 0
\(77\) −4.60555 −0.524851
\(78\) 0 0
\(79\) −1.21110 −0.136260 −0.0681298 0.997676i \(-0.521703\pi\)
−0.0681298 + 0.997676i \(0.521703\pi\)
\(80\) 0 0
\(81\) −3.39445 −0.377161
\(82\) 0 0
\(83\) −17.8167 −1.95563 −0.977816 0.209466i \(-0.932827\pi\)
−0.977816 + 0.209466i \(0.932827\pi\)
\(84\) 0 0
\(85\) 0.302776 0.0328406
\(86\) 0 0
\(87\) 11.2111 1.20196
\(88\) 0 0
\(89\) 17.2111 1.82437 0.912187 0.409775i \(-0.134393\pi\)
0.912187 + 0.409775i \(0.134393\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 6.39445 0.663073
\(94\) 0 0
\(95\) 1.39445 0.143067
\(96\) 0 0
\(97\) 4.30278 0.436881 0.218440 0.975850i \(-0.429903\pi\)
0.218440 + 0.975850i \(0.429903\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) −12.6056 −1.25430 −0.627150 0.778899i \(-0.715779\pi\)
−0.627150 + 0.778899i \(0.715779\pi\)
\(102\) 0 0
\(103\) −5.81665 −0.573132 −0.286566 0.958061i \(-0.592514\pi\)
−0.286566 + 0.958061i \(0.592514\pi\)
\(104\) 0 0
\(105\) 0.394449 0.0384943
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −3.21110 −0.307568 −0.153784 0.988105i \(-0.549146\pi\)
−0.153784 + 0.988105i \(0.549146\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 1.21110 0.113931 0.0569655 0.998376i \(-0.481858\pi\)
0.0569655 + 0.998376i \(0.481858\pi\)
\(114\) 0 0
\(115\) −1.81665 −0.169404
\(116\) 0 0
\(117\) 5.21110 0.481767
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 10.2111 0.928282
\(122\) 0 0
\(123\) −0.908327 −0.0819011
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 18.7250 1.66157 0.830787 0.556591i \(-0.187891\pi\)
0.830787 + 0.556591i \(0.187891\pi\)
\(128\) 0 0
\(129\) 3.51388 0.309380
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −4.60555 −0.399352
\(134\) 0 0
\(135\) 1.69722 0.146074
\(136\) 0 0
\(137\) −21.9083 −1.87175 −0.935877 0.352326i \(-0.885391\pi\)
−0.935877 + 0.352326i \(0.885391\pi\)
\(138\) 0 0
\(139\) 13.5139 1.14623 0.573116 0.819474i \(-0.305734\pi\)
0.573116 + 0.819474i \(0.305734\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) −18.4222 −1.54054
\(144\) 0 0
\(145\) −2.60555 −0.216379
\(146\) 0 0
\(147\) −1.30278 −0.107451
\(148\) 0 0
\(149\) 22.9361 1.87900 0.939499 0.342553i \(-0.111292\pi\)
0.939499 + 0.342553i \(0.111292\pi\)
\(150\) 0 0
\(151\) 8.09167 0.658491 0.329246 0.944244i \(-0.393206\pi\)
0.329246 + 0.944244i \(0.393206\pi\)
\(152\) 0 0
\(153\) −1.30278 −0.105323
\(154\) 0 0
\(155\) −1.48612 −0.119368
\(156\) 0 0
\(157\) −9.39445 −0.749759 −0.374879 0.927074i \(-0.622316\pi\)
−0.374879 + 0.927074i \(0.622316\pi\)
\(158\) 0 0
\(159\) 10.0278 0.795253
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 23.2111 1.81803 0.909017 0.416759i \(-0.136834\pi\)
0.909017 + 0.416759i \(0.136834\pi\)
\(164\) 0 0
\(165\) −1.81665 −0.141426
\(166\) 0 0
\(167\) 1.11943 0.0866241 0.0433120 0.999062i \(-0.486209\pi\)
0.0433120 + 0.999062i \(0.486209\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 2.09167 0.159027 0.0795135 0.996834i \(-0.474663\pi\)
0.0795135 + 0.996834i \(0.474663\pi\)
\(174\) 0 0
\(175\) 4.90833 0.371035
\(176\) 0 0
\(177\) 6.78890 0.510285
\(178\) 0 0
\(179\) −0.0916731 −0.00685197 −0.00342598 0.999994i \(-0.501091\pi\)
−0.00342598 + 0.999994i \(0.501091\pi\)
\(180\) 0 0
\(181\) 25.6333 1.90531 0.952654 0.304055i \(-0.0983408\pi\)
0.952654 + 0.304055i \(0.0983408\pi\)
\(182\) 0 0
\(183\) 6.11943 0.452361
\(184\) 0 0
\(185\) −1.39445 −0.102522
\(186\) 0 0
\(187\) 4.60555 0.336791
\(188\) 0 0
\(189\) −5.60555 −0.407744
\(190\) 0 0
\(191\) −20.3028 −1.46906 −0.734529 0.678578i \(-0.762597\pi\)
