Properties

Label 950.4.b.g.799.3
Level $950$
Weight $4$
Character 950.799
Analytic conductor $56.052$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [950,4,Mod(799,950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("950.799"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 950.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,-4,0,0,-70,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.0518145055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{177})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 89x^{2} + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.3
Root \(-6.15207i\) of defining polynomial
Character \(\chi\) \(=\) 950.799
Dual form 950.4.b.g.799.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -6.15207i q^{3} -4.00000 q^{4} +12.3041 q^{6} -21.8479i q^{7} -8.00000i q^{8} -10.8479 q^{9} -8.30413 q^{11} +24.6083i q^{12} +53.0645i q^{13} +43.6959 q^{14} +16.0000 q^{16} -74.2810i q^{17} -21.6959i q^{18} +19.0000 q^{19} -134.410 q^{21} -16.6083i q^{22} -163.977i q^{23} -49.2165 q^{24} -106.129 q^{26} -99.3686i q^{27} +87.3917i q^{28} +232.410 q^{29} +98.4331 q^{31} +32.0000i q^{32} +51.0876i q^{33} +148.562 q^{34} +43.3917 q^{36} -296.433i q^{37} +38.0000i q^{38} +326.456 q^{39} -434.912 q^{41} -268.820i q^{42} -171.299i q^{43} +33.2165 q^{44} +327.954 q^{46} +366.083i q^{47} -98.4331i q^{48} -134.332 q^{49} -456.982 q^{51} -212.258i q^{52} +138.631i q^{53} +198.737 q^{54} -174.783 q^{56} -116.889i q^{57} +464.820i q^{58} -572.797 q^{59} -632.691 q^{61} +196.866i q^{62} +237.005i q^{63} -64.0000 q^{64} -102.175 q^{66} +183.461i q^{67} +297.124i q^{68} -1008.80 q^{69} +56.6545 q^{71} +86.7835i q^{72} +68.1521i q^{73} +592.866 q^{74} -76.0000 q^{76} +181.428i q^{77} +652.912i q^{78} +332.820 q^{79} -904.217 q^{81} -869.825i q^{82} +1152.91i q^{83} +537.640 q^{84} +342.598 q^{86} -1429.80i q^{87} +66.4331i q^{88} +368.479 q^{89} +1159.35 q^{91} +655.908i q^{92} -605.567i q^{93} -732.165 q^{94} +196.866 q^{96} +426.443i q^{97} -268.664i q^{98} +90.0827 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 4 q^{6} - 70 q^{9} + 20 q^{11} + 228 q^{14} + 64 q^{16} + 76 q^{19} + 234 q^{21} + 16 q^{24} - 52 q^{26} + 158 q^{29} - 32 q^{31} - 204 q^{34} + 280 q^{36} + 1226 q^{39} - 1580 q^{41} - 80 q^{44}+ \cdots - 704 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) − 6.15207i − 1.18397i −0.805950 0.591983i \(-0.798345\pi\)
0.805950 0.591983i \(-0.201655\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 12.3041 0.837190
\(7\) − 21.8479i − 1.17968i −0.807521 0.589839i \(-0.799191\pi\)
0.807521 0.589839i \(-0.200809\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) −10.8479 −0.401775
\(10\) 0 0
\(11\) −8.30413 −0.227617 −0.113809 0.993503i \(-0.536305\pi\)
−0.113809 + 0.993503i \(0.536305\pi\)
\(12\) 24.6083i 0.591983i
\(13\) 53.0645i 1.13211i 0.824367 + 0.566055i \(0.191531\pi\)
−0.824367 + 0.566055i \(0.808469\pi\)
\(14\) 43.6959 0.834158
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 74.2810i − 1.05975i −0.848075 0.529876i \(-0.822238\pi\)
0.848075 0.529876i \(-0.177762\pi\)
\(18\) − 21.6959i − 0.284098i
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) −134.410 −1.39670
\(22\) − 16.6083i − 0.160950i
\(23\) − 163.977i − 1.48659i −0.668964 0.743294i \(-0.733262\pi\)
0.668964 0.743294i \(-0.266738\pi\)
\(24\) −49.2165 −0.418595
\(25\) 0 0
\(26\) −106.129 −0.800523
\(27\) − 99.3686i − 0.708278i
\(28\) 87.3917i 0.589839i
\(29\) 232.410 1.48819 0.744094 0.668075i \(-0.232882\pi\)
0.744094 + 0.668075i \(0.232882\pi\)
\(30\) 0 0
\(31\) 98.4331 0.570294 0.285147 0.958484i \(-0.407958\pi\)
0.285147 + 0.958484i \(0.407958\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 51.0876i 0.269491i
\(34\) 148.562 0.749358
\(35\) 0 0
\(36\) 43.3917 0.200888
\(37\) − 296.433i − 1.31712i −0.752530 0.658558i \(-0.771167\pi\)
0.752530 0.658558i \(-0.228833\pi\)
\(38\) 38.0000i 0.162221i
\(39\) 326.456 1.34038
\(40\) 0 0
\(41\) −434.912 −1.65663 −0.828316 0.560261i \(-0.810701\pi\)
−0.828316 + 0.560261i \(0.810701\pi\)
\(42\) − 268.820i − 0.987615i
\(43\) − 171.299i − 0.607509i −0.952750 0.303755i \(-0.901760\pi\)
0.952750 0.303755i \(-0.0982403\pi\)
\(44\) 33.2165 0.113809
\(45\) 0 0
\(46\) 327.954 1.05118
\(47\) 366.083i 1.13614i 0.822980 + 0.568071i \(0.192310\pi\)
−0.822980 + 0.568071i \(0.807690\pi\)
\(48\) − 98.4331i − 0.295991i
\(49\) −134.332 −0.391639
\(50\) 0 0
\(51\) −456.982 −1.25471
\(52\) − 212.258i − 0.566055i
\(53\) 138.631i 0.359292i 0.983731 + 0.179646i \(0.0574953\pi\)
−0.983731 + 0.179646i \(0.942505\pi\)
\(54\) 198.737 0.500828
\(55\) 0 0
\(56\) −174.783 −0.417079
\(57\) − 116.889i − 0.271620i
\(58\) 464.820i 1.05231i
\(59\) −572.797 −1.26393 −0.631964 0.774997i \(-0.717751\pi\)
−0.631964 + 0.774997i \(0.717751\pi\)
\(60\) 0 0
\(61\) −632.691 −1.32800 −0.663998 0.747734i \(-0.731142\pi\)
−0.663998 + 0.747734i \(0.731142\pi\)
\(62\) 196.866i 0.403258i
