Properties

Label 950.6.a.d
Level $950$
Weight $6$
Character orbit 950.a
Self dual yes
Analytic conductor $152.365$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,6,Mod(1,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(152.364628822\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1441}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 360 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1441})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + ( - \beta - 1) q^{3} + 16 q^{4} + ( - 4 \beta - 4) q^{6} + (4 \beta - 59) q^{7} + 64 q^{8} + (3 \beta + 118) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} + ( - \beta - 1) q^{3} + 16 q^{4} + ( - 4 \beta - 4) q^{6} + (4 \beta - 59) q^{7} + 64 q^{8} + (3 \beta + 118) q^{9} + (\beta + 330) q^{11} + ( - 16 \beta - 16) q^{12} + (5 \beta - 809) q^{13} + (16 \beta - 236) q^{14} + 256 q^{16} + ( - 10 \beta - 27) q^{17} + (12 \beta + 472) q^{18} + 361 q^{19} + (51 \beta - 1381) q^{21} + (4 \beta + 1320) q^{22} + ( - 49 \beta + 1617) q^{23} + ( - 64 \beta - 64) q^{24} + (20 \beta - 3236) q^{26} + (119 \beta - 955) q^{27} + (64 \beta - 944) q^{28} + ( - 315 \beta - 1083) q^{29} + (316 \beta - 748) q^{31} + 1024 q^{32} + ( - 332 \beta - 690) q^{33} + ( - 40 \beta - 108) q^{34} + (48 \beta + 1888) q^{36} + (172 \beta - 5330) q^{37} + 1444 q^{38} + (799 \beta - 991) q^{39} + ( - 602 \beta + 8616) q^{41} + (204 \beta - 5524) q^{42} + (281 \beta - 5792) q^{43} + (16 \beta + 5280) q^{44} + ( - 196 \beta + 6468) q^{46} + (1115 \beta + 5520) q^{47} + ( - 256 \beta - 256) q^{48} + ( - 456 \beta - 7566) q^{49} + (47 \beta + 3627) q^{51} + (80 \beta - 12944) q^{52} + (601 \beta - 10593) q^{53} + (476 \beta - 3820) q^{54} + (256 \beta - 3776) q^{56} + ( - 361 \beta - 361) q^{57} + ( - 1260 \beta - 4332) q^{58} + (73 \beta - 39327) q^{59} + (825 \beta + 21398) q^{61} + (1264 \beta - 2992) q^{62} + (307 \beta - 2642) q^{63} + 4096 q^{64} + ( - 1328 \beta - 2760) q^{66} + (3101 \beta - 5453) q^{67} + ( - 160 \beta - 432) q^{68} + ( - 1519 \beta + 16023) q^{69} + (1268 \beta - 31878) q^{71} + (192 \beta + 7552) q^{72} + ( - 2984 \beta - 6617) q^{73} + (688 \beta - 21320) q^{74} + 5776 q^{76} + (1265 \beta - 18030) q^{77} + (3196 \beta - 3964) q^{78} + (134 \beta + 33494) q^{79} + ( - 12 \beta - 70559) q^{81} + ( - 2408 \beta + 34464) q^{82} + (2446 \beta + 4134) q^{83} + (816 \beta - 22096) q^{84} + (1124 \beta - 23168) q^{86} + (1713 \beta + 114483) q^{87} + (64 \beta + 21120) q^{88} + (4276 \beta + 61956) q^{89} + ( - 3511 \beta + 54931) q^{91} + ( - 784 \beta + 25872) q^{92} + (116 \beta - 113012) q^{93} + (4460 \beta + 22080) q^{94} + ( - 1024 \beta - 1024) q^{96} + (2622 \beta - 90590) q^{97} + ( - 1824 \beta - 30264) q^{98} + (1111 \beta + 40020) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 3 q^{3} + 32 q^{4} - 12 q^{6} - 114 q^{7} + 128 q^{8} + 239 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} - 3 q^{3} + 32 q^{4} - 12 q^{6} - 114 q^{7} + 128 q^{8} + 239 q^{9} + 661 q^{11} - 48 q^{12} - 1613 q^{13} - 456 q^{14} + 512 q^{16} - 64 q^{17} + 956 q^{18} + 722 q^{19} - 2711 q^{21} + 2644 q^{22} + 