−0.734529 + 0.678578i \(0.762597\pi\)
\(192\) 0 0
\(193\) 21.2111 1.52681 0.763404 0.645921i \(-0.223526\pi\)
0.763404 + 0.645921i \(0.223526\pi\)
\(194\) 0 0
\(195\) 1.57779 0.112988
\(196\) 0 0
\(197\) −4.42221 −0.315069 −0.157535 0.987513i \(-0.550355\pi\)
−0.157535 + 0.987513i \(0.550355\pi\)
\(198\) 0 0
\(199\) 22.6972 1.60896 0.804482 0.593977i \(-0.202443\pi\)
0.804482 + 0.593977i \(0.202443\pi\)
\(200\) 0 0
\(201\) 17.6056 1.24180
\(202\) 0 0
\(203\) 8.60555 0.603991
\(204\) 0 0
\(205\) 0.211103 0.0147440
\(206\) 0 0
\(207\) 7.81665 0.543295
\(208\) 0 0
\(209\) 21.2111 1.46720
\(210\) 0 0
\(211\) −7.81665 −0.538121 −0.269060 0.963123i \(-0.586713\pi\)
−0.269060 + 0.963123i \(0.586713\pi\)
\(212\) 0 0
\(213\) −0.788897 −0.0540544
\(214\) 0 0
\(215\) −0.816654 −0.0556953
\(216\) 0 0
\(217\) 4.90833 0.333199
\(218\) 0 0
\(219\) 7.69722 0.520130
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 25.8167 1.72881 0.864406 0.502795i \(-0.167695\pi\)
0.864406 + 0.502795i \(0.167695\pi\)
\(224\) 0 0
\(225\) 6.39445 0.426297
\(226\) 0 0
\(227\) −10.4861 −0.695988 −0.347994 0.937497i \(-0.613137\pi\)
−0.347994 + 0.937497i \(0.613137\pi\)
\(228\) 0 0
\(229\) −9.81665 −0.648703 −0.324351 0.945937i \(-0.605146\pi\)
−0.324351 + 0.945937i \(0.605146\pi\)
\(230\) 0 0
\(231\) 6.00000 0.394771
\(232\) 0 0
\(233\) −22.2389 −1.45692 −0.728458 0.685090i \(-0.759763\pi\)
−0.728458 + 0.685090i \(0.759763\pi\)
\(234\) 0 0
\(235\) 2.78890 0.181928
\(236\) 0 0
\(237\) 1.57779 0.102489
\(238\) 0 0
\(239\) −30.3305 −1.96192 −0.980960 0.194212i \(-0.937785\pi\)
−0.980960 + 0.194212i \(0.937785\pi\)
\(240\) 0 0
\(241\) 1.51388 0.0975175 0.0487587 0.998811i \(-0.484473\pi\)
0.0487587 + 0.998811i \(0.484473\pi\)
\(242\) 0 0
\(243\) −12.3944 −0.795104
\(244\) 0 0
\(245\) 0.302776 0.0193436
\(246\) 0 0
\(247\) −18.4222 −1.17218
\(248\) 0 0
\(249\) 23.2111 1.47094
\(250\) 0 0
\(251\) −8.60555 −0.543178 −0.271589 0.962413i \(-0.587549\pi\)
−0.271589 + 0.962413i \(0.587549\pi\)
\(252\) 0 0
\(253\) −27.6333 −1.73729
\(254\) 0 0
\(255\) −0.394449 −0.0247013
\(256\) 0 0
\(257\) 18.4222 1.14915 0.574573 0.818453i \(-0.305168\pi\)
0.574573 + 0.818453i \(0.305168\pi\)
\(258\) 0 0
\(259\) 4.60555 0.286175
\(260\) 0 0
\(261\) 11.2111 0.693950
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −2.33053 −0.143163
\(266\) 0 0
\(267\) −22.4222 −1.37222
\(268\) 0 0
\(269\) 4.78890 0.291984 0.145992 0.989286i \(-0.453363\pi\)
0.145992 + 0.989286i \(0.453363\pi\)
\(270\) 0 0
\(271\) 4.42221 0.268630 0.134315 0.990939i \(-0.457117\pi\)
0.134315 + 0.990939i \(0.457117\pi\)
\(272\) 0 0
\(273\) −5.21110 −0.315390
\(274\) 0 0
\(275\) −22.6056 −1.36317
\(276\) 0 0
\(277\) −26.0000 −1.56219 −0.781094 0.624413i \(-0.785338\pi\)
−0.781094 + 0.624413i \(0.785338\pi\)
\(278\) 0 0
\(279\) 6.39445 0.382826
\(280\) 0 0
\(281\) −16.3028 −0.972542 −0.486271 0.873808i \(-0.661643\pi\)
−0.486271 + 0.873808i \(0.661643\pi\)
\(282\) 0 0
\(283\) −0.302776 −0.0179981 −0.00899907 0.999960i \(-0.502865\pi\)
−0.00899907 + 0.999960i \(0.502865\pi\)
\(284\) 0 0
\(285\) −1.81665 −0.107609
\(286\) 0 0
\(287\) −0.697224 −0.0411559
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −5.60555 −0.328603
\(292\) 0 0
\(293\) −27.6333 −1.61436 −0.807178 0.590309i \(-0.799006\pi\)
−0.807178 + 0.590309i \(0.799006\pi\)
\(294\) 0 0
\(295\) −1.57779 −0.0918628
\(296\) 0 0
\(297\) 25.8167 1.49803
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 2.69722 0.155465
\(302\) 0 0
\(303\) 16.4222 0.943431
\(304\) 0 0
\(305\) −1.42221 −0.0814352
\(306\) 0 0