\(63\) 237.005i 0.473965i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −102.175 −0.190559
\(67\) 183.461i 0.334527i 0.985912 + 0.167264i \(0.0534931\pi\)
−0.985912 + 0.167264i \(0.946507\pi\)
\(68\) 297.124i 0.529876i
\(69\) −1008.80 −1.76007
\(70\) 0 0
\(71\) 56.6545 0.0946994 0.0473497 0.998878i \(-0.484922\pi\)
0.0473497 + 0.998878i \(0.484922\pi\)
\(72\) 86.7835i 0.142049i
\(73\) 68.1521i 0.109268i 0.998506 + 0.0546342i \(0.0173993\pi\)
−0.998506 + 0.0546342i \(0.982601\pi\)
\(74\) 592.866 0.931342
\(75\) 0 0
\(76\) −76.0000 −0.114708
\(77\) 181.428i 0.268515i
\(78\) 652.912i 0.947792i
\(79\) 332.820 0.473989 0.236995 0.971511i \(-0.423838\pi\)
0.236995 + 0.971511i \(0.423838\pi\)
\(80\) 0 0
\(81\) −904.217 −1.24035
\(82\) − 869.825i − 1.17142i
\(83\) 1152.91i 1.52468i 0.647176 + 0.762341i \(0.275950\pi\)
−0.647176 + 0.762341i \(0.724050\pi\)
\(84\) 537.640 0.698349
\(85\) 0 0
\(86\) 342.598 0.429574
\(87\) − 1429.80i − 1.76196i
\(88\) 66.4331i 0.0804749i
\(89\) 368.479 0.438862 0.219431 0.975628i \(-0.429580\pi\)
0.219431 + 0.975628i \(0.429580\pi\)
\(90\) 0 0
\(91\) 1159.35 1.33553
\(92\) 655.908i 0.743294i
\(93\) − 605.567i − 0.675208i
\(94\) −732.165 −0.803373
\(95\) 0 0
\(96\) 196.866 0.209298
\(97\) 426.443i 0.446378i 0.974775 + 0.223189i \(0.0716468\pi\)
−0.974775 + 0.223189i \(0.928353\pi\)
\(98\) − 268.664i − 0.276931i
\(99\) 90.0827 0.0914510
\(100\) 0 0
\(101\) −403.124 −0.397152 −0.198576 0.980086i \(-0.563632\pi\)
−0.198576 + 0.980086i \(0.563632\pi\)
\(102\) − 913.964i − 0.887214i
\(103\) − 1135.68i − 1.08642i −0.839596 0.543211i \(-0.817208\pi\)
0.839596 0.543211i \(-0.182792\pi\)
\(104\) 424.516 0.400262
\(105\) 0 0
\(106\) −277.263 −0.254058
\(107\) 380.096i 0.343414i 0.985148 + 0.171707i \(0.0549282\pi\)
−0.985148 + 0.171707i \(0.945072\pi\)
\(108\) 397.474i 0.354139i
\(109\) −1180.74 −1.03756 −0.518782 0.854907i \(-0.673614\pi\)
−0.518782 + 0.854907i \(0.673614\pi\)
\(110\) 0 0
\(111\) −1823.68 −1.55942
\(112\) − 349.567i − 0.294919i
\(113\) − 1132.51i − 0.942807i −0.881918 0.471404i \(-0.843748\pi\)
0.881918 0.471404i \(-0.156252\pi\)
\(114\) 233.779 0.192065
\(115\) 0 0
\(116\) −929.640 −0.744094
\(117\) − 575.640i − 0.454854i
\(118\) − 1145.59i − 0.893733i
\(119\) −1622.89 −1.25017
\(120\) 0 0
\(121\) −1262.04 −0.948190
\(122\) − 1265.38i − 0.939035i
\(123\) 2675.61i 1.96140i
\(124\) −393.732 −0.285147
\(125\) 0 0
\(126\) −474.010 −0.335144
\(127\) 40.0462i 0.0279806i 0.999902 + 0.0139903i \(0.00445339\pi\)
−0.999902 + 0.0139903i \(0.995547\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −1053.84 −0.719270
\(130\) 0 0
\(131\) −177.898 −0.118649 −0.0593244 0.998239i \(-0.518895\pi\)
−0.0593244 + 0.998239i \(0.518895\pi\)
\(132\) − 204.350i − 0.134746i
\(133\) − 415.111i − 0.270637i
\(134\) −366.922 −0.236547
\(135\) 0 0
\(136\) −594.248 −0.374679
\(137\) 24.7603i 0.0154410i 0.999970 + 0.00772050i \(0.00245754\pi\)
−0.999970 + 0.00772050i \(0.997542\pi\)
\(138\) − 2017.59i − 1.24456i
\(139\) −2867.21 −1.74959 −0.874796 0.484491i \(-0.839005\pi\)
−0.874796 + 0.484491i \(0.839005\pi\)
\(140\) 0 0
\(141\) 2252.17 1.34515
\(142\) 113.309i 0.0669626i
\(143\) − 440.655i − 0.257688i
\(144\) −173.567 −0.100444
\(145\) 0 0
\(146\) −136.304 −0.0772645
\(147\) 826.421i 0.463687i
\(148\) 1185.73i 0.658558i
\(149\) −1949.35 −1.07179 −0.535895 0.844285i \(-0.680026\pi\)
−0.535895 + 0.844285i \(0.680026\pi\)
\(150\) 0 0
\(151\) 1120.99 0.604136 0.302068 0.953286i \(-0.402323\pi\)
0.302068 + 0.953286i \(0.402323\pi\)
\(152\) − 152.000i − 0.0811107i
\(153\) 805.795i 0.425782i
\(154\) −362.856 −0.189869
\(155\) 0 0
\(156\) −1305.82 −0.670190
\(157\) 2360.23i 1.19979i 0.800079 + 0.599894i \(0.204791\pi\)
−0.800079 + 0.599894i \(0.795209\pi\)
\(158\) 665.640i 0.335161i
\(159\) 852.870 0.425390
\(160\) 0 0
\(161\) −3582.56 −1.75370
\(162\) − 1808.43i − 0.877061i
\(163\) 861.825i 0.414131i 0.978327 + 0.207065i \(0.0663913\pi\)
−0.978327 + 0.207065i \(0.933609\pi\)
\(164\) 1739.65 0.828316
\(165\) 0 0
\(166\) −2305.82 −1.07811
\(167\) − 1686.51i − 0.781472i −0.920503 0.390736i \(-0.872221\pi\)
0.920503 0.390736i \(-0.127779\pi\)
\(168\) 1075.28i 0.493807i
\(169\) −618.838 −0.281674
\(170\) 0 0
\(171\) −206.111 −0.0921736
\(172\) 685.197i 0.303755i
\(173\) − 3191.44i − 1.40255i −0.712893 0.701273i \(-0.752616\pi\)
0.712893 0.701273i \(-0.247384\pi\)
\(174\) 2859.60 1.24590
\(175\) 0 0
\(176\) −132.866 −0.0569043
\(177\) 3523.88i 1.49645i
\(178\) 736.959i 0.310322i
\(179\) 1229.49 0.513389 0.256695 0.966493i \(-0.417367\pi\)
0.256695 + 0.966493i \(0.417367\pi\)
\(180\) 0 0
\(181\) −3108.95 −1.27672 −0.638360 0.769738i \(-0.720387\pi\)
−0.638360 + 0.769738i \(0.720387\pi\)
\(182\) 2318.70i 0.944359i
\(183\) 3892.36i 1.57230i
\(184\) −1311.82 −0.525589
\(185\) 0 0
\(186\) 1211.13 0.477444
\(187\) 616.840i 0.241218i
\(188\) − 1464.33i − 0.568071i
\(189\) −2171.00 −0.835539
\(190\) 0 0
\(191\) −1415.48 −0.536233 −0.268117 0.963386i \(-0.586401\pi\)
−0.268117 + 0.963386i \(0.586401\pi\)