3185 q^{23} - 192 q^{24} - 6452 q^{26} - 1791 q^{27} - 1824 q^{28} - 2481 q^{29} - 1180 q^{31} + 2048 q^{32} - 1712 q^{33} - 256 q^{34} + 3824 q^{36} - 10488 q^{37} + 2888 q^{38} - 1183 q^{39} + 16630 q^{41} - 10844 q^{42} - 11303 q^{43} + 10576 q^{44} + 12740 q^{46} + 12155 q^{47} - 768 q^{48} - 15588 q^{49} + 7301 q^{51} - 25808 q^{52} - 20585 q^{53} - 7164 q^{54} - 7296 q^{56} - 1083 q^{57} - 9924 q^{58} - 78581 q^{59} + 43621 q^{61} - 4720 q^{62} - 4977 q^{63} + 8192 q^{64} - 6848 q^{66} - 7805 q^{67} - 1024 q^{68} + 30527 q^{69} - 62488 q^{71} + 15296 q^{72} - 16218 q^{73} - 41952 q^{74} + 11552 q^{76} - 34795 q^{77} - 4732 q^{78} + 67122 q^{79} - 141130 q^{81} + 66520 q^{82} + 10714 q^{83} - 43376 q^{84} - 45212 q^{86} + 230679 q^{87} + 42304 q^{88} + 128188 q^{89} + 106351 q^{91} + 50960 q^{92} - 225908 q^{93} + 48620 q^{94} - 3072 q^{96} - 178558 q^{97} - 62352 q^{98} + 81151 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.4803
−18.4803
4.00000 −20.4803 16.0000 0 −81.9210 18.9210 64.0000 176.441 0
1.2 4.00000 17.4803 16.0000 0 69.9210 −132.921 64.0000 62.5592 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.6.a.d 2
5.b even 2 1 38.6.a.c 2
15.d odd 2 1 342.6.a.i 2
20.d odd 2 1 304.6.a.f 2
95.d odd 2 1 722.6.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.6.a.c 2 5.b even 2 1
304.6.a.f 2 20.d odd 2 1
342.6.a.i 2 15.d odd 2 1
722.6.a.c 2 95.d odd 2 1
950.6.a.d 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 3T_{3} - 358 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(950))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T - 358 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 114T - 2515 \) Copy content Toggle raw display
$11$ \( T^{2} - 661T + 108870 \) Copy content Toggle raw display
$13$ \( T^{2} + 1613 T + 641436 \) Copy content Toggle raw display
$17$ \( T^{2} + 64T - 35001 \) Copy content Toggle raw display
$19$ \( (T - 361)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 3185 T + 1671096 \) Copy content Toggle raw display
$29$ \( T^{2} + 2481 T - 34206966 \) Copy content Toggle raw display
$31$ \( T^{2} + 1180 T - 35625024 \) Copy content Toggle raw display
$37$ \( T^{2} + 10488 T + 16841900 \) Copy content Toggle raw display
$41$ \( T^{2} - 16630 T - 61416816 \) Copy content Toggle raw display
$43$ \( T^{2} + 11303 T + 3493752 \) Copy content Toggle raw display
$47$ \( T^{2} - 12155 T - 410935800 \) Copy content Toggle raw display
$53$ \( T^{2} + 20585 T - 24187104 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1541823618 \) Copy content Toggle raw display
$61$ \( T^{2} - 43621 T + 230502754 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 3449006904 \) Copy content Toggle raw display
$71$ \( T^{2} + 62488 T + 396968940 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 3142002343 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 1119872072 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 2126648040 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 2478833568 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 5494062880 \) Copy content Toggle raw display
show more
show less