Properties

Label 950.6.a.e
Level $950$
Weight $6$
Character orbit 950.a
Self dual yes
Analytic conductor $152.365$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,6,Mod(1,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(152.364628822\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{163}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 163 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{163}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + (\beta + 1) q^{3} + 16 q^{4} + (4 \beta + 4) q^{6} + (4 \beta - 78) q^{7} + 64 q^{8} + (2 \beta - 79) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} + (\beta + 1) q^{3} + 16 q^{4} + (4 \beta + 4) q^{6} + (4 \beta - 78) q^{7} + 64 q^{8} + (2 \beta - 79) q^{9} + (22 \beta - 256) q^{11} + (16 \beta + 16) q^{12} + (3 \beta + 643) q^{13} + (16 \beta - 312) q^{14} + 256 q^{16} + ( - 138 \beta - 540) q^{17} + (8 \beta - 316) q^{18} + 361 q^{19} + ( - 74 \beta + 574) q^{21} + (88 \beta - 1024) q^{22} + ( - 182 \beta + 1112) q^{23} + (64 \beta + 64) q^{24} + (12 \beta + 2572) q^{26} + ( - 320 \beta + 4) q^{27} + (64 \beta - 1248) q^{28} + ( - 18 \beta - 1284) q^{29} + ( - 358 \beta - 954) q^{31} + 1024 q^{32} + ( - 234 \beta + 3330) q^{33} + ( - 552 \beta - 2160) q^{34} + (32 \beta - 1264) q^{36} + (13 \beta - 3903) q^{37} + 1444 q^{38} + (646 \beta + 1132) q^{39} + ( - 600 \beta + 1530) q^{41} + ( - 296 \beta + 2296) q^{42} + ( - 88 \beta + 1298) q^{43} + (352 \beta - 4096) q^{44} + ( - 728 \beta + 4448) q^{46} + (456 \beta + 7206) q^{47} + (256 \beta + 256) q^{48} + ( - 624 \beta - 8115) q^{49} + ( - 678 \beta - 23034) q^{51} + (48 \beta + 10288) q^{52} + (707 \beta + 4819) q^{53} + ( - 1280 \beta + 16) q^{54} + (256 \beta - 4992) q^{56} + (361 \beta + 361) q^{57} + ( - 72 \beta - 5136) q^{58} + ( - 420 \beta - 21504) q^{59} + (2182 \beta - 12926) q^{61} + ( - 1432 \beta - 3816) q^{62} + ( - 472 \beta + 7466) q^{63} + 4096 q^{64} + ( - 936 \beta + 13320) q^{66} + ( - 943 \beta + 13733) q^{67} + ( - 2208 \beta - 8640) q^{68} + (930 \beta - 28554) q^{69} + (2142 \beta - 43890) q^{71} + (128 \beta - 5056) q^{72} + (2466 \beta + 12952) q^{73} + (52 \beta - 15612) q^{74} + 5776 q^{76} + ( - 2740 \beta + 34312) q^{77} + (2584 \beta + 4528) q^{78} + (476 \beta - 1860) q^{79} + ( - 802 \beta - 32959) q^{81} + ( - 2400 \beta + 6120) q^{82} + (3974 \beta - 19160) q^{83} + ( - 1184 \beta + 9184) q^{84} + ( - 352 \beta + 5192) q^{86} + ( - 1302 \beta - 4218) q^{87} + (1408 \beta - 16384) q^{88} + ( - 3974 \beta - 83632) q^{89} + (2338 \beta - 48198) q^{91} + ( - 2912 \beta + 17792) q^{92} + ( - 1312 \beta - 59308) q^{93} + (1824 \beta + 28824) q^{94} + (1024 \beta + 1024) q^{96} + (1603 \beta + 2019) q^{97} + ( - 2496 \beta - 32460) q^{98} + ( - 2250 \beta + 27396) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 2 q^{3} + 32 q^{4} + 8 q^{6} - 156 q^{7} + 128 q^{8} - 158 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} + 2 q^{3} + 32 q^{4} + 8 q^{6} - 156 q^{7} + 128 q^{8} - 158 q^{9} - 512 q^{11} + 32 q^{12} + 1286 q^{13} - 624 