\(192\) 393.732i 0.147996i
\(193\) 1443.40i 0.538333i 0.963094 + 0.269167i \(0.0867482\pi\)
−0.963094 + 0.269167i \(0.913252\pi\)
\(194\) −852.886 −0.315637
\(195\) 0 0
\(196\) 537.329 0.195819
\(197\) − 5271.92i − 1.90664i −0.301954 0.953322i \(-0.597639\pi\)
0.301954 0.953322i \(-0.402361\pi\)
\(198\) 180.165i 0.0646656i
\(199\) 2510.19 0.894183 0.447091 0.894488i \(-0.352460\pi\)
0.447091 + 0.894488i \(0.352460\pi\)
\(200\) 0 0
\(201\) 1128.67 0.396069
\(202\) − 806.248i − 0.280829i
\(203\) − 5077.68i − 1.75558i
\(204\) 1827.93 0.627355
\(205\) 0 0
\(206\) 2271.35 0.768217
\(207\) 1778.81i 0.597275i
\(208\) 849.032i 0.283028i
\(209\) −157.779 −0.0522190
\(210\) 0 0
\(211\) 1854.44 0.605046 0.302523 0.953142i \(-0.402171\pi\)
0.302523 + 0.953142i \(0.402171\pi\)
\(212\) − 554.526i − 0.179646i
\(213\) − 348.542i − 0.112121i
\(214\) −760.192 −0.242830
\(215\) 0 0
\(216\) −794.949 −0.250414
\(217\) − 2150.56i − 0.672763i
\(218\) − 2361.48i − 0.733668i
\(219\) 419.276 0.129370
\(220\) 0 0
\(221\) 3941.68 1.19976
\(222\) − 3647.35i − 1.10268i
\(223\) 1880.34i 0.564649i 0.959319 + 0.282325i \(0.0911055\pi\)
−0.959319 + 0.282325i \(0.908895\pi\)
\(224\) 699.134 0.208539
\(225\) 0 0
\(226\) 2265.01 0.666665
\(227\) − 1799.23i − 0.526075i −0.964786 0.263038i \(-0.915276\pi\)
0.964786 0.263038i \(-0.0847243\pi\)
\(228\) 467.557i 0.135810i
\(229\) −4835.34 −1.39532 −0.697660 0.716429i \(-0.745776\pi\)
−0.697660 + 0.716429i \(0.745776\pi\)
\(230\) 0 0
\(231\) 1116.16 0.317913
\(232\) − 1859.28i − 0.526154i
\(233\) 865.299i 0.243295i 0.992573 + 0.121647i \(0.0388177\pi\)
−0.992573 + 0.121647i \(0.961182\pi\)
\(234\) 1151.28 0.321630
\(235\) 0 0
\(236\) 2291.19 0.631964
\(237\) − 2047.53i − 0.561187i
\(238\) − 3245.77i − 0.884001i
\(239\) 4764.27 1.28943 0.644717 0.764421i \(-0.276975\pi\)
0.644717 + 0.764421i \(0.276975\pi\)
\(240\) 0 0
\(241\) 615.336 0.164470 0.0822350 0.996613i \(-0.473794\pi\)
0.0822350 + 0.996613i \(0.473794\pi\)
\(242\) − 2524.08i − 0.670472i
\(243\) 2879.85i 0.760257i
\(244\) 2530.76 0.663998
\(245\) 0 0
\(246\) −5351.22 −1.38692
\(247\) 1008.22i 0.259724i
\(248\) − 787.465i − 0.201629i
\(249\) 7092.79 1.80517
\(250\) 0 0
\(251\) −1658.08 −0.416959 −0.208480 0.978027i \(-0.566852\pi\)
−0.208480 + 0.978027i \(0.566852\pi\)
\(252\) − 948.020i − 0.236983i
\(253\) 1361.69i 0.338373i
\(254\) −80.0925 −0.0197852
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 3446.12i − 0.836432i −0.908348 0.418216i \(-0.862656\pi\)
0.908348 0.418216i \(-0.137344\pi\)
\(258\) − 2107.69i − 0.508601i
\(259\) −6476.45 −1.55377
\(260\) 0 0
\(261\) −2521.17 −0.597917
\(262\) − 355.795i − 0.0838974i
\(263\) 5755.80i 1.34950i 0.738048 + 0.674748i \(0.235748\pi\)
−0.738048 + 0.674748i \(0.764252\pi\)
\(264\) 408.701 0.0952795
\(265\) 0 0
\(266\) 830.221 0.191369
\(267\) − 2266.91i − 0.519598i
\(268\) − 733.844i − 0.167264i
\(269\) −2257.28 −0.511631 −0.255816 0.966726i \(-0.582344\pi\)
−0.255816 + 0.966726i \(0.582344\pi\)
\(270\) 0 0
\(271\) 7012.13 1.57180 0.785898 0.618357i \(-0.212201\pi\)
0.785898 + 0.618357i \(0.212201\pi\)
\(272\) − 1188.50i − 0.264938i
\(273\) − 7132.39i − 1.58122i
\(274\) −49.5207 −0.0109184
\(275\) 0 0
\(276\) 4035.19 0.880035
\(277\) 372.810i 0.0808664i 0.999182 + 0.0404332i \(0.0128738\pi\)
−0.999182 + 0.0404332i \(0.987126\pi\)
\(278\) − 5734.41i − 1.23715i
\(279\) −1067.80 −0.229130
\(280\) 0 0
\(281\) −1888.96 −0.401017 −0.200508 0.979692i \(-0.564259\pi\)
−0.200508 + 0.979692i \(0.564259\pi\)
\(282\) 4504.33i 0.951167i
\(283\) − 3884.43i − 0.815920i −0.913000 0.407960i \(-0.866240\pi\)
0.913000 0.407960i \(-0.133760\pi\)
\(284\) −226.618 −0.0473497
\(285\) 0 0
\(286\) 881.309 0.182213
\(287\) 9501.94i 1.95429i
\(288\) − 347.134i − 0.0710245i
\(289\) −604.668 −0.123075
\(290\) 0 0
\(291\) 2623.51 0.528497
\(292\) − 272.608i − 0.0546342i
\(293\) − 1273.01i − 0.253823i −0.991914 0.126911i \(-0.959494\pi\)
0.991914 0.126911i \(-0.0405064\pi\)
\(294\) −1652.84 −0.327876
\(295\) 0 0
\(296\) −2371.46 −0.465671
\(297\) 825.170i 0.161216i
\(298\) − 3898.69i − 0.757869i
\(299\) 8701.35 1.68298
\(300\) 0 0
\(301\) −3742.53 −0.716665
\(302\) 2241.97i 0.427188i
\(303\) 2480.05i 0.470214i
\(304\) 304.000 0.0573539
\(305\) 0 0
\(306\) −1611.59 −0.301074
\(307\) − 819.153i − 0.152285i −0.997097 0.0761426i \(-0.975740\pi\)
0.997097 0.0761426i \(-0.0242604\pi\)
\(308\) − 725.713i − 0.134258i
\(309\) −6986.76 −1.28629
\(310\) 0 0
\(311\) 2104.67 0.383745 0.191872 0.981420i \(-0.438544\pi\)
0.191872 + 0.981420i \(0.438544\pi\)
\(312\) − 2611.65i − 0.473896i
\(313\) 2395.47i 0.432587i 0.976328 + 0.216293i \(0.0693968\pi\)
−0.976328 + 0.216293i \(0.930603\pi\)
\(314\) −4720.46 −0.848378
\(315\) 0 0
\(316\) −1331.28 −0.236995
\(317\) − 2158.23i − 0.382393i −0.981552 0.191196i \(-0.938763\pi\)
0.981552 0.191196i \(-0.0612368\pi\)
\(318\) 1705.74i 0.300796i
\(319\) −1929.96 −0.338737
\(320\) 0 0
\(321\) 2338.38 0.406590
\(322\) − 7165.11i − 1.24005i
