Properties

Label 950.4.b.g.799.4
Level $950$
Weight $4$
Character 950.799
Analytic conductor $56.052$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [950,4,Mod(799,950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("950.799"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 950.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,-4,0,0,-70,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.0518145055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{177})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 89x^{2} + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.4
Root \(7.15207i\) of defining polynomial
Character \(\chi\) \(=\) 950.799
Dual form 950.4.b.g.799.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +7.15207i q^{3} -4.00000 q^{4} -14.3041 q^{6} -35.1521i q^{7} -8.00000i q^{8} -24.1521 q^{9} +18.3041 q^{11} -28.6083i q^{12} -40.0645i q^{13} +70.3041 q^{14} +16.0000 q^{16} +125.281i q^{17} -48.3041i q^{18} +19.0000 q^{19} +251.410 q^{21} +36.6083i q^{22} +8.97688i q^{23} +57.2165 q^{24} +80.1289 q^{26} +20.3686i q^{27} +140.608i q^{28} -153.410 q^{29} -114.433 q^{31} +32.0000i q^{32} +130.912i q^{33} -250.562 q^{34} +96.6083 q^{36} -83.5669i q^{37} +38.0000i q^{38} +286.544 q^{39} -355.088 q^{41} +502.820i q^{42} +467.299i q^{43} -73.2165 q^{44} -17.9538 q^{46} -166.083i q^{47} +114.433i q^{48} -892.668 q^{49} -896.018 q^{51} +160.258i q^{52} +258.369i q^{53} -40.7372 q^{54} -281.217 q^{56} +135.889i q^{57} -306.820i q^{58} +371.797 q^{59} -47.3090 q^{61} -228.866i q^{62} +848.995i q^{63} -64.0000 q^{64} -261.825 q^{66} +755.539i q^{67} -501.124i q^{68} -64.2032 q^{69} +349.345 q^{71} +193.217i q^{72} +54.8479i q^{73} +167.134 q^{74} -76.0000 q^{76} -643.428i q^{77} +573.088i q^{78} -438.820 q^{79} -797.783 q^{81} -710.175i q^{82} +1073.09i q^{83} -1005.64 q^{84} -934.598 q^{86} -1097.20i q^{87} -146.433i q^{88} +501.521 q^{89} -1408.35 q^{91} -35.9075i q^{92} -818.433i q^{93} +332.165 q^{94} -228.866 q^{96} +1437.56i q^{97} -1785.34i q^{98} -442.083 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 4 q^{6} - 70 q^{9} + 20 q^{11} + 228 q^{14} + 64 q^{16} + 76 q^{19} + 234 q^{21} + 16 q^{24} - 52 q^{26} + 158 q^{29} - 32 q^{31} - 204 q^{34} + 280 q^{36} + 1226 q^{39} - 1580 q^{41} - 80 q^{44}+ \cdots - 704 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 7.15207i 1.37642i 0.725513 + 0.688208i \(0.241602\pi\)
−0.725513 + 0.688208i \(0.758398\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −14.3041 −0.973273
\(7\) − 35.1521i − 1.89803i −0.315226 0.949017i \(-0.602080\pi\)
0.315226 0.949017i \(-0.397920\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) −24.1521 −0.894521
\(10\) 0 0
\(11\) 18.3041 0.501719 0.250859 0.968024i \(-0.419287\pi\)
0.250859 + 0.968024i \(0.419287\pi\)
\(12\) − 28.6083i − 0.688208i
\(13\) − 40.0645i − 0.854760i −0.904072 0.427380i \(-0.859437\pi\)
0.904072 0.427380i \(-0.140563\pi\)
\(14\) 70.3041 1.34211
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 125.281i 1.78736i 0.448706 + 0.893680i \(0.351885\pi\)
−0.448706 + 0.893680i \(0.648115\pi\)
\(18\) − 48.3041i − 0.632522i
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 251.410 2.61248
\(22\) 36.6083i 0.354769i
\(23\) 8.97688i 0.0813830i 0.999172 + 0.0406915i \(0.0129561\pi\)
−0.999172 + 0.0406915i \(0.987044\pi\)
\(24\) 57.2165 0.486637
\(25\) 0 0
\(26\) 80.1289 0.604407
\(27\) 20.3686i 0.145183i
\(28\) 140.608i 0.949017i
\(29\) −153.410 −0.982328 −0.491164 0.871067i \(-0.663428\pi\)
−0.491164 + 0.871067i \(0.663428\pi\)
\(30\) 0 0
\(31\) −114.433 −0.662993 −0.331497 0.943456i \(-0.607554\pi\)
−0.331497 + 0.943456i \(0.607554\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 130.912i 0.690573i
\(34\) −250.562 −1.26385
\(35\) 0 0
\(36\) 96.6083 0.447261
\(37\) − 83.5669i − 0.371306i −0.982615 0.185653i \(-0.940560\pi\)
0.982615 0.185653i \(-0.0594400\pi\)
\(38\) 38.0000i 0.162221i
\(39\) 286.544 1.17651
\(40\) 0 0
\(41\) −355.088 −1.35257 −0.676285 0.736640i \(-0.736411\pi\)
−0.676285 + 0.736640i \(0.736411\pi\)
\(42\) 502.820i 1.84730i
\(43\) 467.299i 1.65727i 0.559792 + 0.828633i \(0.310881\pi\)
−0.559792 + 0.828633i \(0.689119\pi\)
\(44\) −73.2165 −0.250859
\(45\) 0 0
\(46\) −17.9538 −0.0575464
\(47\) − 166.083i − 0.515439i −0.966220 0.257720i \(-0.917029\pi\)
0.966220 0.257720i \(-0.0829711\pi\)
\(48\) 114.433i 0.344104i
\(49\) −892.668 −2.60253
\(50\) 0 0
\(51\) −896.018 −2.46015
\(52\) 160.258i 0.427380i
\(53\) 258.369i 0.669616i 0.942286 + 0.334808i \(0.108671\pi\)
−0.942286 + 0.334808i \(0.891329\pi\)
\(54\) −40.7372 −0.102660
\(55\) 0 0
\(56\) −281.217 −0.671056
\(57\) 135.889i 0.315771i
\(58\) − 306.820i − 0.694611i
\(59\) 371.797 0.820404 0.410202 0.911995i \(-0.365458\pi\)
0.410202 + 0.911995i \(0.365458\pi\)
\(60\) 0 0
\(61\) −47.3090 −0.0993000 −0.0496500 0.998767i \(-0.515811\pi\)
−0.0496500 + 0.998767i \(0.515811\pi\)
\(62\) − 228.866i − 0.468807i