\(307\) 13.3944 0.764462 0.382231 0.924067i \(-0.375156\pi\)
0.382231 + 0.924067i \(0.375156\pi\)
\(308\) 0 0
\(309\) 7.57779 0.431086
\(310\) 0 0
\(311\) 15.6972 0.890108 0.445054 0.895504i \(-0.353184\pi\)
0.445054 + 0.895504i \(0.353184\pi\)
\(312\) 0 0
\(313\) 23.9361 1.35295 0.676474 0.736467i \(-0.263507\pi\)
0.676474 + 0.736467i \(0.263507\pi\)
\(314\) 0 0
\(315\) 0.394449 0.0222247
\(316\) 0 0
\(317\) 22.4222 1.25936 0.629678 0.776856i \(-0.283187\pi\)
0.629678 + 0.776856i \(0.283187\pi\)
\(318\) 0 0
\(319\) −39.6333 −2.21904
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.60555 0.256260
\(324\) 0 0
\(325\) 19.6333 1.08906
\(326\) 0 0
\(327\) 4.18335 0.231340
\(328\) 0 0
\(329\) −9.21110 −0.507825
\(330\) 0 0
\(331\) −16.9083 −0.929366 −0.464683 0.885477i \(-0.653832\pi\)
−0.464683 + 0.885477i \(0.653832\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) −4.09167 −0.223552
\(336\) 0 0
\(337\) 11.6333 0.633707 0.316853 0.948475i \(-0.397374\pi\)
0.316853 + 0.948475i \(0.397374\pi\)
\(338\) 0 0
\(339\) −1.57779 −0.0856941
\(340\) 0 0
\(341\) −22.6056 −1.22416
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 2.36669 0.127418
\(346\) 0 0
\(347\) 21.6333 1.16134 0.580668 0.814140i \(-0.302791\pi\)
0.580668 + 0.814140i \(0.302791\pi\)
\(348\) 0 0
\(349\) −30.2389 −1.61865 −0.809325 0.587362i \(-0.800167\pi\)
−0.809325 + 0.587362i \(0.800167\pi\)
\(350\) 0 0
\(351\) −22.4222 −1.19681
\(352\) 0 0
\(353\) −16.6056 −0.883824 −0.441912 0.897058i \(-0.645700\pi\)
−0.441912 + 0.897058i \(0.645700\pi\)
\(354\) 0 0
\(355\) 0.183346 0.00973100
\(356\) 0 0
\(357\) 1.30278 0.0689502
\(358\) 0 0
\(359\) −0.908327 −0.0479397 −0.0239698 0.999713i \(-0.507631\pi\)
−0.0239698 + 0.999713i \(0.507631\pi\)
\(360\) 0 0
\(361\) 2.21110 0.116374
\(362\) 0 0
\(363\) −13.3028 −0.698215
\(364\) 0 0
\(365\) −1.78890 −0.0936352
\(366\) 0 0
\(367\) −2.51388 −0.131223 −0.0656117 0.997845i \(-0.520900\pi\)
−0.0656117 + 0.997845i \(0.520900\pi\)
\(368\) 0 0
\(369\) −0.908327 −0.0472856
\(370\) 0 0
\(371\) 7.69722 0.399620
\(372\) 0 0
\(373\) 12.3305 0.638451 0.319225 0.947679i \(-0.396577\pi\)
0.319225 + 0.947679i \(0.396577\pi\)
\(374\) 0 0
\(375\) 3.90833 0.201825
\(376\) 0 0
\(377\) 34.4222 1.77283
\(378\) 0 0
\(379\) −7.39445 −0.379827 −0.189914 0.981801i \(-0.560821\pi\)
−0.189914 + 0.981801i \(0.560821\pi\)
\(380\) 0 0
\(381\) −24.3944 −1.24977
\(382\) 0 0
\(383\) −12.2389 −0.625376 −0.312688 0.949856i \(-0.601230\pi\)
−0.312688 + 0.949856i \(0.601230\pi\)
\(384\) 0 0
\(385\) −1.39445 −0.0710677
\(386\) 0 0
\(387\) 3.51388 0.178620
\(388\) 0 0
\(389\) 6.72498 0.340970 0.170485 0.985360i \(-0.445467\pi\)
0.170485 + 0.985360i \(0.445467\pi\)
\(390\) 0 0
\(391\) −6.00000 −0.303433
\(392\) 0 0
\(393\) −10.4222 −0.525731
\(394\) 0 0
\(395\) −0.366692 −0.0184503
\(396\) 0 0
\(397\) −31.3305 −1.57243 −0.786217 0.617950i \(-0.787963\pi\)
−0.786217 + 0.617950i \(0.787963\pi\)
\(398\) 0 0
\(399\) 6.00000 0.300376
\(400\) 0 0
\(401\) 18.2389 0.910805 0.455403 0.890286i \(-0.349495\pi\)
0.455403 + 0.890286i \(0.349495\pi\)
\(402\) 0 0
\(403\) 19.6333 0.978005
\(404\) 0 0
\(405\) −1.02776 −0.0510696
\(406\) 0 0
\(407\) −21.2111 −1.05140
\(408\) 0 0
\(409\) −22.6056 −1.11777 −0.558886 0.829244i \(-0.688771\pi\)
−0.558886 + 0.829244i \(0.688771\pi\)
\(410\) 0 0
\(411\) 28.5416 1.40786
\(412\) 0 0
\(413\) 5.21110 0.256422
\(414\) 0 0
\(415\) −5.39445 −0.264803
\(416\) 0 0
\(417\) −17.6056 −0.862148
\(418\) 0 0
\(419\) 7.33053 0.358120 0.179060 0.983838i \(-0.442694\pi\)
0.179060 + 0.983838i \(0.442694\pi\)