\(323\) − 1411.34i − 0.243124i
\(324\) 3616.87 0.620176
\(325\) 0 0
\(326\) −1723.65 −0.292835
\(327\) 7264.00i 1.22844i
\(328\) 3479.30i 0.585708i
\(329\) 7998.15 1.34028
\(330\) 0 0
\(331\) 517.782 0.0859815 0.0429908 0.999075i \(-0.486311\pi\)
0.0429908 + 0.999075i \(0.486311\pi\)
\(332\) − 4611.65i − 0.762341i
\(333\) 3215.69i 0.529185i
\(334\) 3373.01 0.552584
\(335\) 0 0
\(336\) −2150.56 −0.349174
\(337\) − 6503.63i − 1.05126i −0.850713 0.525631i \(-0.823829\pi\)
0.850713 0.525631i \(-0.176171\pi\)
\(338\) − 1237.68i − 0.199174i
\(339\) −6967.25 −1.11625
\(340\) 0 0
\(341\) −817.402 −0.129809
\(342\) − 412.221i − 0.0651766i
\(343\) − 4558.96i − 0.717670i
\(344\) −1370.39 −0.214787
\(345\) 0 0
\(346\) 6382.87 0.991749
\(347\) − 6058.33i − 0.937257i −0.883395 0.468628i \(-0.844748\pi\)
0.883395 0.468628i \(-0.155252\pi\)
\(348\) 5719.21i 0.880982i
\(349\) 10955.1 1.68027 0.840135 0.542377i \(-0.182476\pi\)
0.840135 + 0.542377i \(0.182476\pi\)
\(350\) 0 0
\(351\) 5272.94 0.801849
\(352\) − 265.732i − 0.0402374i
\(353\) − 1806.43i − 0.272369i −0.990683 0.136185i \(-0.956516\pi\)
0.990683 0.136185i \(-0.0434841\pi\)
\(354\) −7047.77 −1.05815
\(355\) 0 0
\(356\) −1473.92 −0.219431
\(357\) 9984.11i 1.48015i
\(358\) 2458.99i 0.363021i
\(359\) 7964.50 1.17089 0.585446 0.810711i \(-0.300919\pi\)
0.585446 + 0.810711i \(0.300919\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) − 6217.90i − 0.902777i
\(363\) 7764.16i 1.12263i
\(364\) −4637.40 −0.667763
\(365\) 0 0
\(366\) −7784.71 −1.11179
\(367\) 7311.58i 1.03995i 0.854182 + 0.519974i \(0.174059\pi\)
−0.854182 + 0.519974i \(0.825941\pi\)
\(368\) − 2623.63i − 0.371647i
\(369\) 4717.90 0.665594
\(370\) 0 0
\(371\) 3028.81 0.423849
\(372\) 2422.27i 0.337604i
\(373\) 5518.38i 0.766035i 0.923741 + 0.383017i \(0.125115\pi\)
−0.923741 + 0.383017i \(0.874885\pi\)
\(374\) −1233.68 −0.170567
\(375\) 0 0
\(376\) 2928.66 0.401687
\(377\) 12332.7i 1.68479i
\(378\) − 4342.00i − 0.590815i
\(379\) 1139.97 0.154502 0.0772512 0.997012i \(-0.475386\pi\)
0.0772512 + 0.997012i \(0.475386\pi\)
\(380\) 0 0
\(381\) 246.367 0.0331280
\(382\) − 2830.96i − 0.379174i
\(383\) − 10409.5i − 1.38877i −0.719604 0.694385i \(-0.755677\pi\)
0.719604 0.694385i \(-0.244323\pi\)
\(384\) −787.465 −0.104649
\(385\) 0 0
\(386\) −2886.80 −0.380659
\(387\) 1858.24i 0.244082i
\(388\) − 1705.77i − 0.223189i
\(389\) −10471.2 −1.36481 −0.682404 0.730975i \(-0.739066\pi\)
−0.682404 + 0.730975i \(0.739066\pi\)
\(390\) 0 0
\(391\) −12180.4 −1.57542
\(392\) 1074.66i 0.138465i
\(393\) 1094.44i 0.140476i
\(394\) 10543.8 1.34820
\(395\) 0 0
\(396\) −360.331 −0.0457255
\(397\) 9588.68i 1.21220i 0.795390 + 0.606098i \(0.207266\pi\)
−0.795390 + 0.606098i \(0.792734\pi\)
\(398\) 5020.37i 0.632283i
\(399\) −2553.79 −0.320424
\(400\) 0 0
\(401\) 8549.30 1.06467 0.532334 0.846535i \(-0.321315\pi\)
0.532334 + 0.846535i \(0.321315\pi\)
\(402\) 2257.33i 0.280063i
\(403\) 5223.30i 0.645635i
\(404\) 1612.50 0.198576
\(405\) 0 0
\(406\) 10155.4 1.24138
\(407\) 2461.62i 0.299798i
\(408\) 3655.85i 0.443607i
\(409\) −266.960 −0.0322746 −0.0161373 0.999870i \(-0.505137\pi\)
−0.0161373 + 0.999870i \(0.505137\pi\)
\(410\) 0 0
\(411\) 152.327 0.0182816
\(412\) 4542.71i 0.543211i
\(413\) 12514.4i 1.49103i
\(414\) −3557.62 −0.422337
\(415\) 0 0
\(416\) −1698.06 −0.200131
\(417\) 17639.2i 2.07146i
\(418\) − 315.557i − 0.0369244i
\(419\) −8643.83 −1.00783 −0.503913 0.863755i \(-0.668107\pi\)
−0.503913 + 0.863755i \(0.668107\pi\)
\(420\) 0 0
\(421\) −16801.3 −1.94500 −0.972499 0.232905i \(-0.925177\pi\)
−0.972499 + 0.232905i \(0.925177\pi\)
\(422\) 3708.87i 0.427832i
\(423\) − 3971.24i − 0.456474i
\(424\) 1109.05 0.127029
\(425\) 0 0
\(426\) 697.085 0.0792814
\(427\) 13823.0i 1.56661i
\(428\) − 1520.38i − 0.171707i
\(429\) −2710.94 −0.305094
\(430\) 0 0
\(431\) 12053.5 1.34710 0.673548 0.739144i \(-0.264769\pi\)
0.673548 + 0.739144i \(0.264769\pi\)
\(432\) − 1589.90i − 0.177069i
\(433\) 9034.61i 1.00271i 0.865240 + 0.501357i \(0.167166\pi\)
−0.865240 + 0.501357i \(0.832834\pi\)
\(434\) 4301.12 0.475715
\(435\) 0 0
\(436\) 4722.96 0.518782
\(437\) − 3115.56i − 0.341047i
\(438\) 838.552i 0.0914785i
\(439\) −3008.87 −0.327120 −0.163560 0.986533i \(-0.552298\pi\)
−0.163560 + 0.986533i \(0.552298\pi\)
\(440\) 0 0
\(441\) 1457.23 0.157351
\(442\) 7883.37i 0.848356i
\(443\) − 229.594i − 0.0246237i −0.999924 0.0123119i \(-0.996081\pi\)
0.999924 0.0123119i \(-0.00391909\pi\)
\(444\) 7294.71 0.779710
\(445\) 0 0
\(446\) −3760.68 −0.399267
\(447\) 11992.5i 1.26896i
\(448\) 1398.27i 0.147460i
\(449\) 7559.44 0.794548 0.397274 0.917700i \(-0.369956\pi\)
0.397274 + 0.917700i \(0.369956\pi\)
\(450\) 0 0
\(451\) 3611.57 0.377078
\(452\) 4530.02i 0.471404i
\(453\) − 6896.38i − 0.715276i
\(454\) 3598.46 0.371991
\(455\) 0 0
\(456\) −935.114 −0.0960323
\(457\) − 11556.4i − 1.18290i −0.806343 0.591449i \(-0.798556\pi\)
0.806343 0.591449i \(-0.201444\pi\)
\(458\) − 9670.69i − 0.986641i