\(63\) 848.995i 1.69783i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −261.825 −0.488309
\(67\) 755.539i 1.37767i 0.724919 + 0.688834i \(0.241877\pi\)
−0.724919 + 0.688834i \(0.758123\pi\)
\(68\) − 501.124i − 0.893680i
\(69\) −64.2032 −0.112017
\(70\) 0 0
\(71\) 349.345 0.583939 0.291970 0.956428i \(-0.405689\pi\)
0.291970 + 0.956428i \(0.405689\pi\)
\(72\) 193.217i 0.316261i
\(73\) 54.8479i 0.0879379i 0.999033 + 0.0439689i \(0.0140003\pi\)
−0.999033 + 0.0439689i \(0.986000\pi\)
\(74\) 167.134 0.262553
\(75\) 0 0
\(76\) −76.0000 −0.114708
\(77\) − 643.428i − 0.952279i
\(78\) 573.088i 0.831915i
\(79\) −438.820 −0.624951 −0.312475 0.949926i \(-0.601158\pi\)
−0.312475 + 0.949926i \(0.601158\pi\)
\(80\) 0 0
\(81\) −797.783 −1.09435
\(82\) − 710.175i − 0.956411i
\(83\) 1073.09i 1.41912i 0.704647 + 0.709558i \(0.251105\pi\)
−0.704647 + 0.709558i \(0.748895\pi\)
\(84\) −1005.64 −1.30624
\(85\) 0 0
\(86\) −934.598 −1.17186
\(87\) − 1097.20i − 1.35209i
\(88\) − 146.433i − 0.177384i
\(89\) 501.521 0.597316 0.298658 0.954360i \(-0.403461\pi\)
0.298658 + 0.954360i \(0.403461\pi\)
\(90\) 0 0
\(91\) −1408.35 −1.62236
\(92\) − 35.9075i − 0.0406915i
\(93\) − 818.433i − 0.912554i
\(94\) 332.165 0.364471
\(95\) 0 0
\(96\) −228.866 −0.243318
\(97\) 1437.56i 1.50476i 0.658729 + 0.752380i \(0.271094\pi\)
−0.658729 + 0.752380i \(0.728906\pi\)
\(98\) − 1785.34i − 1.84027i
\(99\) −442.083 −0.448798
\(100\) 0 0
\(101\) 395.124 0.389270 0.194635 0.980876i \(-0.437648\pi\)
0.194635 + 0.980876i \(0.437648\pi\)
\(102\) − 1792.04i − 1.73959i
\(103\) 1285.68i 1.22992i 0.788559 + 0.614958i \(0.210827\pi\)
−0.788559 + 0.614958i \(0.789173\pi\)
\(104\) −320.516 −0.302203
\(105\) 0 0
\(106\) −516.737 −0.473490
\(107\) − 1203.10i − 1.08699i −0.839413 0.543494i \(-0.817101\pi\)
0.839413 0.543494i \(-0.182899\pi\)
\(108\) − 81.4744i − 0.0725915i
\(109\) 1333.74 1.17201 0.586005 0.810307i \(-0.300700\pi\)
0.586005 + 0.810307i \(0.300700\pi\)
\(110\) 0 0
\(111\) 597.676 0.511071
\(112\) − 562.433i − 0.474508i
\(113\) 836.506i 0.696388i 0.937422 + 0.348194i \(0.113205\pi\)
−0.937422 + 0.348194i \(0.886795\pi\)
\(114\) −271.779 −0.223284
\(115\) 0 0
\(116\) 613.640 0.491164
\(117\) 967.640i 0.764601i
\(118\) 743.594i 0.580113i
\(119\) 4403.89 3.39247
\(120\) 0 0
\(121\) −995.959 −0.748278
\(122\) − 94.6181i − 0.0702157i
\(123\) − 2539.61i − 1.86170i
\(124\) 457.732 0.331497
\(125\) 0 0
\(126\) −1697.99 −1.20055
\(127\) 385.954i 0.269668i 0.990868 + 0.134834i \(0.0430501\pi\)
−0.990868 + 0.134834i \(0.956950\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −3342.16 −2.28109
\(130\) 0 0
\(131\) 1737.90 1.15909 0.579545 0.814940i \(-0.303230\pi\)
0.579545 + 0.814940i \(0.303230\pi\)
\(132\) − 523.650i − 0.345287i
\(133\) − 667.889i − 0.435439i
\(134\) −1511.08 −0.974159
\(135\) 0 0
\(136\) 1002.25 0.631927
\(137\) − 41.7603i − 0.0260425i −0.999915 0.0130213i \(-0.995855\pi\)
0.999915 0.0130213i \(-0.00414491\pi\)
\(138\) − 128.406i − 0.0792078i
\(139\) −1536.79 −0.937763 −0.468882 0.883261i \(-0.655343\pi\)
−0.468882 + 0.883261i \(0.655343\pi\)
\(140\) 0 0
\(141\) 1187.83 0.709459
\(142\) 698.691i 0.412907i
\(143\) − 733.345i − 0.428849i
\(144\) −386.433 −0.223630
\(145\) 0 0
\(146\) −109.696 −0.0621815
\(147\) − 6384.42i − 3.58216i
\(148\) 334.268i 0.185653i
\(149\) −1656.65 −0.910862 −0.455431 0.890271i \(-0.650515\pi\)
−0.455431 + 0.890271i \(0.650515\pi\)
\(150\) 0 0
\(151\) −714.985 −0.385329 −0.192664 0.981265i \(-0.561713\pi\)
−0.192664 + 0.981265i \(0.561713\pi\)
\(152\) − 152.000i − 0.0811107i
\(153\) − 3025.80i − 1.59883i
\(154\) 1286.86 0.673363
\(155\) 0 0
\(156\) −1146.18 −0.588253
\(157\) − 1684.23i − 0.856153i −0.903742 0.428077i \(-0.859191\pi\)
0.903742 0.428077i \(-0.140809\pi\)
\(158\) − 877.640i − 0.441907i
\(159\) −1847.87 −0.921670
\(160\) 0 0
\(161\) 315.556 0.154468
\(162\) − 1595.57i − 0.773825i
\(163\) 702.175i 0.337415i 0.985666 + 0.168707i \(0.0539593\pi\)
−0.985666 + 0.168707i \(0.946041\pi\)
\(164\) 1420.35 0.676285
\(165\) 0 0
\(166\) −2146.18 −1.00347
\(167\) 282.506i 0.130904i 0.997856 + 0.0654520i \(0.0208489\pi\)
−0.997856 + 0.0654520i \(0.979151\pi\)
\(168\) − 2011.28i − 0.923652i
\(169\) 591.838 0.269385
\(170\) 0 0
\(171\) −458.889 −0.205217
\(172\) − 1869.20i − 0.828633i
\(173\) 2183.44i 0.959558i 0.877389 + 0.479779i \(0.159283\pi\)
−0.877389 + 0.479779i \(0.840717\pi\)
\(174\) 2194.40 0.956073
\(175\) 0 0
\(176\) 292.866 0.125430
\(177\) 2659.12i 1.12922i
\(178\) 1003.04i 0.422366i
\(179\) 3198.51 1.33557 0.667786 0.744353i \(-0.267242\pi\)
0.667786 + 0.744353i \(0.267242\pi\)
\(180\) 0 0
\(181\) −2151.05 −0.883350 −0.441675 0.897175i \(-0.645616\pi\)
−0.441675 + 0.897175i \(0.645616\pi\)
\(182\) − 2816.70i − 1.14718i
\(183\) − 338.357i − 0.136678i
\(184\) 71.8150 0.0287732
\(185\) 0 0
\(186\) 1636.87 0.645273
\(187\) 2293.16i 0.896751i
\(188\) 664.331i 0.257720i
\(189\) 715.999 0.275562
\(190\) 0 0
\(191\) −4435.52 −1.68033 −0.840165 0.542331i \(-0.817542\pi\)