\(420\) 0 0
\(421\) −4.88057 −0.237864 −0.118932 0.992902i \(-0.537947\pi\)
−0.118932 + 0.992902i \(0.537947\pi\)
\(422\) 0 0
\(423\) −12.0000 −0.583460
\(424\) 0 0
\(425\) −4.90833 −0.238089
\(426\) 0 0
\(427\) 4.69722 0.227315
\(428\) 0 0
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) 6.60555 0.318178 0.159089 0.987264i \(-0.449144\pi\)
0.159089 + 0.987264i \(0.449144\pi\)
\(432\) 0 0
\(433\) 16.7889 0.806823 0.403411 0.915019i \(-0.367824\pi\)
0.403411 + 0.915019i \(0.367824\pi\)
\(434\) 0 0
\(435\) 3.39445 0.162751
\(436\) 0 0
\(437\) −27.6333 −1.32188
\(438\) 0 0
\(439\) −2.33053 −0.111230 −0.0556151 0.998452i \(-0.517712\pi\)
−0.0556151 + 0.998452i \(0.517712\pi\)
\(440\) 0 0
\(441\) −1.30278 −0.0620369
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) 5.21110 0.247030
\(446\) 0 0
\(447\) −29.8806 −1.41330
\(448\) 0 0
\(449\) 3.21110 0.151541 0.0757706 0.997125i \(-0.475858\pi\)
0.0757706 + 0.997125i \(0.475858\pi\)
\(450\) 0 0
\(451\) 3.21110 0.151205
\(452\) 0 0
\(453\) −10.5416 −0.495289
\(454\) 0 0
\(455\) 1.21110 0.0567774
\(456\) 0 0
\(457\) 18.4861 0.864744 0.432372 0.901695i \(-0.357677\pi\)
0.432372 + 0.901695i \(0.357677\pi\)
\(458\) 0 0
\(459\) 5.60555 0.261645
\(460\) 0 0
\(461\) 11.2111 0.522153 0.261077 0.965318i \(-0.415922\pi\)
0.261077 + 0.965318i \(0.415922\pi\)
\(462\) 0 0
\(463\) −14.6972 −0.683038 −0.341519 0.939875i \(-0.610941\pi\)
−0.341519 + 0.939875i \(0.610941\pi\)
\(464\) 0 0
\(465\) 1.93608 0.0897837
\(466\) 0 0
\(467\) −7.21110 −0.333690 −0.166845 0.985983i \(-0.553358\pi\)
−0.166845 + 0.985983i \(0.553358\pi\)
\(468\) 0 0
\(469\) 13.5139 0.624013
\(470\) 0 0
\(471\) 12.2389 0.563937
\(472\) 0 0
\(473\) −12.4222 −0.571174
\(474\) 0 0
\(475\) −22.6056 −1.03721
\(476\) 0 0
\(477\) 10.0278 0.459139
\(478\) 0 0
\(479\) −21.1194 −0.964971 −0.482486 0.875904i \(-0.660266\pi\)
−0.482486 + 0.875904i \(0.660266\pi\)
\(480\) 0 0
\(481\) 18.4222 0.839980
\(482\) 0 0
\(483\) −7.81665 −0.355670
\(484\) 0 0
\(485\) 1.30278 0.0591560
\(486\) 0 0
\(487\) 5.39445 0.244446 0.122223 0.992503i \(-0.460998\pi\)
0.122223 + 0.992503i \(0.460998\pi\)
\(488\) 0 0
\(489\) −30.2389 −1.36745
\(490\) 0 0
\(491\) −21.5139 −0.970908 −0.485454 0.874262i \(-0.661346\pi\)
−0.485454 + 0.874262i \(0.661346\pi\)
\(492\) 0 0
\(493\) −8.60555 −0.387575
\(494\) 0 0
\(495\) −1.81665 −0.0816525
\(496\) 0 0
\(497\) −0.605551 −0.0271627
\(498\) 0 0
\(499\) 9.02776 0.404138 0.202069 0.979371i \(-0.435233\pi\)
0.202069 + 0.979371i \(0.435233\pi\)
\(500\) 0 0
\(501\) −1.45837 −0.0651550
\(502\) 0 0
\(503\) −20.9083 −0.932256 −0.466128 0.884717i \(-0.654351\pi\)
−0.466128 + 0.884717i \(0.654351\pi\)
\(504\) 0 0
\(505\) −3.81665 −0.169839
\(506\) 0 0
\(507\) −3.90833 −0.173575
\(508\) 0 0
\(509\) 8.42221 0.373308 0.186654 0.982426i \(-0.440236\pi\)
0.186654 + 0.982426i \(0.440236\pi\)
\(510\) 0 0
\(511\) 5.90833 0.261369
\(512\) 0 0
\(513\) 25.8167 1.13983
\(514\) 0 0
\(515\) −1.76114 −0.0776051
\(516\) 0 0
\(517\) 42.4222 1.86573
\(518\) 0 0
\(519\) −2.72498 −0.119613
\(520\) 0 0
\(521\) −3.11943 −0.136665 −0.0683323 0.997663i \(-0.521768\pi\)
−0.0683323 + 0.997663i \(0.521768\pi\)
\(522\) 0 0
\(523\) 10.0000 0.437269 0.218635 0.975807i \(-0.429840\pi\)
0.218635 + 0.975807i \(0.429840\pi\)
\(524\) 0 0
\(525\) −6.39445 −0.279077
\(526\) 0 0
\(527\) −4.90833 −0.213810
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 6.78890 0.294613
\(532\) 0 0
\(533\) −2.78890 −0.120801
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.119429 0.00515376
\(538\) 0 0
\(539\) 4.60555 0.198375