\(459\) −7381.20 −0.750599
\(460\) 0 0
\(461\) 9191.58 0.928622 0.464311 0.885672i \(-0.346302\pi\)
0.464311 + 0.885672i \(0.346302\pi\)
\(462\) 2232.32i 0.224798i
\(463\) 1356.03i 0.136113i 0.997681 + 0.0680564i \(0.0216798\pi\)
−0.997681 + 0.0680564i \(0.978320\pi\)
\(464\) 3718.56 0.372047
\(465\) 0 0
\(466\) −1730.60 −0.172035
\(467\) 14808.9i 1.46740i 0.679473 + 0.733700i \(0.262208\pi\)
−0.679473 + 0.733700i \(0.737792\pi\)
\(468\) 2302.56i 0.227427i
\(469\) 4008.25 0.394635
\(470\) 0 0
\(471\) 14520.3 1.42051
\(472\) 4582.37i 0.446866i
\(473\) 1422.49i 0.138280i
\(474\) 4095.06 0.396819
\(475\) 0 0
\(476\) 6491.55 0.625083
\(477\) − 1503.86i − 0.144355i
\(478\) 9528.54i 0.911768i
\(479\) −9834.66 −0.938115 −0.469058 0.883168i \(-0.655406\pi\)
−0.469058 + 0.883168i \(0.655406\pi\)
\(480\) 0 0
\(481\) 15730.1 1.49112
\(482\) 1230.67i 0.116298i
\(483\) 22040.1i 2.07632i
\(484\) 5048.17 0.474095
\(485\) 0 0
\(486\) −5759.70 −0.537583
\(487\) − 3687.82i − 0.343144i −0.985172 0.171572i \(-0.945115\pi\)
0.985172 0.171572i \(-0.0548846\pi\)
\(488\) 5061.53i 0.469518i
\(489\) 5302.00 0.490317
\(490\) 0 0
\(491\) −11197.4 −1.02919 −0.514593 0.857435i \(-0.672057\pi\)
−0.514593 + 0.857435i \(0.672057\pi\)
\(492\) − 10702.4i − 0.980698i
\(493\) − 17263.6i − 1.57711i
\(494\) −2016.45 −0.183653
\(495\) 0 0
\(496\) 1574.93 0.142573
\(497\) − 1237.78i − 0.111715i
\(498\) 14185.6i 1.27645i
\(499\) 12101.6 1.08566 0.542829 0.839843i \(-0.317353\pi\)
0.542829 + 0.839843i \(0.317353\pi\)
\(500\) 0 0
\(501\) −10375.5 −0.925236
\(502\) − 3316.15i − 0.294835i
\(503\) − 7266.58i − 0.644136i −0.946716 0.322068i \(-0.895622\pi\)
0.946716 0.322068i \(-0.104378\pi\)
\(504\) 1896.04 0.167572
\(505\) 0 0
\(506\) −2723.37 −0.239266
\(507\) 3807.13i 0.333493i
\(508\) − 160.185i − 0.0139903i
\(509\) −2564.99 −0.223362 −0.111681 0.993744i \(-0.535624\pi\)
−0.111681 + 0.993744i \(0.535624\pi\)
\(510\) 0 0
\(511\) 1488.98 0.128902
\(512\) 512.000i 0.0441942i
\(513\) − 1888.00i − 0.162490i
\(514\) 6892.24 0.591447
\(515\) 0 0
\(516\) 4215.38 0.359635
\(517\) − 3040.00i − 0.258606i
\(518\) − 12952.9i − 1.09868i
\(519\) −19633.9 −1.66057
\(520\) 0 0
\(521\) 11254.6 0.946401 0.473201 0.880955i \(-0.343099\pi\)
0.473201 + 0.880955i \(0.343099\pi\)
\(522\) − 5042.34i − 0.422791i
\(523\) − 18357.1i − 1.53480i −0.641168 0.767401i \(-0.721550\pi\)
0.641168 0.767401i \(-0.278450\pi\)
\(524\) 711.591 0.0593244
\(525\) 0 0
\(526\) −11511.6 −0.954238
\(527\) − 7311.71i − 0.604370i
\(528\) 817.402i 0.0673728i
\(529\) −14721.4 −1.20995
\(530\) 0 0
\(531\) 6213.66 0.507815
\(532\) 1660.44i 0.135318i
\(533\) − 23078.4i − 1.87549i
\(534\) 4533.82 0.367411
\(535\) 0 0
\(536\) 1467.69 0.118273
\(537\) − 7563.93i − 0.607836i
\(538\) − 4514.56i − 0.361778i
\(539\) 1115.51 0.0891438
\(540\) 0 0
\(541\) 11381.8 0.904510 0.452255 0.891889i \(-0.350620\pi\)
0.452255 + 0.891889i \(0.350620\pi\)
\(542\) 14024.3i 1.11143i
\(543\) 19126.5i 1.51159i
\(544\) 2376.99 0.187340
\(545\) 0 0
\(546\) 14264.8 1.11809
\(547\) 8996.84i 0.703248i 0.936141 + 0.351624i \(0.114371\pi\)
−0.936141 + 0.351624i \(0.885629\pi\)
\(548\) − 99.0413i − 0.00772050i
\(549\) 6863.39 0.533556
\(550\) 0 0
\(551\) 4415.79 0.341414
\(552\) 8070.37i 0.622279i
\(553\) − 7271.43i − 0.559155i
\(554\) −745.620 −0.0571812
\(555\) 0 0
\(556\) 11468.8 0.874796
\(557\) − 10759.8i − 0.818507i −0.912421 0.409253i \(-0.865789\pi\)
0.912421 0.409253i \(-0.134211\pi\)
\(558\) − 2135.59i − 0.162019i
\(559\) 9089.90 0.687767
\(560\) 0 0
\(561\) 3794.84 0.285594
\(562\) − 3777.91i − 0.283562i
\(563\) 25381.8i 1.90003i 0.312205 + 0.950015i \(0.398932\pi\)
−0.312205 + 0.950015i \(0.601068\pi\)
\(564\) −9008.66 −0.672576
\(565\) 0 0
\(566\) 7768.86 0.576943
\(567\) 19755.3i 1.46322i
\(568\) − 453.236i − 0.0334813i
\(569\) 5546.00 0.408612 0.204306 0.978907i \(-0.434506\pi\)
0.204306 + 0.978907i \(0.434506\pi\)
\(570\) 0 0
\(571\) 7714.96 0.565431 0.282715 0.959204i \(-0.408765\pi\)
0.282715 + 0.959204i \(0.408765\pi\)
\(572\) 1762.62i 0.128844i
\(573\) 8708.13i 0.634882i
\(574\) −19003.9 −1.38189
\(575\) 0 0
\(576\) 694.268 0.0502219
\(577\) − 21335.1i − 1.53933i −0.638448 0.769665i \(-0.720423\pi\)
0.638448 0.769665i \(-0.279577\pi\)
\(578\) − 1209.34i − 0.0870273i
\(579\) 8879.90 0.637368
\(580\) 0 0
\(581\) 25188.8 1.79863
\(582\) 5247.01i 0.373704i
\(583\) − 1151.21i − 0.0817811i
\(584\) 545.217 0.0386322
\(585\) 0 0
\(586\) 2546.02 0.179480
\(587\) − 12370.9i − 0.869846i −0.900468 0.434923i \(-0.856776\pi\)
0.900468 0.434923i \(-0.143224\pi\)
\(588\) − 3305.68i − 0.231844i
\(589\) 1870.23 0.130834
\(590\) 0 0
\(591\) −32433.2 −2.25740
\(592\) − 4742.93i − 0.329279i
\(593\) 12982.5i 0.899034i 0.893272 + 0.449517i \(0.148404\pi\)
−0.893272 + 0.449517i \(0.851596\pi\)
\(594\) −1650.34 −0.113997
\(595\) 0 0
\(596\) 7797.38 0.535895
\(597\) − 15442.8i − 1.05868i
\(598\) 17402.7i 1.19005i
\(599\) −13163.7 −0.897921 −0.448960 0.893552i \(-0.648206\pi\)