−0.840165 + 0.542331i \(0.817542\pi\)
\(192\) − 457.732i − 0.172052i
\(193\) 2720.60i 1.01468i 0.861746 + 0.507339i \(0.169371\pi\)
−0.861746 + 0.507339i \(0.830629\pi\)
\(194\) −2875.11 −1.06403
\(195\) 0 0
\(196\) 3570.67 1.30127
\(197\) − 1254.08i − 0.453549i −0.973947 0.226775i \(-0.927182\pi\)
0.973947 0.226775i \(-0.0728181\pi\)
\(198\) − 884.165i − 0.317348i
\(199\) −4155.19 −1.48017 −0.740084 0.672515i \(-0.765214\pi\)
−0.740084 + 0.672515i \(0.765214\pi\)
\(200\) 0 0
\(201\) −5403.67 −1.89624
\(202\) 790.248i 0.275256i
\(203\) 5392.68i 1.86449i
\(204\) 3584.07 1.23007
\(205\) 0 0
\(206\) −2571.35 −0.869683
\(207\) − 216.810i − 0.0727988i
\(208\) − 641.032i − 0.213690i
\(209\) 347.779 0.115102
\(210\) 0 0
\(211\) −633.437 −0.206671 −0.103335 0.994647i \(-0.532952\pi\)
−0.103335 + 0.994647i \(0.532952\pi\)
\(212\) − 1033.47i − 0.334808i
\(213\) 2498.54i 0.803743i
\(214\) 2406.19 0.768616
\(215\) 0 0
\(216\) 162.949 0.0513299
\(217\) 4022.56i 1.25838i
\(218\) 2667.48i 0.828737i
\(219\) −392.276 −0.121039
\(220\) 0 0
\(221\) 5019.32 1.52776
\(222\) 1195.35i 0.361382i
\(223\) − 4798.34i − 1.44090i −0.693507 0.720449i \(-0.743936\pi\)
0.693507 0.720449i \(-0.256064\pi\)
\(224\) 1124.87 0.335528
\(225\) 0 0
\(226\) −1673.01 −0.492421
\(227\) − 641.770i − 0.187647i −0.995589 0.0938233i \(-0.970091\pi\)
0.995589 0.0938233i \(-0.0299089\pi\)
\(228\) − 543.557i − 0.157886i
\(229\) 1231.34 0.355325 0.177662 0.984091i \(-0.443146\pi\)
0.177662 + 0.984091i \(0.443146\pi\)
\(230\) 0 0
\(231\) 4601.84 1.31073
\(232\) 1227.28i 0.347305i
\(233\) 226.701i 0.0637410i 0.999492 + 0.0318705i \(0.0101464\pi\)
−0.999492 + 0.0318705i \(0.989854\pi\)
\(234\) −1935.28 −0.540655
\(235\) 0 0
\(236\) −1487.19 −0.410202
\(237\) − 3138.47i − 0.860192i
\(238\) 8807.77i 2.39884i
\(239\) −2433.27 −0.658557 −0.329278 0.944233i \(-0.606805\pi\)
−0.329278 + 0.944233i \(0.606805\pi\)
\(240\) 0 0
\(241\) −901.336 −0.240913 −0.120457 0.992719i \(-0.538436\pi\)
−0.120457 + 0.992719i \(0.538436\pi\)
\(242\) − 1991.92i − 0.529113i
\(243\) − 5155.85i − 1.36110i
\(244\) 189.236 0.0496500
\(245\) 0 0
\(246\) 5079.22 1.31642
\(247\) − 761.225i − 0.196095i
\(248\) 915.465i 0.234403i
\(249\) −7674.79 −1.95329
\(250\) 0 0
\(251\) −5675.92 −1.42734 −0.713668 0.700484i \(-0.752967\pi\)
−0.713668 + 0.700484i \(0.752967\pi\)
\(252\) − 3395.98i − 0.848915i
\(253\) 164.314i 0.0408313i
\(254\) −771.908 −0.190684
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 2035.88i − 0.494143i −0.968997 0.247072i \(-0.920532\pi\)
0.968997 0.247072i \(-0.0794683\pi\)
\(258\) − 6684.31i − 1.61297i
\(259\) −2937.55 −0.704751
\(260\) 0 0
\(261\) 3705.17 0.878713
\(262\) 3475.80i 0.819601i
\(263\) 1924.20i 0.451147i 0.974226 + 0.225573i \(0.0724255\pi\)
−0.974226 + 0.225573i \(0.927574\pi\)
\(264\) 1047.30 0.244155
\(265\) 0 0
\(266\) 1335.78 0.307902
\(267\) 3586.91i 0.822155i
\(268\) − 3022.16i − 0.688834i
\(269\) 829.280 0.187963 0.0939815 0.995574i \(-0.470041\pi\)
0.0939815 + 0.995574i \(0.470041\pi\)
\(270\) 0 0
\(271\) −1223.13 −0.274169 −0.137085 0.990559i \(-0.543773\pi\)
−0.137085 + 0.990559i \(0.543773\pi\)
\(272\) 2004.50i 0.446840i
\(273\) − 10072.6i − 2.23305i
\(274\) 83.5207 0.0184148
\(275\) 0 0
\(276\) 256.813 0.0560084
\(277\) − 1622.81i − 0.352004i −0.984390 0.176002i \(-0.943683\pi\)
0.984390 0.176002i \(-0.0563166\pi\)
\(278\) − 3073.59i − 0.663099i
\(279\) 2763.80 0.593061
\(280\) 0 0
\(281\) 3618.96 0.768288 0.384144 0.923273i \(-0.374497\pi\)
0.384144 + 0.923273i \(0.374497\pi\)
\(282\) 2375.67i 0.501663i
\(283\) 2102.43i 0.441613i 0.975318 + 0.220807i \(0.0708689\pi\)
−0.975318 + 0.220807i \(0.929131\pi\)
\(284\) −1397.38 −0.291970
\(285\) 0 0
\(286\) 1466.69 0.303242
\(287\) 12482.1i 2.56722i
\(288\) − 772.866i − 0.158130i
\(289\) −10782.3 −2.19465
\(290\) 0 0
\(291\) −10281.5 −2.07118
\(292\) − 219.392i − 0.0439689i
\(293\) − 5383.99i − 1.07350i −0.843741 0.536751i \(-0.819652\pi\)
0.843741 0.536751i \(-0.180348\pi\)
\(294\) 12768.8 2.53297
\(295\) 0 0
\(296\) −668.535 −0.131276
\(297\) 372.830i 0.0728410i
\(298\) − 3313.31i − 0.644077i
\(299\) 359.654 0.0695629
\(300\) 0 0
\(301\) 16426.5 3.14555
\(302\) − 1429.97i − 0.272469i
\(303\) 2825.95i 0.535798i
\(304\) 304.000 0.0573539
\(305\) 0 0
\(306\) 6051.59 1.13054
\(307\) − 3692.85i − 0.686521i −0.939240 0.343260i \(-0.888469\pi\)
0.939240 0.343260i \(-0.111531\pi\)
\(308\) 2573.71i 0.476139i
\(309\) −9195.24 −1.69288
\(310\) 0 0
\(311\) −4427.67 −0.807299 −0.403649 0.914914i \(-0.632258\pi\)
−0.403649 + 0.914914i \(0.632258\pi\)
\(312\) − 2292.35i − 0.415958i
\(313\) − 7356.47i − 1.32847i −0.747523 0.664236i \(-0.768757\pi\)
0.747523 0.664236i \(-0.231243\pi\)
\(314\) 3368.46 0.605392
\(315\) 0 0
\(316\) 1755.28 0.312475
\(317\) − 1612.77i − 0.285747i −0.989741 0.142874i \(-0.954366\pi\)
0.989741 0.142874i \(-0.0456343\pi\)
\(318\) − 3695.74i − 0.651719i
\(319\) −2808.04 −0.492852
\(320\) 0 0
\(321\) 8604.62 1.49615
\(322\) 631.111i 0.109225i