q^{14} + 512 q^{16} - 1080 q^{17} - 632 q^{18} + 722 q^{19} + 1148 q^{21} - 2048 q^{22} + 2224 q^{23} + 128 q^{24} + 5144 q^{26} + 8 q^{27} - 2496 q^{28} - 2568 q^{29} - 1908 q^{31} + 2048 q^{32} + 6660 q^{33} - 4320 q^{34} - 2528 q^{36} - 7806 q^{37} + 2888 q^{38} + 2264 q^{39} + 3060 q^{41} + 4592 q^{42} + 2596 q^{43} - 8192 q^{44} + 8896 q^{46} + 14412 q^{47} + 512 q^{48} - 16230 q^{49} - 46068 q^{51} + 20576 q^{52} + 9638 q^{53} + 32 q^{54} - 9984 q^{56} + 722 q^{57} - 10272 q^{58} - 43008 q^{59} - 25852 q^{61} - 7632 q^{62} + 14932 q^{63} + 8192 q^{64} + 26640 q^{66} + 27466 q^{67} - 17280 q^{68} - 57108 q^{69} - 87780 q^{71} - 10112 q^{72} + 25904 q^{73} - 31224 q^{74} + 11552 q^{76} + 68624 q^{77} + 9056 q^{78} - 3720 q^{79} - 65918 q^{81} + 12240 q^{82} - 38320 q^{83} + 18368 q^{84} + 10384 q^{86} - 8436 q^{87} - 32768 q^{88} - 167264 q^{89} - 96396 q^{91} + 35584 q^{92} - 118616 q^{93} + 57648 q^{94} + 2048 q^{96} + 4038 q^{97} - 64920 q^{98} + 54792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−12.7671
12.7671
4.00000 −11.7671 16.0000 0 −47.0686 −129.069 64.0000 −104.534 0
1.2 4.00000 13.7671 16.0000 0 55.0686 −26.9314 64.0000 −53.4657 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.6.a.e 2
5.b even 2 1 190.6.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.6.a.b 2 5.b even 2 1
950.6.a.e 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} - 162 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(950))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 162 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 156T + 3476 \) Copy content Toggle raw display
$11$ \( T^{2} + 512T - 13356 \) Copy content Toggle raw display
$13$ \( T^{2} - 1286 T + 411982 \) Copy content Toggle raw display
$17$ \( T^{2} + 1080 T - 2812572 \) Copy content Toggle raw display
$19$ \( (T - 361)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 2224 T - 4162668 \) Copy content Toggle raw display
$29$ \( T^{2} + 2568 T + 1595844 \) Copy content Toggle raw display
$31$ \( T^{2} + 1908 T - 19980616 \) Copy content Toggle raw display
$37$ \( T^{2} + 7806 T + 15205862 \) Copy content Toggle raw display
$41$ \( T^{2} - 3060 T - 56339100 \) Copy content Toggle raw display
$43$ \( T^{2} - 2596 T + 422532 \) Copy content Toggle raw display
$47$ \( T^{2} - 14412 T + 18032868 \) Copy content Toggle raw display
$53$ \( T^{2} - 9638 T - 58252626 \) Copy content Toggle raw display
$59$ \( T^{2} + 43008 T + 433668816 \) Copy content Toggle raw display
$61$ \( T^{2} + 25852 T - 608981736 \) Copy content Toggle raw display
$67$ \( T^{2} - 27466 T + 43647702 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1178461368 \) Copy content Toggle raw display
$73$ \( T^{2} - 25904 T - 823474124 \) Copy content Toggle raw display
$79$ \( T^{2} + 3720 T - 33472288 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 2207100588 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 4420105236 \) Copy content Toggle raw display
$97$ \( T^{2} - 4038 T - 414769906 \) Copy content Toggle raw display
show more
show less