−0.448960 + 0.893552i \(0.648206\pi\)
\(600\) 0 0
\(601\) −29325.4 −1.99036 −0.995180 0.0980640i \(-0.968735\pi\)
−0.995180 + 0.0980640i \(0.968735\pi\)
\(602\) − 7485.07i − 0.506758i
\(603\) − 1990.17i − 0.134405i
\(604\) −4483.94 −0.302068
\(605\) 0 0
\(606\) −4960.09 −0.332492
\(607\) 2170.11i 0.145110i 0.997364 + 0.0725552i \(0.0231154\pi\)
−0.997364 + 0.0725552i \(0.976885\pi\)
\(608\) 608.000i 0.0405554i
\(609\) −31238.2 −2.07855
\(610\) 0 0
\(611\) −19426.0 −1.28624
\(612\) − 3223.18i − 0.212891i
\(613\) − 4917.96i − 0.324036i −0.986788 0.162018i \(-0.948200\pi\)
0.986788 0.162018i \(-0.0518003\pi\)
\(614\) 1638.31 0.107682
\(615\) 0 0
\(616\) 1451.43 0.0949344
\(617\) − 24763.5i − 1.61579i −0.589328 0.807894i \(-0.700607\pi\)
0.589328 0.807894i \(-0.299393\pi\)
\(618\) − 13973.5i − 0.909542i
\(619\) 27552.0 1.78902 0.894512 0.447043i \(-0.147523\pi\)
0.894512 + 0.447043i \(0.147523\pi\)
\(620\) 0 0
\(621\) −16294.2 −1.05292
\(622\) 4209.33i 0.271348i
\(623\) − 8050.51i − 0.517716i
\(624\) 5223.30 0.335095
\(625\) 0 0
\(626\) −4790.93 −0.305885
\(627\) 970.664i 0.0618255i
\(628\) − 9440.91i − 0.599894i
\(629\) −22019.3 −1.39582
\(630\) 0 0
\(631\) 377.839 0.0238376 0.0119188 0.999929i \(-0.496206\pi\)
0.0119188 + 0.999929i \(0.496206\pi\)
\(632\) − 2662.56i − 0.167581i
\(633\) − 11408.6i − 0.716354i
\(634\) 4316.47 0.270393
\(635\) 0 0
\(636\) −3411.48 −0.212695
\(637\) − 7128.27i − 0.443379i
\(638\) − 3859.93i − 0.239523i
\(639\) −614.584 −0.0380479
\(640\) 0 0
\(641\) −14047.3 −0.865576 −0.432788 0.901496i \(-0.642470\pi\)
−0.432788 + 0.901496i \(0.642470\pi\)
\(642\) 4676.75i 0.287503i
\(643\) 5768.94i 0.353818i 0.984227 + 0.176909i \(0.0566098\pi\)
−0.984227 + 0.176909i \(0.943390\pi\)
\(644\) 14330.2 0.876848
\(645\) 0 0
\(646\) 2822.68 0.171915
\(647\) − 4568.59i − 0.277604i −0.990320 0.138802i \(-0.955675\pi\)
0.990320 0.138802i \(-0.0443251\pi\)
\(648\) 7233.73i 0.438531i
\(649\) 4756.58 0.287692
\(650\) 0 0
\(651\) −13230.4 −0.796528
\(652\) − 3447.30i − 0.207065i
\(653\) − 16532.7i − 0.990774i −0.868672 0.495387i \(-0.835026\pi\)
0.868672 0.495387i \(-0.164974\pi\)
\(654\) −14528.0 −0.868638
\(655\) 0 0
\(656\) −6958.60 −0.414158
\(657\) − 739.309i − 0.0439014i
\(658\) 15996.3i 0.947721i
\(659\) 18630.0 1.10125 0.550624 0.834753i \(-0.314390\pi\)
0.550624 + 0.834753i \(0.314390\pi\)
\(660\) 0 0
\(661\) 28851.3 1.69771 0.848854 0.528627i \(-0.177293\pi\)
0.848854 + 0.528627i \(0.177293\pi\)
\(662\) 1035.56i 0.0607981i
\(663\) − 24249.5i − 1.42047i
\(664\) 9223.30 0.539056
\(665\) 0 0
\(666\) −6431.37 −0.374190
\(667\) − 38109.9i − 2.21232i
\(668\) 6746.02i 0.390736i
\(669\) 11568.0 0.668525
\(670\) 0 0
\(671\) 5253.95 0.302275
\(672\) − 4301.12i − 0.246904i
\(673\) − 3873.41i − 0.221856i −0.993828 0.110928i \(-0.964618\pi\)
0.993828 0.110928i \(-0.0353822\pi\)
\(674\) 13007.3 0.743354
\(675\) 0 0
\(676\) 2475.35 0.140837
\(677\) − 5025.24i − 0.285282i −0.989775 0.142641i \(-0.954441\pi\)
0.989775 0.142641i \(-0.0455594\pi\)
\(678\) − 13934.5i − 0.789309i
\(679\) 9316.90 0.526583
\(680\) 0 0
\(681\) −11069.0 −0.622855
\(682\) − 1634.80i − 0.0917886i
\(683\) − 14157.0i − 0.793122i −0.918008 0.396561i \(-0.870204\pi\)
0.918008 0.396561i \(-0.129796\pi\)
\(684\) 824.443 0.0460868
\(685\) 0 0
\(686\) 9117.92 0.507469
\(687\) 29747.4i 1.65201i
\(688\) − 2740.79i − 0.151877i
\(689\) −7356.40 −0.406758
\(690\) 0 0
\(691\) −2437.65 −0.134200 −0.0671002 0.997746i \(-0.521375\pi\)
−0.0671002 + 0.997746i \(0.521375\pi\)
\(692\) 12765.7i 0.701273i
\(693\) − 1968.12i − 0.107883i
\(694\) 12116.7 0.662741
\(695\) 0 0
\(696\) −11438.4 −0.622948
\(697\) 32305.7i 1.75562i
\(698\) 21910.2i 1.18813i
\(699\) 5323.38 0.288052
\(700\) 0 0
\(701\) 9496.96 0.511691 0.255845 0.966718i \(-0.417646\pi\)
0.255845 + 0.966718i \(0.417646\pi\)
\(702\) 10545.9i 0.566993i
\(703\) − 5632.23i − 0.302167i
\(704\) 531.465 0.0284522
\(705\) 0 0
\(706\) 3612.85 0.192594
\(707\) 8807.43i 0.468511i
\(708\) − 14095.5i − 0.748224i
\(709\) −6350.33 −0.336377 −0.168189 0.985755i \(-0.553792\pi\)
−0.168189 + 0.985755i \(0.553792\pi\)
\(710\) 0 0
\(711\) −3610.41 −0.190437
\(712\) − 2947.83i − 0.155161i
\(713\) − 16140.7i − 0.847792i
\(714\) −19968.2 −1.04663
\(715\) 0 0
\(716\) −4917.98 −0.256695
\(717\) − 29310.1i − 1.52665i
\(718\) 15929.0i 0.827946i
\(719\) 19722.6 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(720\) 0 0
\(721\) −24812.2 −1.28163
\(722\) 722.000i 0.0372161i
\(723\) − 3785.59i − 0.194727i
\(724\) 12435.8 0.638360
\(725\) 0 0
\(726\) −15528.3 −0.793816
\(727\) − 28325.8i − 1.44504i −0.691350 0.722520i \(-0.742984\pi\)
0.691350 0.722520i \(-0.257016\pi\)
\(728\) − 9274.79i − 0.472179i
\(729\) −6696.82 −0.340234
\(730\) 0 0
\(731\) −12724.3 −0.643809
\(732\) − 15569.4i − 0.786151i
\(733\) 33981.8i 1.71234i 0.516694 + 0.856170i \(0.327163\pi\)
−0.516694 + 0.856170i \(0.672837\pi\)
\(734\) −14623.2 −0.735355
\(735\) 0 0
\(736\) 5247.26 0.262794
\(737\) − 1523.49i − 0.0761443i