\(540\) 0 0
\(541\) 19.2111 0.825950 0.412975 0.910742i \(-0.364490\pi\)
0.412975 + 0.910742i \(0.364490\pi\)
\(542\) 0 0
\(543\) −33.3944 −1.43309
\(544\) 0 0
\(545\) −0.972244 −0.0416463
\(546\) 0 0
\(547\) −31.8167 −1.36038 −0.680191 0.733035i \(-0.738103\pi\)
−0.680191 + 0.733035i \(0.738103\pi\)
\(548\) 0 0
\(549\) 6.11943 0.261171
\(550\) 0 0
\(551\) −39.6333 −1.68844
\(552\) 0 0
\(553\) 1.21110 0.0515013
\(554\) 0 0
\(555\) 1.81665 0.0771127
\(556\) 0 0
\(557\) 5.63331 0.238691 0.119345 0.992853i \(-0.461920\pi\)
0.119345 + 0.992853i \(0.461920\pi\)
\(558\) 0 0
\(559\) 10.7889 0.456322
\(560\) 0 0
\(561\) −6.00000 −0.253320
\(562\) 0 0
\(563\) 28.6056 1.20558 0.602790 0.797900i \(-0.294056\pi\)
0.602790 + 0.797900i \(0.294056\pi\)
\(564\) 0 0
\(565\) 0.366692 0.0154269
\(566\) 0 0
\(567\) 3.39445 0.142553
\(568\) 0 0
\(569\) 22.0917 0.926131 0.463066 0.886324i \(-0.346749\pi\)
0.463066 + 0.886324i \(0.346749\pi\)
\(570\) 0 0
\(571\) 7.39445 0.309448 0.154724 0.987958i \(-0.450551\pi\)
0.154724 + 0.987958i \(0.450551\pi\)
\(572\) 0 0
\(573\) 26.4500 1.10496
\(574\) 0 0
\(575\) 29.4500 1.22815
\(576\) 0 0
\(577\) −12.4222 −0.517143 −0.258572 0.965992i \(-0.583252\pi\)
−0.258572 + 0.965992i \(0.583252\pi\)
\(578\) 0 0
\(579\) −27.6333 −1.14840
\(580\) 0 0
\(581\) 17.8167 0.739159
\(582\) 0 0
\(583\) −35.4500 −1.46819
\(584\) 0 0
\(585\) 1.57779 0.0652338
\(586\) 0 0
\(587\) 21.6333 0.892902 0.446451 0.894808i \(-0.352688\pi\)
0.446451 + 0.894808i \(0.352688\pi\)
\(588\) 0 0
\(589\) −22.6056 −0.931446
\(590\) 0 0
\(591\) 5.76114 0.236982
\(592\) 0 0
\(593\) −23.3944 −0.960695 −0.480347 0.877078i \(-0.659489\pi\)
−0.480347 + 0.877078i \(0.659489\pi\)
\(594\) 0 0
\(595\) −0.302776 −0.0124126
\(596\) 0 0
\(597\) −29.5694 −1.21019
\(598\) 0 0
\(599\) 33.1194 1.35322 0.676612 0.736340i \(-0.263448\pi\)
0.676612 + 0.736340i \(0.263448\pi\)
\(600\) 0 0
\(601\) −4.78890 −0.195343 −0.0976716 0.995219i \(-0.531139\pi\)
−0.0976716 + 0.995219i \(0.531139\pi\)
\(602\) 0 0
\(603\) 17.6056 0.716953
\(604\) 0 0
\(605\) 3.09167 0.125694
\(606\) 0 0
\(607\) 24.5416 0.996114 0.498057 0.867144i \(-0.334047\pi\)
0.498057 + 0.867144i \(0.334047\pi\)
\(608\) 0 0
\(609\) −11.2111 −0.454297
\(610\) 0 0
\(611\) −36.8444 −1.49057
\(612\) 0 0
\(613\) −12.9083 −0.521362 −0.260681 0.965425i \(-0.583947\pi\)
−0.260681 + 0.965425i \(0.583947\pi\)
\(614\) 0 0
\(615\) −0.275019 −0.0110898
\(616\) 0 0
\(617\) −44.2389 −1.78099 −0.890495 0.454994i \(-0.849642\pi\)
−0.890495 + 0.454994i \(0.849642\pi\)
\(618\) 0 0
\(619\) 14.4222 0.579677 0.289839 0.957076i \(-0.406398\pi\)
0.289839 + 0.957076i \(0.406398\pi\)
\(620\) 0 0
\(621\) −33.6333 −1.34966
\(622\) 0 0
\(623\) −17.2111 −0.689548
\(624\) 0 0
\(625\) 23.6333 0.945332
\(626\) 0 0
\(627\) −27.6333 −1.10357
\(628\) 0 0
\(629\) −4.60555 −0.183635
\(630\) 0 0
\(631\) 26.4861 1.05440 0.527198 0.849743i \(-0.323243\pi\)
0.527198 + 0.849743i \(0.323243\pi\)
\(632\) 0 0
\(633\) 10.1833 0.404752
\(634\) 0 0
\(635\) 5.66947 0.224986
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) −0.788897 −0.0312083
\(640\) 0 0
\(641\) −30.2389 −1.19436 −0.597182 0.802106i \(-0.703713\pi\)
−0.597182 + 0.802106i \(0.703713\pi\)
\(642\) 0 0
\(643\) −44.7527 −1.76488 −0.882438 0.470429i \(-0.844099\pi\)
−0.882438 + 0.470429i \(0.844099\pi\)
\(644\) 0 0
\(645\) 1.06392 0.0418917
\(646\) 0 0
\(647\) −9.81665 −0.385932 −0.192966 0.981205i \(-0.561811\pi\)
−0.192966 + 0.981205i \(0.561811\pi\)
\(648\) 0 0
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) −6.39445 −0.250618