\(323\) 2380.34i 0.410048i
\(324\) 3191.13 0.547177
\(325\) 0 0
\(326\) −1404.35 −0.238588
\(327\) 9539.00i 1.61317i
\(328\) 2840.70i 0.478206i
\(329\) −5838.15 −0.978321
\(330\) 0 0
\(331\) −2262.78 −0.375752 −0.187876 0.982193i \(-0.560160\pi\)
−0.187876 + 0.982193i \(0.560160\pi\)
\(332\) − 4292.35i − 0.709558i
\(333\) 2018.31i 0.332141i
\(334\) −565.012 −0.0925631
\(335\) 0 0
\(336\) 4022.56 0.653121
\(337\) 2037.63i 0.329367i 0.986346 + 0.164683i \(0.0526602\pi\)
−0.986346 + 0.164683i \(0.947340\pi\)
\(338\) 1183.68i 0.190484i
\(339\) −5982.75 −0.958520
\(340\) 0 0
\(341\) −2094.60 −0.332636
\(342\) − 917.779i − 0.145110i
\(343\) 19322.0i 3.04166i
\(344\) 3738.39 0.585932
\(345\) 0 0
\(346\) −4366.87 −0.678510
\(347\) 1844.33i 0.285328i 0.989771 + 0.142664i \(0.0455668\pi\)
−0.989771 + 0.142664i \(0.954433\pi\)
\(348\) 4388.79i 0.676046i
\(349\) 10156.9 1.55784 0.778918 0.627125i \(-0.215769\pi\)
0.778918 + 0.627125i \(0.215769\pi\)
\(350\) 0 0
\(351\) 816.057 0.124097
\(352\) 585.732i 0.0886922i
\(353\) 1905.43i 0.287296i 0.989629 + 0.143648i \(0.0458834\pi\)
−0.989629 + 0.143648i \(0.954117\pi\)
\(354\) −5318.23 −0.798477
\(355\) 0 0
\(356\) −2006.08 −0.298658
\(357\) 31496.9i 4.66945i
\(358\) 6397.01i 0.944393i
\(359\) 2496.50 0.367020 0.183510 0.983018i \(-0.441254\pi\)
0.183510 + 0.983018i \(0.441254\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) − 4302.10i − 0.624623i
\(363\) − 7123.16i − 1.02994i
\(364\) 5633.40 0.811182
\(365\) 0 0
\(366\) 676.715 0.0966460
\(367\) 8748.42i 1.24432i 0.782892 + 0.622158i \(0.213744\pi\)
−0.782892 + 0.622158i \(0.786256\pi\)
\(368\) 143.630i 0.0203457i
\(369\) 8576.10 1.20990
\(370\) 0 0
\(371\) 9082.19 1.27095
\(372\) 3273.73i 0.456277i
\(373\) 1460.62i 0.202756i 0.994848 + 0.101378i \(0.0323252\pi\)
−0.994848 + 0.101378i \(0.967675\pi\)
\(374\) −4586.32 −0.634099
\(375\) 0 0
\(376\) −1328.66 −0.182235
\(377\) 6146.29i 0.839655i
\(378\) 1432.00i 0.194852i
\(379\) −10581.0 −1.43406 −0.717029 0.697043i \(-0.754499\pi\)
−0.717029 + 0.697043i \(0.754499\pi\)
\(380\) 0 0
\(381\) −2760.37 −0.371176
\(382\) − 8871.04i − 1.18817i
\(383\) − 2932.54i − 0.391242i −0.980680 0.195621i \(-0.937328\pi\)
0.980680 0.195621i \(-0.0626722\pi\)
\(384\) 915.465 0.121659
\(385\) 0 0
\(386\) −5441.20 −0.717486
\(387\) − 11286.2i − 1.48246i
\(388\) − 5750.23i − 0.752380i
\(389\) 3631.19 0.473287 0.236644 0.971597i \(-0.423953\pi\)
0.236644 + 0.971597i \(0.423953\pi\)
\(390\) 0 0
\(391\) −1124.63 −0.145461
\(392\) 7141.34i 0.920133i
\(393\) 12429.6i 1.59539i
\(394\) 2508.15 0.320708
\(395\) 0 0
\(396\) 1768.33 0.224399
\(397\) 2005.32i 0.253512i 0.991934 + 0.126756i \(0.0404565\pi\)
−0.991934 + 0.126756i \(0.959544\pi\)
\(398\) − 8310.37i − 1.04664i
\(399\) 4776.79 0.599345
\(400\) 0 0
\(401\) −8187.30 −1.01959 −0.509793 0.860297i \(-0.670278\pi\)
−0.509793 + 0.860297i \(0.670278\pi\)
\(402\) − 10807.3i − 1.34085i
\(403\) 4584.70i 0.566700i
\(404\) −1580.50 −0.194635
\(405\) 0 0
\(406\) −10785.4 −1.31839
\(407\) − 1529.62i − 0.186291i
\(408\) 7168.15i 0.869794i
\(409\) 15565.0 1.88175 0.940877 0.338747i \(-0.110003\pi\)
0.940877 + 0.338747i \(0.110003\pi\)
\(410\) 0 0
\(411\) 298.673 0.0358454
\(412\) − 5142.71i − 0.614958i
\(413\) − 13069.4i − 1.55715i
\(414\) 433.620 0.0514765
\(415\) 0 0
\(416\) 1282.06 0.151102
\(417\) − 10991.2i − 1.29075i
\(418\) 695.557i 0.0813895i
\(419\) 1839.83 0.214514 0.107257 0.994231i \(-0.465793\pi\)
0.107257 + 0.994231i \(0.465793\pi\)
\(420\) 0 0
\(421\) 4658.28 0.539266 0.269633 0.962963i \(-0.413098\pi\)
0.269633 + 0.962963i \(0.413098\pi\)
\(422\) − 1266.87i − 0.146138i
\(423\) 4011.24i 0.461071i
\(424\) 2066.95 0.236745
\(425\) 0 0
\(426\) −4997.08 −0.568332
\(427\) 1663.01i 0.188475i
\(428\) 4812.38i 0.543494i
\(429\) 5244.94 0.590275
\(430\) 0 0
\(431\) 2820.47 0.315214 0.157607 0.987502i \(-0.449622\pi\)
0.157607 + 0.987502i \(0.449622\pi\)
\(432\) 325.898i 0.0362957i
\(433\) 8981.39i 0.996809i 0.866945 + 0.498404i \(0.166080\pi\)
−0.866945 + 0.498404i \(0.833920\pi\)
\(434\) −8045.12 −0.889811
\(435\) 0 0
\(436\) −5334.96 −0.586005
\(437\) 170.561i 0.0186705i
\(438\) − 784.552i − 0.0855876i
\(439\) −14131.1 −1.53631 −0.768157 0.640261i \(-0.778826\pi\)
−0.768157 + 0.640261i \(0.778826\pi\)
\(440\) 0 0
\(441\) 21559.8 2.32802
\(442\) 10038.6i 1.08029i
\(443\) 1659.59i 0.177990i 0.996032 + 0.0889951i \(0.0283656\pi\)
−0.996032 + 0.0889951i \(0.971634\pi\)
\(444\) −2390.71 −0.255536
\(445\) 0 0
\(446\) 9596.68 1.01887
\(447\) − 11848.5i − 1.25372i
\(448\) 2249.73i 0.237254i
\(449\) 13732.6 1.44338 0.721692 0.692214i \(-0.243365\pi\)
0.721692 + 0.692214i \(0.243365\pi\)
\(450\) 0 0
\(451\) −6499.57 −0.678609
\(452\) − 3346.02i − 0.348194i
\(453\) − 5113.62i − 0.530373i
\(454\) 1283.54 0.132686
\(455\) 0 0
\(456\) 1087.11 0.111642
\(457\) 5273.37i 0.539776i 0.962892 + 0.269888i \(0.0869867\pi\)
−0.962892 + 0.269888i \(0.913013\pi\)
\(458\) 2462.69i 0.251253i
\(459\) −2551.80 −0.259494
