Defining parameters
Level: | \( N \) | = | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 18 \) | ||
Sturm bound: | \(324000\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(950))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136008 | 41245 | 94763 |
Cusp forms | 133992 | 41245 | 92747 |
Eisenstein series | 2016 | 0 | 2016 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(950))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(950))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(950)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(190))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(475))\)\(^{\oplus 2}\)