\(652\) 0 0
\(653\) −24.4222 −0.955715 −0.477857 0.878437i \(-0.658586\pi\)
−0.477857 + 0.878437i \(0.658586\pi\)
\(654\) 0 0
\(655\) 2.42221 0.0946434
\(656\) 0 0
\(657\) 7.69722 0.300297
\(658\) 0 0
\(659\) −16.3028 −0.635066 −0.317533 0.948247i \(-0.602854\pi\)
−0.317533 + 0.948247i \(0.602854\pi\)
\(660\) 0 0
\(661\) −42.6056 −1.65716 −0.828582 0.559868i \(-0.810852\pi\)
−0.828582 + 0.559868i \(0.810852\pi\)
\(662\) 0 0
\(663\) 5.21110 0.202382
\(664\) 0 0
\(665\) −1.39445 −0.0540744
\(666\) 0 0
\(667\) 51.6333 1.99925
\(668\) 0 0
\(669\) −33.6333 −1.30034
\(670\) 0 0
\(671\) −21.6333 −0.835145
\(672\) 0 0
\(673\) 42.8444 1.65153 0.825765 0.564014i \(-0.190744\pi\)
0.825765 + 0.564014i \(0.190744\pi\)
\(674\) 0 0
\(675\) −27.5139 −1.05901
\(676\) 0 0
\(677\) −0.788897 −0.0303198 −0.0151599 0.999885i \(-0.504826\pi\)
−0.0151599 + 0.999885i \(0.504826\pi\)
\(678\) 0 0
\(679\) −4.30278 −0.165125
\(680\) 0 0
\(681\) 13.6611 0.523493
\(682\) 0 0
\(683\) −49.2666 −1.88513 −0.942567 0.334016i \(-0.891596\pi\)
−0.942567 + 0.334016i \(0.891596\pi\)
\(684\) 0 0
\(685\) −6.63331 −0.253446
\(686\) 0 0
\(687\) 12.7889 0.487927
\(688\) 0 0
\(689\) 30.7889 1.17296
\(690\) 0 0
\(691\) 35.5416 1.35207 0.676034 0.736871i \(-0.263697\pi\)
0.676034 + 0.736871i \(0.263697\pi\)
\(692\) 0 0
\(693\) 6.00000 0.227921
\(694\) 0 0
\(695\) 4.09167 0.155206
\(696\) 0 0
\(697\) 0.697224 0.0264093
\(698\) 0 0
\(699\) 28.9722 1.09583
\(700\) 0 0
\(701\) 45.6333 1.72355 0.861773 0.507294i \(-0.169354\pi\)
0.861773 + 0.507294i \(0.169354\pi\)
\(702\) 0 0
\(703\) −21.2111 −0.799992
\(704\) 0 0
\(705\) −3.63331 −0.136838
\(706\) 0 0
\(707\) 12.6056 0.474081
\(708\) 0 0
\(709\) 15.6333 0.587121 0.293561 0.955940i \(-0.405160\pi\)
0.293561 + 0.955940i \(0.405160\pi\)
\(710\) 0 0
\(711\) 1.57779 0.0591719
\(712\) 0 0
\(713\) 29.4500 1.10291
\(714\) 0 0
\(715\) −5.57779 −0.208598
\(716\) 0 0
\(717\) 39.5139 1.47567
\(718\) 0 0
\(719\) −43.3583 −1.61699 −0.808496 0.588502i \(-0.799718\pi\)
−0.808496 + 0.588502i \(0.799718\pi\)
\(720\) 0 0
\(721\) 5.81665 0.216624
\(722\) 0 0
\(723\) −1.97224 −0.0733485
\(724\) 0 0
\(725\) 42.2389 1.56871
\(726\) 0 0
\(727\) 10.2389 0.379738 0.189869 0.981809i \(-0.439194\pi\)
0.189869 + 0.981809i \(0.439194\pi\)
\(728\) 0 0
\(729\) 26.3305 0.975205
\(730\) 0 0
\(731\) −2.69722 −0.0997604
\(732\) 0 0
\(733\) −37.6333 −1.39002 −0.695009 0.719001i \(-0.744600\pi\)
−0.695009 + 0.719001i \(0.744600\pi\)
\(734\) 0 0
\(735\) −0.394449 −0.0145495
\(736\) 0 0
\(737\) −62.2389 −2.29260
\(738\) 0 0
\(739\) 35.5416 1.30742 0.653710 0.756745i \(-0.273212\pi\)
0.653710 + 0.756745i \(0.273212\pi\)
\(740\) 0 0
\(741\) 24.0000 0.881662
\(742\) 0 0
\(743\) 11.3944 0.418022 0.209011 0.977913i \(-0.432976\pi\)
0.209011 + 0.977913i \(0.432976\pi\)
\(744\) 0 0
\(745\) 6.94449 0.254426
\(746\) 0 0
\(747\) 23.2111 0.849250
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 11.0278 0.402409 0.201204 0.979549i \(-0.435514\pi\)
0.201204 + 0.979549i \(0.435514\pi\)
\(752\) 0 0
\(753\) 11.2111 0.408555
\(754\) 0 0
\(755\) 2.44996 0.0891632
\(756\) 0 0
\(757\) −27.3028 −0.992336 −0.496168 0.868226i \(-0.665260\pi\)
−0.496168 + 0.868226i \(0.665260\pi\)
\(758\) 0 0
\(759\) 36.0000 1.30672
\(760\) 0 0
\(761\) 29.4500 1.06756 0.533780 0.845623i \(-0.320771\pi\)
0.533780 + 0.845623i \(0.320771\pi\)
\(762\) 0 0
\(763\) 3.21110 0.116250
\(764\) 0 0
\(765\) −0.394449 −0.0142613
\(766\) 0 0
\(767\) 20.8444 0.752648
\(768\) 0 0
\(769\) −6.60555 −0.238202 −0.119101 0.992882i \(-0.538001\pi\)