\(460\) 0 0
\(461\) 16402.4 1.65713 0.828565 0.559893i \(-0.189158\pi\)
0.828565 + 0.559893i \(0.189158\pi\)
\(462\) 9203.68i 0.926827i
\(463\) − 5296.03i − 0.531593i −0.964029 0.265796i \(-0.914365\pi\)
0.964029 0.265796i \(-0.0856349\pi\)
\(464\) −2454.56 −0.245582
\(465\) 0 0
\(466\) −453.402 −0.0450717
\(467\) − 3470.94i − 0.343931i −0.985103 0.171966i \(-0.944988\pi\)
0.985103 0.171966i \(-0.0550118\pi\)
\(468\) − 3870.56i − 0.382301i
\(469\) 26558.8 2.61486
\(470\) 0 0
\(471\) 12045.7 1.17842
\(472\) − 2974.37i − 0.290057i
\(473\) 8553.51i 0.831481i
\(474\) 6276.94 0.608248
\(475\) 0 0
\(476\) −17615.5 −1.69623
\(477\) − 6240.14i − 0.598986i
\(478\) − 4866.54i − 0.465670i
\(479\) 16294.7 1.55433 0.777163 0.629300i \(-0.216658\pi\)
0.777163 + 0.629300i \(0.216658\pi\)
\(480\) 0 0
\(481\) −3348.06 −0.317378
\(482\) − 1802.67i − 0.170352i
\(483\) 2256.88i 0.212612i
\(484\) 3983.83 0.374139
\(485\) 0 0
\(486\) 10311.7 0.962445
\(487\) 2245.82i 0.208969i 0.994527 + 0.104485i \(0.0333193\pi\)
−0.994527 + 0.104485i \(0.966681\pi\)
\(488\) 378.472i 0.0351079i
\(489\) −5022.00 −0.464423
\(490\) 0 0
\(491\) −7578.64 −0.696577 −0.348288 0.937387i \(-0.613237\pi\)
−0.348288 + 0.937387i \(0.613237\pi\)
\(492\) 10158.4i 0.930849i
\(493\) − 19219.4i − 1.75577i
\(494\) 1522.45 0.138660
\(495\) 0 0
\(496\) −1830.93 −0.165748
\(497\) − 12280.2i − 1.10834i
\(498\) − 15349.6i − 1.38119i
\(499\) 10558.4 0.947209 0.473604 0.880738i \(-0.342953\pi\)
0.473604 + 0.880738i \(0.342953\pi\)
\(500\) 0 0
\(501\) −2020.50 −0.180178
\(502\) − 11351.8i − 1.00928i
\(503\) − 5816.42i − 0.515590i −0.966200 0.257795i \(-0.917004\pi\)
0.966200 0.257795i \(-0.0829958\pi\)
\(504\) 6791.96 0.600274
\(505\) 0 0
\(506\) −328.628 −0.0288721
\(507\) 4232.87i 0.370785i
\(508\) − 1543.82i − 0.134834i
\(509\) −18051.0 −1.57190 −0.785950 0.618290i \(-0.787826\pi\)
−0.785950 + 0.618290i \(0.787826\pi\)
\(510\) 0 0
\(511\) 1928.02 0.166909
\(512\) 512.000i 0.0441942i
\(513\) 387.004i 0.0333073i
\(514\) 4071.76 0.349412
\(515\) 0 0
\(516\) 13368.6 1.14054
\(517\) − 3040.00i − 0.258606i
\(518\) − 5875.10i − 0.498334i
\(519\) −15616.1 −1.32075
\(520\) 0 0
\(521\) −0.648976 −5.45723e−5 0 −2.72861e−5 1.00000i \(-0.500009\pi\)
−2.72861e−5 1.00000i \(0.500009\pi\)
\(522\) 7410.34i 0.621344i
\(523\) 16912.1i 1.41399i 0.707219 + 0.706994i \(0.249949\pi\)
−0.707219 + 0.706994i \(0.750051\pi\)
\(524\) −6951.59 −0.579545
\(525\) 0 0
\(526\) −3848.41 −0.319009
\(527\) − 14336.3i − 1.18501i
\(528\) 2094.60i 0.172643i
\(529\) 12086.4 0.993377
\(530\) 0 0
\(531\) −8979.66 −0.733868
\(532\) 2671.56i 0.217719i
\(533\) 14226.4i 1.15612i
\(534\) −7173.82 −0.581351
\(535\) 0 0
\(536\) 6044.31 0.487079
\(537\) 22875.9i 1.83830i
\(538\) 1658.56i 0.132910i
\(539\) −16339.5 −1.30574
\(540\) 0 0
\(541\) −8893.75 −0.706788 −0.353394 0.935475i \(-0.614972\pi\)
−0.353394 + 0.935475i \(0.614972\pi\)
\(542\) − 2446.26i − 0.193867i
\(543\) − 15384.5i − 1.21586i
\(544\) −4008.99 −0.315963
\(545\) 0 0
\(546\) 20145.2 1.57900
\(547\) − 16972.8i − 1.32670i −0.748308 0.663351i \(-0.769134\pi\)
0.748308 0.663351i \(-0.230866\pi\)
\(548\) 167.041i 0.0130213i
\(549\) 1142.61 0.0888260
\(550\) 0 0
\(551\) −2914.79 −0.225362
\(552\) 513.626i 0.0396039i
\(553\) 15425.4i 1.18618i
\(554\) 3245.62 0.248905
\(555\) 0 0
\(556\) 6147.17 0.468882
\(557\) 17045.8i 1.29669i 0.761348 + 0.648343i \(0.224538\pi\)
−0.761348 + 0.648343i \(0.775462\pi\)
\(558\) 5527.59i 0.419358i
\(559\) 18722.1 1.41657
\(560\) 0 0
\(561\) −16400.8 −1.23430
\(562\) 7237.91i 0.543261i
\(563\) − 6973.83i − 0.522046i −0.965333 0.261023i \(-0.915940\pi\)
0.965333 0.261023i \(-0.0840598\pi\)
\(564\) −4751.34 −0.354730
\(565\) 0 0
\(566\) −4204.86 −0.312268
\(567\) 28043.7i 2.07712i
\(568\) − 2794.76i − 0.206454i
\(569\) 21644.0 1.59466 0.797332 0.603541i \(-0.206244\pi\)
0.797332 + 0.603541i \(0.206244\pi\)
\(570\) 0 0
\(571\) −13891.0 −1.01807 −0.509035 0.860746i \(-0.669998\pi\)
−0.509035 + 0.860746i \(0.669998\pi\)
\(572\) 2933.38i 0.214425i
\(573\) − 31723.1i − 2.31283i
\(574\) −24964.1 −1.81530
\(575\) 0 0
\(576\) 1545.73 0.111815
\(577\) 2386.14i 0.172160i 0.996288 + 0.0860798i \(0.0274340\pi\)
−0.996288 + 0.0860798i \(0.972566\pi\)
\(578\) − 21564.7i − 1.55185i
\(579\) −19457.9 −1.39662
\(580\) 0 0
\(581\) 37721.2 2.69353
\(582\) − 20563.0i − 1.46454i
\(583\) 4729.21i 0.335959i
\(584\) 438.783 0.0310907
\(585\) 0 0
\(586\) 10768.0 0.759080
\(587\) 826.851i 0.0581393i 0.999577 + 0.0290697i \(0.00925447\pi\)
−0.999577 + 0.0290697i \(0.990746\pi\)
\(588\) 25537.7i 1.79108i
\(589\) −2174.23 −0.152101
\(590\) 0 0
\(591\) 8969.23 0.624272
\(592\) − 1337.07i − 0.0928265i
\(593\) 9789.50i 0.677920i 0.940801 + 0.338960i \(0.110075\pi\)
−0.940801 + 0.338960i \(0.889925\pi\)
\(594\) −745.659 −0.0515064
\(595\) 0 0
\(596\) 6626.62 0.455431
\(597\) − 29718.2i − 2.03733i
\(598\) 719.308i 0.0491884i
\(599\) 23555.7 1.60678 0.803389 0.595455i \(-0.203028\pi\)
0.803389 + 0.595455i \(0.203028\pi\)