\(738\) 9435.80i 0.470646i
\(739\) −9147.10 −0.455320 −0.227660 0.973741i \(-0.573107\pi\)
−0.227660 + 0.973741i \(0.573107\pi\)
\(740\) 0 0
\(741\) 6202.67 0.307504
\(742\) 6057.62i 0.299706i
\(743\) − 34159.2i − 1.68665i −0.537405 0.843324i \(-0.680596\pi\)
0.537405 0.843324i \(-0.319404\pi\)
\(744\) −4844.54 −0.238722
\(745\) 0 0
\(746\) −11036.8 −0.541668
\(747\) − 12506.7i − 0.612579i
\(748\) − 2467.36i − 0.120609i
\(749\) 8304.31 0.405117
\(750\) 0 0
\(751\) 28361.8 1.37808 0.689038 0.724725i \(-0.258033\pi\)
0.689038 + 0.724725i \(0.258033\pi\)
\(752\) 5857.32i 0.284035i
\(753\) 10200.6i 0.493666i
\(754\) −24665.4 −1.19133
\(755\) 0 0
\(756\) 8683.99 0.417770
\(757\) − 11464.9i − 0.550462i −0.961378 0.275231i \(-0.911246\pi\)
0.961378 0.275231i \(-0.0887543\pi\)
\(758\) 2279.94i 0.109250i
\(759\) 8377.18 0.400623
\(760\) 0 0
\(761\) 14289.3 0.680666 0.340333 0.940305i \(-0.389460\pi\)
0.340333 + 0.940305i \(0.389460\pi\)
\(762\) 492.734i 0.0234250i
\(763\) 25796.7i 1.22399i
\(764\) 5661.92 0.268117
\(765\) 0 0
\(766\) 20818.9 0.982008
\(767\) − 30395.2i − 1.43091i
\(768\) − 1574.93i − 0.0739979i
\(769\) −100.811 −0.00472734 −0.00236367 0.999997i \(-0.500752\pi\)
−0.00236367 + 0.999997i \(0.500752\pi\)
\(770\) 0 0
\(771\) −21200.8 −0.990307
\(772\) − 5773.61i − 0.269167i
\(773\) 52.1073i 0.00242454i 0.999999 + 0.00121227i \(0.000385878\pi\)
−0.999999 + 0.00121227i \(0.999614\pi\)
\(774\) −3716.49 −0.172592
\(775\) 0 0
\(776\) 3411.54 0.157819
\(777\) 39843.6i 1.83961i
\(778\) − 20942.4i − 0.965065i
\(779\) −8263.34 −0.380057
\(780\) 0 0
\(781\) −470.467 −0.0215552
\(782\) − 24360.7i − 1.11399i
\(783\) − 23094.3i − 1.05405i
\(784\) −2149.31 −0.0979097
\(785\) 0 0
\(786\) −2188.88 −0.0993316
\(787\) − 15261.8i − 0.691266i −0.938370 0.345633i \(-0.887664\pi\)
0.938370 0.345633i \(-0.112336\pi\)
\(788\) 21087.7i 0.953322i
\(789\) 35410.0 1.59776
\(790\) 0 0
\(791\) −24742.9 −1.11221
\(792\) − 720.662i − 0.0323328i
\(793\) − 33573.4i − 1.50344i
\(794\) −19177.4 −0.857152
\(795\) 0 0
\(796\) −10040.7 −0.447091
\(797\) − 24432.3i − 1.08587i −0.839775 0.542934i \(-0.817313\pi\)
0.839775 0.542934i \(-0.182687\pi\)
\(798\) − 5107.58i − 0.226574i
\(799\) 27193.0 1.20403
\(800\) 0 0
\(801\) −3997.24 −0.176324
\(802\) 17098.6i 0.752834i
\(803\) − 565.944i − 0.0248714i
\(804\) −4514.66 −0.198035
\(805\) 0 0
\(806\) −10446.6 −0.456533
\(807\) 13886.9i 0.605754i
\(808\) 3224.99i 0.140414i
\(809\) −3635.86 −0.158010 −0.0790050 0.996874i \(-0.525174\pi\)
−0.0790050 + 0.996874i \(0.525174\pi\)
\(810\) 0 0
\(811\) 1087.93 0.0471051 0.0235526 0.999723i \(-0.492502\pi\)
0.0235526 + 0.999723i \(0.492502\pi\)
\(812\) 20310.7i 0.877791i
\(813\) − 43139.1i − 1.86095i
\(814\) −4923.24 −0.211990
\(815\) 0 0
\(816\) −7311.71 −0.313678
\(817\) − 3254.69i − 0.139372i
\(818\) − 533.920i − 0.0228216i
\(819\) −12576.5 −0.536581
\(820\) 0 0
\(821\) 10953.7 0.465636 0.232818 0.972520i \(-0.425205\pi\)
0.232818 + 0.972520i \(0.425205\pi\)
\(822\) 304.655i 0.0129271i
\(823\) 13502.5i 0.571893i 0.958246 + 0.285947i \(0.0923080\pi\)
−0.958246 + 0.285947i \(0.907692\pi\)
\(824\) −9085.41 −0.384108
\(825\) 0 0
\(826\) −25028.9 −1.05432
\(827\) − 26812.4i − 1.12740i −0.825980 0.563699i \(-0.809378\pi\)
0.825980 0.563699i \(-0.190622\pi\)
\(828\) − 7115.24i − 0.298637i
\(829\) 4497.94 0.188444 0.0942218 0.995551i \(-0.469964\pi\)
0.0942218 + 0.995551i \(0.469964\pi\)
\(830\) 0 0
\(831\) 2293.55 0.0957430
\(832\) − 3396.13i − 0.141514i
\(833\) 9978.33i 0.415040i
\(834\) −35278.5 −1.46474
\(835\) 0 0
\(836\) 631.114 0.0261095
\(837\) − 9781.16i − 0.403926i
\(838\) − 17287.7i − 0.712640i
\(839\) −30324.9 −1.24783 −0.623917 0.781491i \(-0.714460\pi\)
−0.623917 + 0.781491i \(0.714460\pi\)
\(840\) 0 0
\(841\) 29625.4 1.21470
\(842\) − 33602.6i − 1.37532i
\(843\) 11621.0i 0.474790i
\(844\) −7417.75 −0.302523
\(845\) 0 0
\(846\) 7942.48 0.322776
\(847\) 27573.0i 1.11856i
\(848\) 2218.10i 0.0898230i
\(849\) −23897.3 −0.966022
\(850\) 0 0
\(851\) −48608.2 −1.95801
\(852\) 1394.17i 0.0560604i
\(853\) 17230.8i 0.691642i 0.938300 + 0.345821i \(0.112400\pi\)
−0.938300 + 0.345821i \(0.887600\pi\)
\(854\) −27646.0 −1.10776
\(855\) 0 0
\(856\) 3040.77 0.121415
\(857\) 6724.12i 0.268018i 0.990980 + 0.134009i \(0.0427851\pi\)
−0.990980 + 0.134009i \(0.957215\pi\)
\(858\) − 5421.87i − 0.215734i
\(859\) 36183.5 1.43721 0.718606 0.695417i \(-0.244781\pi\)
0.718606 + 0.695417i \(0.244781\pi\)
\(860\) 0 0
\(861\) 58456.6 2.31381
\(862\) 24107.1i 0.952541i
\(863\) 14350.8i 0.566056i 0.959112 + 0.283028i \(0.0913390\pi\)
−0.959112 + 0.283028i \(0.908661\pi\)
\(864\) 3179.80 0.125207
\(865\) 0 0
\(866\) −18069.2 −0.709027
\(867\) 3719.96i 0.145717i
\(868\) 8602.24i 0.336381i
\(869\) −2763.78 −0.107888
\(870\) 0 0
\(871\) −9735.27 −0.378722
\(872\) 9445.93i 0.366834i
\(873\) − 4626.02i − 0.179344i
\(874\) 6231.12 0.241157
\(875\) 0 0
\(876\) −1677.10 −0.0646851
\(877\) 42978.6i 1.65483i 0.561592 + 0.827414i \(0.310189\pi\)