−0.119101 + 0.992882i \(0.538001\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 0 0
\(773\) 4.84441 0.174241 0.0871207 0.996198i \(-0.472233\pi\)
0.0871207 + 0.996198i \(0.472233\pi\)
\(774\) 0 0
\(775\) 24.0917 0.865398
\(776\) 0 0
\(777\) −6.00000 −0.215249
\(778\) 0 0
\(779\) 3.21110 0.115050
\(780\) 0 0
\(781\) 2.78890 0.0997946
\(782\) 0 0
\(783\) −48.2389 −1.72392
\(784\) 0 0
\(785\) −2.84441 −0.101521
\(786\) 0 0
\(787\) 25.2111 0.898679 0.449339 0.893361i \(-0.351659\pi\)
0.449339 + 0.893361i \(0.351659\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.21110 −0.0430618
\(792\) 0 0
\(793\) 18.7889 0.667213
\(794\) 0 0
\(795\) 3.03616 0.107682
\(796\) 0 0
\(797\) −10.1833 −0.360713 −0.180356 0.983601i \(-0.557725\pi\)
−0.180356 + 0.983601i \(0.557725\pi\)
\(798\) 0 0
\(799\) 9.21110 0.325865
\(800\) 0 0
\(801\) −22.4222 −0.792250
\(802\) 0 0
\(803\) −27.2111 −0.960259
\(804\) 0 0
\(805\) 1.81665 0.0640286
\(806\) 0 0
\(807\) −6.23886 −0.219618
\(808\) 0 0
\(809\) −15.2111 −0.534794 −0.267397 0.963586i \(-0.586163\pi\)
−0.267397 + 0.963586i \(0.586163\pi\)
\(810\) 0 0
\(811\) 34.5139 1.21195 0.605973 0.795485i \(-0.292784\pi\)
0.605973 + 0.795485i \(0.292784\pi\)
\(812\) 0 0
\(813\) −5.76114 −0.202052
\(814\) 0 0
\(815\) 7.02776 0.246172
\(816\) 0 0
\(817\) −12.4222 −0.434598
\(818\) 0 0
\(819\) −5.21110 −0.182091
\(820\) 0 0
\(821\) −7.39445 −0.258068 −0.129034 0.991640i \(-0.541188\pi\)
−0.129034 + 0.991640i \(0.541188\pi\)
\(822\) 0 0
\(823\) 31.0278 1.08156 0.540780 0.841164i \(-0.318129\pi\)
0.540780 + 0.841164i \(0.318129\pi\)
\(824\) 0 0
\(825\) 29.4500 1.02532
\(826\) 0 0
\(827\) 1.76114 0.0612409 0.0306204 0.999531i \(-0.490252\pi\)
0.0306204 + 0.999531i \(0.490252\pi\)
\(828\) 0 0
\(829\) −18.0555 −0.627094 −0.313547 0.949573i \(-0.601517\pi\)
−0.313547 + 0.949573i \(0.601517\pi\)
\(830\) 0 0
\(831\) 33.8722 1.17501
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 0.338936 0.0117294
\(836\) 0 0
\(837\) −27.5139 −0.951019
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 45.0555 1.55364
\(842\) 0 0
\(843\) 21.2389 0.731505
\(844\) 0 0
\(845\) 0.908327 0.0312474
\(846\) 0 0
\(847\) −10.2111 −0.350858
\(848\) 0 0
\(849\) 0.394449 0.0135374
\(850\) 0 0
\(851\) 27.6333 0.947258
\(852\) 0 0
\(853\) −36.0555 −1.23452 −0.617259 0.786760i \(-0.711757\pi\)
−0.617259 + 0.786760i \(0.711757\pi\)
\(854\) 0 0
\(855\) −1.81665 −0.0621282
\(856\) 0 0
\(857\) 11.3305 0.387044 0.193522 0.981096i \(-0.438009\pi\)
0.193522 + 0.981096i \(0.438009\pi\)
\(858\) 0 0
\(859\) 40.8444 1.39359 0.696797 0.717269i \(-0.254608\pi\)
0.696797 + 0.717269i \(0.254608\pi\)
\(860\) 0 0
\(861\) 0.908327 0.0309557
\(862\) 0 0
\(863\) −15.6972 −0.534340 −0.267170 0.963649i \(-0.586088\pi\)
−0.267170 + 0.963649i \(0.586088\pi\)
\(864\) 0 0
\(865\) 0.633308 0.0215331
\(866\) 0 0
\(867\) −1.30278 −0.0442446
\(868\) 0 0
\(869\) −5.57779 −0.189214
\(870\) 0 0
\(871\) 54.0555 1.83160
\(872\) 0 0
\(873\) −5.60555 −0.189719
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) −23.2111 −0.783783 −0.391892 0.920011i \(-0.628179\pi\)
−0.391892 + 0.920011i \(0.628179\pi\)
\(878\) 0 0
\(879\) 36.0000 1.21425
\(880\) 0 0
\(881\) −2.72498 −0.0918069 −0.0459035 0.998946i \(-0.514617\pi\)
−0.0459035 + 0.998946i \(0.514617\pi\)
\(882\) 0 0
\(883\) −48.5416 −1.63356 −0.816778 0.576952i \(-0.804242\pi\)
−0.816778 + 0.576952i \(0.804242\pi\)
\(884\) 0 0
\(885\) 2.05551 0.0690953
\(886\) 0 0
\(887\) 33.1472 1.11297 0.556487 0.830856i \(-0.312149\pi\)
0.556487 + 0.830856i \(0.312149\pi\)
\(888\) 0 0
\(889\) −18.7250 −0.628016