\(600\) 0 0
\(601\) 12263.4 0.832334 0.416167 0.909288i \(-0.363373\pi\)
0.416167 + 0.909288i \(0.363373\pi\)
\(602\) 32853.1i 2.22424i
\(603\) − 18247.8i − 1.23235i
\(604\) 2859.94 0.192664
\(605\) 0 0
\(606\) −5651.91 −0.378866
\(607\) − 464.109i − 0.0310340i −0.999880 0.0155170i \(-0.995061\pi\)
0.999880 0.0155170i \(-0.00493941\pi\)
\(608\) 608.000i 0.0405554i
\(609\) −38568.8 −2.56632
\(610\) 0 0
\(611\) −6654.02 −0.440577
\(612\) 12103.2i 0.799415i
\(613\) 11526.0i 0.759427i 0.925104 + 0.379714i \(0.123977\pi\)
−0.925104 + 0.379714i \(0.876023\pi\)
\(614\) 7385.69 0.485444
\(615\) 0 0
\(616\) −5147.43 −0.336681
\(617\) − 17632.5i − 1.15050i −0.817978 0.575249i \(-0.804905\pi\)
0.817978 0.575249i \(-0.195095\pi\)
\(618\) − 18390.5i − 1.19705i
\(619\) −16538.0 −1.07386 −0.536928 0.843628i \(-0.680415\pi\)
−0.536928 + 0.843628i \(0.680415\pi\)
\(620\) 0 0
\(621\) −182.846 −0.0118154
\(622\) − 8855.33i − 0.570846i
\(623\) − 17629.5i − 1.13372i
\(624\) 4584.70 0.294126
\(625\) 0 0
\(626\) 14712.9 0.939372
\(627\) 2487.34i 0.158428i
\(628\) 6736.91i 0.428077i
\(629\) 10469.3 0.663657
\(630\) 0 0
\(631\) −8881.84 −0.560349 −0.280175 0.959949i \(-0.590392\pi\)
−0.280175 + 0.959949i \(0.590392\pi\)
\(632\) 3510.56i 0.220953i
\(633\) − 4530.38i − 0.284465i
\(634\) 3225.53 0.202054
\(635\) 0 0
\(636\) 7391.48 0.460835
\(637\) 35764.3i 2.22454i
\(638\) − 5616.07i − 0.348499i
\(639\) −8437.42 −0.522346
\(640\) 0 0
\(641\) 22459.3 1.38391 0.691956 0.721939i \(-0.256749\pi\)
0.691956 + 0.721939i \(0.256749\pi\)
\(642\) 17209.2i 1.05794i
\(643\) 19685.1i 1.20731i 0.797244 + 0.603657i \(0.206290\pi\)
−0.797244 + 0.603657i \(0.793710\pi\)
\(644\) −1262.22 −0.0772338
\(645\) 0 0
\(646\) −4760.68 −0.289948
\(647\) 11755.6i 0.714312i 0.934045 + 0.357156i \(0.116254\pi\)
−0.934045 + 0.357156i \(0.883746\pi\)
\(648\) 6382.27i 0.386912i
\(649\) 6805.42 0.411612
\(650\) 0 0
\(651\) −28769.6 −1.73206
\(652\) − 2808.70i − 0.168707i
\(653\) 18350.7i 1.09972i 0.835256 + 0.549862i \(0.185320\pi\)
−0.835256 + 0.549862i \(0.814680\pi\)
\(654\) −19078.0 −1.14069
\(655\) 0 0
\(656\) −5681.40 −0.338142
\(657\) − 1324.69i − 0.0786623i
\(658\) − 11676.3i − 0.691777i
\(659\) −14617.0 −0.864034 −0.432017 0.901866i \(-0.642198\pi\)
−0.432017 + 0.901866i \(0.642198\pi\)
\(660\) 0 0
\(661\) −2932.29 −0.172546 −0.0862729 0.996272i \(-0.527496\pi\)
−0.0862729 + 0.996272i \(0.527496\pi\)
\(662\) − 4525.56i − 0.265696i
\(663\) 35898.5i 2.10284i
\(664\) 8584.70 0.501733
\(665\) 0 0
\(666\) −4036.63 −0.234859
\(667\) − 1377.14i − 0.0799448i
\(668\) − 1130.02i − 0.0654520i
\(669\) 34318.0 1.98328
\(670\) 0 0
\(671\) −865.951 −0.0498207
\(672\) 8045.12i 0.461826i
\(673\) 21271.4i 1.21835i 0.793034 + 0.609177i \(0.208500\pi\)
−0.793034 + 0.609177i \(0.791500\pi\)
\(674\) −4075.25 −0.232898
\(675\) 0 0
\(676\) −2367.35 −0.134692
\(677\) 32878.2i 1.86649i 0.359241 + 0.933245i \(0.383036\pi\)
−0.359241 + 0.933245i \(0.616964\pi\)
\(678\) − 11965.5i − 0.677776i
\(679\) 50533.1 2.85609
\(680\) 0 0
\(681\) 4589.98 0.258280
\(682\) − 4189.20i − 0.235209i
\(683\) − 7771.01i − 0.435358i −0.976020 0.217679i \(-0.930151\pi\)
0.976020 0.217679i \(-0.0698485\pi\)
\(684\) 1835.56 0.102609
\(685\) 0 0
\(686\) −38643.9 −2.15078
\(687\) 8806.65i 0.489075i
\(688\) 7476.79i 0.414317i
\(689\) 10351.4 0.572361
\(690\) 0 0
\(691\) 3655.65 0.201255 0.100628 0.994924i \(-0.467915\pi\)
0.100628 + 0.994924i \(0.467915\pi\)
\(692\) − 8733.74i − 0.479779i
\(693\) 15540.1i 0.851833i
\(694\) −3688.66 −0.201757
\(695\) 0 0
\(696\) −8777.59 −0.478037
\(697\) − 44485.7i − 2.41753i
\(698\) 20313.8i 1.10156i
\(699\) −1621.38 −0.0877342
\(700\) 0 0
\(701\) −28207.0 −1.51977 −0.759887 0.650055i \(-0.774746\pi\)
−0.759887 + 0.650055i \(0.774746\pi\)
\(702\) 1632.11i 0.0877496i
\(703\) − 1587.77i − 0.0851834i
\(704\) −1171.46 −0.0627148
\(705\) 0 0
\(706\) −3810.85 −0.203149
\(707\) − 13889.4i − 0.738848i
\(708\) − 10636.5i − 0.564608i
\(709\) −36417.7 −1.92905 −0.964524 0.263997i \(-0.914959\pi\)
−0.964524 + 0.263997i \(0.914959\pi\)
\(710\) 0 0
\(711\) 10598.4 0.559031
\(712\) − 4012.17i − 0.211183i
\(713\) − 1027.25i − 0.0539563i
\(714\) −62993.8 −3.30180
\(715\) 0 0
\(716\) −12794.0 −0.667786
\(717\) − 17402.9i − 0.906448i
\(718\) 4993.00i 0.259522i
\(719\) −27227.6 −1.41227 −0.706133 0.708079i \(-0.749562\pi\)
−0.706133 + 0.708079i \(0.749562\pi\)
\(720\) 0 0
\(721\) 45194.2 2.33442
\(722\) 722.000i 0.0372161i
\(723\) − 6446.41i − 0.331597i
\(724\) 8604.20 0.441675
\(725\) 0 0
\(726\) 14246.3 0.728279
\(727\) − 27647.2i − 1.41043i −0.708996 0.705213i \(-0.750851\pi\)
0.708996 0.705213i \(-0.249149\pi\)
\(728\) 11266.8i 0.573592i
\(729\) 15334.8 0.779090
\(730\) 0 0
\(731\) −58543.7 −2.96213
\(732\) 1353.43i 0.0683391i
\(733\) − 32139.8i − 1.61952i −0.586760 0.809761i \(-0.699597\pi\)
0.586760 0.809761i \(-0.300403\pi\)
\(734\) −17496.8 −0.879864
\(735\) 0 0
\(736\) −287.260 −0.0143866
\(737\) 13829.5i 0.691202i