−0.561592 + 0.827414i \(0.689811\pi\)
\(878\) − 6017.74i − 0.231309i
\(879\) −7831.65 −0.300518
\(880\) 0 0
\(881\) −7298.75 −0.279116 −0.139558 0.990214i \(-0.544568\pi\)
−0.139558 + 0.990214i \(0.544568\pi\)
\(882\) 2914.45i 0.111264i
\(883\) 46722.1i 1.78066i 0.455314 + 0.890331i \(0.349527\pi\)
−0.455314 + 0.890331i \(0.650473\pi\)
\(884\) −15766.7 −0.599878
\(885\) 0 0
\(886\) 459.187 0.0174116
\(887\) − 35268.7i − 1.33507i −0.744578 0.667535i \(-0.767349\pi\)
0.744578 0.667535i \(-0.232651\pi\)
\(888\) 14589.4i 0.551338i
\(889\) 874.928 0.0330080
\(890\) 0 0
\(891\) 7508.74 0.282326
\(892\) − 7521.35i − 0.282325i
\(893\) 6955.57i 0.260649i
\(894\) −23985.0 −0.897292
\(895\) 0 0
\(896\) −2796.54 −0.104270
\(897\) − 53531.3i − 1.99259i
\(898\) 15118.9i 0.561830i
\(899\) 22876.8 0.848704
\(900\) 0 0
\(901\) 10297.7 0.380761
\(902\) 7223.14i 0.266635i
\(903\) 23024.3i 0.848507i
\(904\) −9060.05 −0.333333
\(905\) 0 0
\(906\) 13792.8 0.505777
\(907\) 46292.7i 1.69474i 0.531007 + 0.847368i \(0.321814\pi\)
−0.531007 + 0.847368i \(0.678186\pi\)
\(908\) 7196.92i 0.263038i
\(909\) 4373.06 0.159566
\(910\) 0 0
\(911\) −42085.5 −1.53058 −0.765288 0.643688i \(-0.777403\pi\)
−0.765288 + 0.643688i \(0.777403\pi\)
\(912\) − 1870.23i − 0.0679051i
\(913\) − 9573.94i − 0.347044i
\(914\) 23112.7 0.836435
\(915\) 0 0
\(916\) 19341.4 0.697660
\(917\) 3886.70i 0.139967i
\(918\) − 14762.4i − 0.530754i
\(919\) −21331.8 −0.765691 −0.382845 0.923812i \(-0.625056\pi\)
−0.382845 + 0.923812i \(0.625056\pi\)
\(920\) 0 0
\(921\) −5039.49 −0.180300
\(922\) 18383.2i 0.656635i
\(923\) 3006.34i 0.107210i
\(924\) −4464.63 −0.158956
\(925\) 0 0
\(926\) −2712.07 −0.0962463
\(927\) 12319.7i 0.436498i
\(928\) 7437.12i 0.263077i
\(929\) 34331.5 1.21247 0.606233 0.795287i \(-0.292680\pi\)
0.606233 + 0.795287i \(0.292680\pi\)
\(930\) 0 0
\(931\) −2552.31 −0.0898481
\(932\) − 3461.20i − 0.121647i
\(933\) − 12948.0i − 0.454341i
\(934\) −29617.9 −1.03761
\(935\) 0 0
\(936\) −4605.12 −0.160815
\(937\) − 13625.1i − 0.475041i −0.971383 0.237521i \(-0.923665\pi\)
0.971383 0.237521i \(-0.0763347\pi\)
\(938\) 8016.49i 0.279049i
\(939\) 14737.1 0.512168
\(940\) 0 0
\(941\) 7086.48 0.245497 0.122748 0.992438i \(-0.460829\pi\)
0.122748 + 0.992438i \(0.460829\pi\)
\(942\) 29040.6i 1.00445i
\(943\) 71315.6i 2.46273i
\(944\) −9164.75 −0.315982
\(945\) 0 0
\(946\) −2844.98 −0.0977784
\(947\) − 38735.9i − 1.32920i −0.747202 0.664598i \(-0.768603\pi\)
0.747202 0.664598i \(-0.231397\pi\)
\(948\) 8190.12i 0.280594i
\(949\) −3616.45 −0.123704
\(950\) 0 0
\(951\) −13277.6 −0.452740
\(952\) 12983.1i 0.442000i
\(953\) 30964.3i 1.05250i 0.850330 + 0.526249i \(0.176402\pi\)
−0.850330 + 0.526249i \(0.823598\pi\)
\(954\) 3007.73 0.102074
\(955\) 0 0
\(956\) −19057.1 −0.644717
\(957\) 11873.3i 0.401053i
\(958\) − 19669.3i − 0.663347i
\(959\) 540.962 0.0182154
\(960\) 0 0
\(961\) −20101.9 −0.674765
\(962\) 31460.1i 1.05438i
\(963\) − 4123.26i − 0.137975i
\(964\) −2461.34 −0.0822350
\(965\) 0 0
\(966\) −44080.2 −1.46818
\(967\) − 10968.0i − 0.364743i −0.983230 0.182371i \(-0.941623\pi\)
0.983230 0.182371i \(-0.0583773\pi\)
\(968\) 10096.3i 0.335236i
\(969\) −8682.65 −0.287850
\(970\) 0 0
\(971\) −30081.2 −0.994183 −0.497091 0.867698i \(-0.665599\pi\)
−0.497091 + 0.867698i \(0.665599\pi\)
\(972\) − 11519.4i − 0.380128i
\(973\) 62642.5i 2.06395i
\(974\) 7375.64 0.242640
\(975\) 0 0
\(976\) −10123.1 −0.331999
\(977\) − 26628.1i − 0.871962i −0.899956 0.435981i \(-0.856401\pi\)
0.899956 0.435981i \(-0.143599\pi\)
\(978\) 10604.0i 0.346706i
\(979\) −3059.90 −0.0998926
\(980\) 0 0
\(981\) 12808.6 0.416867
\(982\) − 22394.7i − 0.727744i
\(983\) 25495.3i 0.827236i 0.910450 + 0.413618i \(0.135735\pi\)
−0.910450 + 0.413618i \(0.864265\pi\)
\(984\) 21404.9 0.693458
\(985\) 0 0
\(986\) 34527.3 1.11519
\(987\) − 49205.2i − 1.58685i
\(988\) − 4032.90i − 0.129862i
\(989\) −28089.1 −0.903116
\(990\) 0 0
\(991\) −54385.4 −1.74330 −0.871649 0.490130i \(-0.836949\pi\)
−0.871649 + 0.490130i \(0.836949\pi\)
\(992\) 3149.86i 0.100815i
\(993\) − 3185.43i − 0.101799i
\(994\) 2475.57 0.0789942
\(995\) 0 0
\(996\) −28371.2 −0.902586
\(997\) 36846.5i 1.17045i 0.810870 + 0.585227i \(0.198994\pi\)
−0.810870 + 0.585227i \(0.801006\pi\)
\(998\) 24203.3i 0.767677i
\(999\) −29456.1 −0.932884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.4.b.g.799.3 4
5.2 odd 4 38.4.a.b.1.1 2
5.3 odd 4 950.4.a.h.1.2 2
5.4 even 2 inner 950.4.b.g.799.2 4
15.2 even 4 342.4.a.k.1.1 2
20.7 even 4 304.4.a.d.1.2 2
35.27 even 4 1862.4.a.b.1.2 2
40.27 even 4 1216.4.a.l.1.1 2
40.37 odd 4 1216.4.a.j.1.2 2
95.37 even 4 722.4.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.a.b.1.1 2 5.2 odd 4
304.4.a.d.1.2 2 20.7 even 4
342.4.a.k.1.1 2 15.2 even 4
722.4.a.i.1.2 2 95.37 even 4
950.4.a.h.1.2 2 5.3 odd 4
950.4.b.g.799.2 4 5.4 even 2 inner
950.4.b.g.799.3 4 1.1 even 1 trivial
1216.4.a.j.1.2 2 40.37 odd 4
1216.4.a.l.1.1 2 40.27 even 4
1862.4.a.b.1.2 2 35.27 even 4