\(890\) 0 0
\(891\) −15.6333 −0.523736
\(892\) 0 0
\(893\) 42.4222 1.41960
\(894\) 0 0
\(895\) −0.0277564 −0.000927793 0
\(896\) 0 0
\(897\) −31.2666 −1.04396
\(898\) 0 0
\(899\) 42.2389 1.40874
\(900\) 0 0
\(901\) −7.69722 −0.256432
\(902\) 0 0
\(903\) −3.51388 −0.116935
\(904\) 0 0
\(905\) 7.76114 0.257989
\(906\) 0 0
\(907\) −20.4222 −0.678108 −0.339054 0.940767i \(-0.610107\pi\)
−0.339054 + 0.940767i \(0.610107\pi\)
\(908\) 0 0
\(909\) 16.4222 0.544690
\(910\) 0 0
\(911\) 10.9722 0.363527 0.181763 0.983342i \(-0.441820\pi\)
0.181763 + 0.983342i \(0.441820\pi\)
\(912\) 0 0
\(913\) −82.0555 −2.71564
\(914\) 0 0
\(915\) 1.85281 0.0612521
\(916\) 0 0
\(917\) −8.00000 −0.264183
\(918\) 0 0
\(919\) 6.69722 0.220921 0.110461 0.993881i \(-0.464767\pi\)
0.110461 + 0.993881i \(0.464767\pi\)
\(920\) 0 0
\(921\) −17.4500 −0.574996
\(922\) 0 0
\(923\) −2.42221 −0.0797279
\(924\) 0 0
\(925\) 22.6056 0.743266
\(926\) 0 0
\(927\) 7.57779 0.248887
\(928\) 0 0
\(929\) 18.4861 0.606510 0.303255 0.952909i \(-0.401927\pi\)
0.303255 + 0.952909i \(0.401927\pi\)
\(930\) 0 0
\(931\) 4.60555 0.150941
\(932\) 0 0
\(933\) −20.4500 −0.669502
\(934\) 0 0
\(935\) 1.39445 0.0456033
\(936\) 0 0
\(937\) −30.4222 −0.993850 −0.496925 0.867793i \(-0.665538\pi\)
−0.496925 + 0.867793i \(0.665538\pi\)
\(938\) 0 0
\(939\) −31.1833 −1.01763
\(940\) 0 0
\(941\) −18.7527 −0.611322 −0.305661 0.952140i \(-0.598877\pi\)
−0.305661 + 0.952140i \(0.598877\pi\)
\(942\) 0 0
\(943\) −4.18335 −0.136228
\(944\) 0 0
\(945\) −1.69722 −0.0552107
\(946\) 0 0
\(947\) 12.6056 0.409625 0.204813 0.978801i \(-0.434341\pi\)
0.204813 + 0.978801i \(0.434341\pi\)
\(948\) 0 0
\(949\) 23.6333 0.767170
\(950\) 0 0
\(951\) −29.2111 −0.947235
\(952\) 0 0
\(953\) 30.3583 0.983401 0.491701 0.870764i \(-0.336375\pi\)
0.491701 + 0.870764i \(0.336375\pi\)
\(954\) 0 0
\(955\) −6.14719 −0.198918
\(956\) 0 0
\(957\) 51.6333 1.66907
\(958\) 0 0
\(959\) 21.9083 0.707457
\(960\) 0 0
\(961\) −6.90833 −0.222849
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.42221 0.206738
\(966\) 0 0
\(967\) 45.3028 1.45684 0.728420 0.685131i \(-0.240255\pi\)
0.728420 + 0.685131i \(0.240255\pi\)
\(968\) 0 0
\(969\) −6.00000 −0.192748
\(970\) 0 0
\(971\) 32.6056 1.04636 0.523181 0.852222i \(-0.324745\pi\)
0.523181 + 0.852222i \(0.324745\pi\)
\(972\) 0 0
\(973\) −13.5139 −0.433235
\(974\) 0 0
\(975\) −25.5778 −0.819145
\(976\) 0 0
\(977\) 15.6972 0.502199 0.251099 0.967961i \(-0.419208\pi\)
0.251099 + 0.967961i \(0.419208\pi\)
\(978\) 0 0
\(979\) 79.2666 2.53337
\(980\) 0 0
\(981\) 4.18335 0.133564
\(982\) 0 0
\(983\) 59.5694 1.89997 0.949984 0.312298i \(-0.101099\pi\)
0.949984 + 0.312298i \(0.101099\pi\)
\(984\) 0 0
\(985\) −1.33894 −0.0426620
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) 0 0
\(989\) 16.1833 0.514600
\(990\) 0 0
\(991\) −44.4222 −1.41112 −0.705559 0.708651i \(-0.749304\pi\)
−0.705559 + 0.708651i \(0.749304\pi\)
\(992\) 0 0
\(993\) 22.0278 0.699030
\(994\) 0 0
\(995\) 6.87217 0.217862
\(996\) 0 0
\(997\) 0.880571 0.0278879 0.0139440 0.999903i \(-0.495561\pi\)
0.0139440 + 0.999903i \(0.495561\pi\)
\(998\) 0 0
\(999\) −25.8167 −0.816803
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.a.b.1.1 2
3.2 odd 2 8568.2.a.t.1.1 2
4.3 odd 2 1904.2.a.g.1.2 2
7.6 odd 2 6664.2.a.g.1.2 2
8.3 odd 2 7616.2.a.x.1.1 2
8.5 even 2 7616.2.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.b.1.1 2 1.1 even 1 trivial
1904.2.a.g.1.2 2 4.3 odd 2
6664.2.a.g.1.2 2 7.6 odd 2
7616.2.a.s.1.2 2 8.5 even 2
7616.2.a.x.1.1 2 8.3 odd 2
8568.2.a.t.1.1 2 3.2 odd 2