\(738\) 17152.2i 0.855530i
\(739\) −16224.9 −0.807635 −0.403818 0.914839i \(-0.632317\pi\)
−0.403818 + 0.914839i \(0.632317\pi\)
\(740\) 0 0
\(741\) 5444.33 0.269909
\(742\) 18164.4i 0.898700i
\(743\) 22463.2i 1.10915i 0.832135 + 0.554573i \(0.187118\pi\)
−0.832135 + 0.554573i \(0.812882\pi\)
\(744\) −6547.46 −0.322637
\(745\) 0 0
\(746\) −2921.24 −0.143370
\(747\) − 25917.3i − 1.26943i
\(748\) − 9172.64i − 0.448376i
\(749\) −42291.3 −2.06314
\(750\) 0 0
\(751\) 9310.24 0.452377 0.226189 0.974083i \(-0.427373\pi\)
0.226189 + 0.974083i \(0.427373\pi\)
\(752\) − 2657.32i − 0.128860i
\(753\) − 40594.6i − 1.96461i
\(754\) −12292.6 −0.593726
\(755\) 0 0
\(756\) −2863.99 −0.137781
\(757\) − 28707.1i − 1.37830i −0.724617 0.689152i \(-0.757983\pi\)
0.724617 0.689152i \(-0.242017\pi\)
\(758\) − 21161.9i − 1.01403i
\(759\) −1175.18 −0.0562009
\(760\) 0 0
\(761\) −20820.3 −0.991768 −0.495884 0.868389i \(-0.665156\pi\)
−0.495884 + 0.868389i \(0.665156\pi\)
\(762\) − 5520.73i − 0.262461i
\(763\) − 46883.7i − 2.22452i
\(764\) 17742.1 0.840165
\(765\) 0 0
\(766\) 5865.08 0.276650
\(767\) − 14895.8i − 0.701249i
\(768\) 1830.93i 0.0860260i
\(769\) −28026.2 −1.31424 −0.657120 0.753786i \(-0.728225\pi\)
−0.657120 + 0.753786i \(0.728225\pi\)
\(770\) 0 0
\(771\) 14560.8 0.680146
\(772\) − 10882.4i − 0.507339i
\(773\) − 16405.1i − 0.763326i −0.924302 0.381663i \(-0.875352\pi\)
0.924302 0.381663i \(-0.124648\pi\)
\(774\) 22572.5 1.04826
\(775\) 0 0
\(776\) 11500.5 0.532013
\(777\) − 21009.6i − 0.970030i
\(778\) 7262.38i 0.334665i
\(779\) −6746.66 −0.310301
\(780\) 0 0
\(781\) 6394.47 0.292973
\(782\) − 2249.26i − 0.102856i
\(783\) − 3124.75i − 0.142617i
\(784\) −14282.7 −0.650633
\(785\) 0 0
\(786\) −24859.1 −1.12811
\(787\) 28468.8i 1.28946i 0.764411 + 0.644730i \(0.223030\pi\)
−0.764411 + 0.644730i \(0.776970\pi\)
\(788\) 5016.30i 0.226775i
\(789\) −13762.0 −0.620965
\(790\) 0 0
\(791\) 29404.9 1.32177
\(792\) 3536.66i 0.158674i
\(793\) 1895.41i 0.0848777i
\(794\) −4010.64 −0.179260
\(795\) 0 0
\(796\) 16620.7 0.740084
\(797\) − 7256.68i − 0.322515i −0.986912 0.161258i \(-0.948445\pi\)
0.986912 0.161258i \(-0.0515550\pi\)
\(798\) 9553.58i 0.423801i
\(799\) 20807.0 0.921275
\(800\) 0 0
\(801\) −12112.8 −0.534311
\(802\) − 16374.6i − 0.720957i
\(803\) 1003.94i 0.0441201i
\(804\) 21614.7 0.948122
\(805\) 0 0
\(806\) −9169.40 −0.400718
\(807\) 5931.06i 0.258715i
\(808\) − 3160.99i − 0.137628i
\(809\) −10647.1 −0.462711 −0.231356 0.972869i \(-0.574316\pi\)
−0.231356 + 0.972869i \(0.574316\pi\)
\(810\) 0 0
\(811\) −27076.9 −1.17238 −0.586190 0.810174i \(-0.699373\pi\)
−0.586190 + 0.810174i \(0.699373\pi\)
\(812\) − 21570.7i − 0.932246i
\(813\) − 8747.91i − 0.377371i
\(814\) 3059.24 0.131728
\(815\) 0 0
\(816\) −14336.3 −0.615037
\(817\) 8878.69i 0.380203i
\(818\) 31129.9i 1.33060i
\(819\) 34014.5 1.45124
\(820\) 0 0
\(821\) 1880.29 0.0799301 0.0399650 0.999201i \(-0.487275\pi\)
0.0399650 + 0.999201i \(0.487275\pi\)
\(822\) 597.345i 0.0253465i
\(823\) 36904.5i 1.56307i 0.623859 + 0.781537i \(0.285564\pi\)
−0.623859 + 0.781537i \(0.714436\pi\)
\(824\) 10285.4 0.434841
\(825\) 0 0
\(826\) 26138.9 1.10107
\(827\) 23091.4i 0.970939i 0.874254 + 0.485470i \(0.161351\pi\)
−0.874254 + 0.485470i \(0.838649\pi\)
\(828\) 867.240i 0.0363994i
\(829\) 15527.1 0.650515 0.325258 0.945625i \(-0.394549\pi\)
0.325258 + 0.945625i \(0.394549\pi\)
\(830\) 0 0
\(831\) 11606.4 0.484504
\(832\) 2564.13i 0.106845i
\(833\) − 111834.i − 4.65166i
\(834\) 21982.5 0.912700
\(835\) 0 0
\(836\) −1391.11 −0.0575511
\(837\) − 2330.84i − 0.0962553i
\(838\) 3679.66i 0.151685i
\(839\) −25695.1 −1.05732 −0.528661 0.848833i \(-0.677306\pi\)
−0.528661 + 0.848833i \(0.677306\pi\)
\(840\) 0 0
\(841\) −854.386 −0.0350316
\(842\) 9316.57i 0.381319i
\(843\) 25883.0i 1.05748i
\(844\) 2533.75 0.103335
\(845\) 0 0
\(846\) −8022.48 −0.326027
\(847\) 35010.0i 1.42026i
\(848\) 4133.90i 0.167404i
\(849\) −15036.7 −0.607843
\(850\) 0 0
\(851\) 750.170 0.0302180
\(852\) − 9994.17i − 0.401872i
\(853\) − 4534.78i − 0.182026i −0.995850 0.0910129i \(-0.970990\pi\)
0.995850 0.0910129i \(-0.0290104\pi\)
\(854\) −3326.02 −0.133272
\(855\) 0 0
\(856\) −9624.77 −0.384308
\(857\) − 48754.1i − 1.94330i −0.236422 0.971651i \(-0.575975\pi\)
0.236422 0.971651i \(-0.424025\pi\)
\(858\) 10489.9i 0.417387i
\(859\) 11730.5 0.465937 0.232968 0.972484i \(-0.425156\pi\)
0.232968 + 0.972484i \(0.425156\pi\)
\(860\) 0 0
\(861\) −89272.6 −3.53357
\(862\) 5640.93i 0.222890i
\(863\) 9907.21i 0.390783i 0.980725 + 0.195391i \(0.0625977\pi\)
−0.980725 + 0.195391i \(0.937402\pi\)
\(864\) −651.795 −0.0256650
\(865\) 0 0
\(866\) −17962.8 −0.704850
\(867\) − 77116.0i − 3.02076i
\(868\) − 16090.2i − 0.629192i
\(869\) −8032.22 −0.313549
\(870\) 0 0
\(871\) 30270.3 1.17758
\(872\) − 10669.9i − 0.414368i
\(873\) − 34720.0i − 1.34604i
\(874\) −341.121 −0.0132021
\(875\) 0 0
\(876\) 1569.10 0.0605195
\(877\) − 23741.6i − 0.914136i −0.889432 0.457068i \(-0.848900\pi\)
0.889432 0.457068i \(-0.151100\pi\)
\(878\) − 28262.3i − 1.08634i
\(879\) 38506.7 1.47758
\(880\) 0 0
\(881\) −24381.3 −0.932378 −0.466189 0.884685i \(-0.654373\pi\)
−0.466189 + 0.884685i \(0.654373\pi\)
\(882\) 43119.5i 1.64616i
\(883\) 343.893i 0.0131064i 0.999979 + 0.00655319i \(0.00208596\pi\)
−0.999979 + 0.00655319i \(0.997914\pi\)
\(884\) −20077.3 −0.763882
\(885\) 0 0
\(886\) −3319.19 −0.125858
\(887\) − 33805.3i − 1.27967i −0.768511 0.639837i \(-0.779002\pi\)
0.768511 0.639837i \(-0.220998\pi\)
\(888\) − 4781.41i − 0.180691i
\(889\) 13567.1 0.511839
\(890\) 0 0
\(891\) −14602.7 −0.549057
\(892\) 19193.4i 0.720449i
\(893\) − 3155.57i − 0.118250i
\(894\) 23697.0 0.886517
\(895\) 0 0
\(896\) −4499.46 −0.167764
\(897\) 2572.27i 0.0957475i
\(898\) 27465.1i 1.02063i
\(899\) 17555.2 0.651277
\(900\) 0 0
\(901\) −32368.7 −1.19684
\(902\) − 12999.1i − 0.479849i
\(903\) 117484.i 4.32958i
\(904\) 6692.05 0.246210
\(905\) 0 0
\(906\) 10227.2 0.375030
\(907\) 26456.3i 0.968540i 0.874919 + 0.484270i \(0.160915\pi\)
−0.874919 + 0.484270i \(0.839085\pi\)
\(908\) 2567.08i 0.0938233i
\(909\) −9543.06 −0.348211
\(910\) 0 0
\(911\) −310.509 −0.0112927 −0.00564633 0.999984i \(-0.501797\pi\)
−0.00564633 + 0.999984i \(0.501797\pi\)
\(912\) 2174.23i 0.0789429i
\(913\) 19641.9i 0.711997i
\(914\) −10546.7 −0.381679
\(915\) 0 0
\(916\) −4925.37 −0.177662
\(917\) − 61090.7i − 2.19999i
\(918\) − 5103.60i − 0.183490i
\(919\) 17316.8 0.621575 0.310787 0.950479i \(-0.399407\pi\)
0.310787 + 0.950479i \(0.399407\pi\)
\(920\) 0 0
\(921\) 26411.5 0.944938
\(922\) 32804.8i 1.17177i
\(923\) − 13996.3i − 0.499128i
\(924\) −18407.4 −0.655366
\(925\) 0 0
\(926\) 10592.1 0.375893
\(927\) − 31051.7i − 1.10019i
\(928\) − 4909.12i − 0.173653i
\(929\) 36473.5 1.28811 0.644056 0.764978i \(-0.277250\pi\)
0.644056 + 0.764978i \(0.277250\pi\)
\(930\) 0 0
\(931\) −16960.7 −0.597061
\(932\) − 906.803i − 0.0318705i
\(933\) − 31667.0i − 1.11118i
\(934\) 6941.88 0.243196
\(935\) 0 0
\(936\) 7741.12 0.270327
\(937\) − 4777.88i − 0.166581i −0.996525 0.0832905i \(-0.973457\pi\)
0.996525 0.0832905i \(-0.0265429\pi\)
\(938\) 53117.5i 1.84899i
\(939\) 52613.9 1.82853
\(940\) 0 0
\(941\) 31366.5 1.08663 0.543315 0.839529i \(-0.317169\pi\)
0.543315 + 0.839529i \(0.317169\pi\)
\(942\) 24091.4i 0.833271i
\(943\) − 3187.58i − 0.110076i
\(944\) 5948.75 0.205101
\(945\) 0 0
\(946\) −17107.0 −0.587946
\(947\) − 26496.1i − 0.909195i −0.890697 0.454597i \(-0.849783\pi\)
0.890697 0.454597i \(-0.150217\pi\)
\(948\) 12553.9i 0.430096i
\(949\) 2197.45 0.0751658
\(950\) 0 0
\(951\) 11534.6 0.393307
\(952\) − 35231.1i − 1.19942i
\(953\) − 11928.3i − 0.405451i −0.979236 0.202725i \(-0.935020\pi\)
0.979236 0.202725i \(-0.0649798\pi\)
\(954\) 12480.3 0.423547
\(955\) 0 0
\(956\) 9733.07 0.329278
\(957\) − 20083.3i − 0.678370i
\(958\) 32589.3i 1.09907i
\(959\) −1467.96 −0.0494296
\(960\) 0 0
\(961\) −16696.1 −0.560440
\(962\) − 6696.13i − 0.224420i
\(963\) 29057.3i 0.972333i
\(964\) 3605.34 0.120457
\(965\) 0 0
\(966\) −4513.75 −0.150339
\(967\) 58320.0i 1.93945i 0.244209 + 0.969723i \(0.421472\pi\)
−0.244209 + 0.969723i \(0.578528\pi\)
\(968\) 7967.67i 0.264556i
\(969\) −17024.3 −0.564397
\(970\) 0 0
\(971\) −27526.8 −0.909760 −0.454880 0.890553i \(-0.650318\pi\)
−0.454880 + 0.890553i \(0.650318\pi\)
\(972\) 20623.4i 0.680551i
\(973\) 54021.5i 1.77991i
\(974\) −4491.64 −0.147763
\(975\) 0 0
\(976\) −756.945 −0.0248250
\(977\) 36194.1i 1.18521i 0.805493 + 0.592605i \(0.201901\pi\)
−0.805493 + 0.592605i \(0.798099\pi\)
\(978\) − 10044.0i − 0.328397i
\(979\) 9179.90 0.299684
\(980\) 0 0
\(981\) −32212.6 −1.04839
\(982\) − 15157.3i − 0.492554i
\(983\) − 58081.3i − 1.88454i −0.334850 0.942271i \(-0.608686\pi\)
0.334850 0.942271i \(-0.391314\pi\)
\(984\) −20316.9 −0.658210
\(985\) 0 0
\(986\) 38438.7 1.24152
\(987\) − 41754.8i − 1.34658i
\(988\) 3044.90i 0.0980477i
\(989\) −4194.89 −0.134873
\(990\) 0 0
\(991\) 54921.4 1.76048 0.880240 0.474529i \(-0.157382\pi\)
0.880240 + 0.474529i \(0.157382\pi\)
\(992\) − 3661.86i − 0.117202i
\(993\) − 16183.6i − 0.517190i
\(994\) 24560.4 0.783712
\(995\) 0 0
\(996\) 30699.2 0.976647
\(997\) 33999.5i 1.08001i 0.841661 + 0.540007i \(0.181578\pi\)
−0.841661 + 0.540007i \(0.818422\pi\)
\(998\) 21116.7i 0.669778i
\(999\) 1702.14 0.0539073
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.4.b.g.799.4 4
5.2 odd 4 38.4.a.b.1.2 2
5.3 odd 4 950.4.a.h.1.1 2
5.4 even 2 inner 950.4.b.g.799.1 4
15.2 even 4 342.4.a.k.1.2 2
20.7 even 4 304.4.a.d.1.1 2
35.27 even 4 1862.4.a.b.1.1 2
40.27 even 4 1216.4.a.l.1.2 2
40.37 odd 4 1216.4.a.j.1.1 2
95.37 even 4 722.4.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.a.b.1.2 2 5.2 odd 4
304.4.a.d.1.1 2 20.7 even 4
342.4.a.k.1.2 2 15.2 even 4
722.4.a.i.1.1 2 95.37 even 4
950.4.a.h.1.1 2 5.3 odd 4
950.4.b.g.799.1 4 5.4 even 2 inner
950.4.b.g.799.4 4 1.1 even 1 trivial
1216.4.a.j.1.1 2 40.37 odd 4
1216.4.a.l.1.2 2 40.27 even 4
1862.4.a.b.1.1 2 35.27 even 4