Properties

Label 950.4.b.d
Level $950$
Weight $4$
Character orbit 950.b
Analytic conductor $56.052$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,4,Mod(799,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.799");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 950.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.0518145055\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 i q^{2} + 2 i q^{3} - 4 q^{4} + 4 q^{6} - 31 i q^{7} + 8 i q^{8} + 23 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - 2 i q^{2} + 2 i q^{3} - 4 q^{4} + 4 q^{6} - 31 i q^{7} + 8 i q^{8} + 23 q^{9} + 57 q^{11} - 8 i q^{12} + 52 i q^{13} - 62 q^{14} + 16 q^{16} + 69 i q^{17} - 46 i q^{18} - 19 q^{19} + 62 q^{21} - 114 i q^{22} + 72 i q^{23} - 16 q^{24} + 104 q^{26} + 100 i q^{27} + 124 i q^{28} + 150 q^{29} + 32 q^{31} - 32 i q^{32} + 114 i q^{33} + 138 q^{34} - 92 q^{36} - 226 i q^{37} + 38 i q^{38} - 104 q^{39} - 258 q^{41} - 124 i q^{42} + 67 i q^{43} - 228 q^{44} + 144 q^{46} + 579 i q^{47} + 32 i q^{48} - 618 q^{49} - 138 q^{51} - 208 i q^{52} + 432 i q^{53} + 200 q^{54} + 248 q^{56} - 38 i q^{57} - 300 i q^{58} + 330 q^{59} - 13 q^{61} - 64 i q^{62} - 713 i q^{63} - 64 q^{64} + 228 q^{66} - 856 i q^{67} - 276 i q^{68} - 144 q^{69} + 642 q^{71} + 184 i q^{72} + 487 i q^{73} - 452 q^{74} + 76 q^{76} - 1767 i q^{77} + 208 i q^{78} + 700 q^{79} + 421 q^{81} + 516 i q^{82} + 12 i q^{83} - 248 q^{84} + 134 q^{86} + 300 i q^{87} + 456 i q^{88} + 600 q^{89} + 1612 q^{91} - 288 i q^{92} + 64 i q^{93} + 1158 q^{94} + 64 q^{96} + 1424 i q^{97} + 1236 i q^{98} + 1311 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 8 q^{6} + 46 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} + 8 q^{6} + 46 q^{9} + 114 q^{11} - 124 q^{14} + 32 q^{16} - 38 q^{19} + 124 q^{21} - 32 q^{24} + 208 q^{26} + 300 q^{29} + 64 q^{31} + 276 q^{34} - 184 q^{36} - 208 q^{39} - 516 q^{41} - 456 q^{44} + 288 q^{46} - 1236 q^{49} - 276 q^{51} + 400 q^{54} + 496 q^{56} + 660 q^{59} - 26 q^{61} - 128 q^{64} + 456 q^{66} - 288 q^{69} + 1284 q^{71} - 904 q^{74} + 152 q^{76} + 1400 q^{79} + 842 q^{81} - 496 q^{84} + 268 q^{86} + 1200 q^{89} + 3224 q^{91} + 2316 q^{94} + 128 q^{96} + 2622 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
799.1
1.00000i
1.00000i
2.00000i 2.00000i −4.00000 0 4.00000 31.0000i 8.00000i 23.0000 0
799.2 2.00000i 2.00000i −4.00000 0 4.00000 31.0000i 8.00000i 23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.4.b.d 2
5.b even 2 1 inner 950.4.b.d 2
5.c odd 4 1 38.4.a.a 1
5.c odd 4 1 950.4.a.d 1
15.e even 4 1 342.4.a.d 1
20.e even 4 1 304.4.a.a 1
35.f even 4 1 1862.4.a.a 1
40.i odd 4 1 1216.4.a.e 1
40.k even 4 1 1216.4.a.b 1
95.g even 4 1 722.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.4.a.a 1 5.c odd 4 1
304.4.a.a 1 20.e even 4 1
342.4.a.d 1 15.e even 4 1
722.4.a.d 1 95.g even 4 1
950.4.a.d 1 5.c odd 4 1
950.4.b.d 2 1.a even 1 1 trivial
950.4.b.d 2 5.b even 2 1 inner
1216.4.a.b 1 40.k even 4 1
1216.4.a.e 1 40.i odd 4 1
1862.4.a.a 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(950, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 961 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 961 \) Copy content Toggle raw display
$11$ \( (T - 57)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2704 \) Copy content Toggle raw display
$17$ \( T^{2} + 4761 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 5184 \) Copy content Toggle raw display
$29$ \( (T - 150)^{2} \) Copy content Toggle raw display
$31$ \( (T - 32)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 51076 \) Copy content Toggle raw display
$41$ \( (T + 258)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4489 \) Copy content Toggle raw display
$47$ \( T^{2} + 335241 \) Copy content Toggle raw display
$53$ \( T^{2} + 186624 \) Copy content Toggle raw display
$59$ \( (T - 330)^{2} \) Copy content Toggle raw display
$61$ \( (T + 13)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 732736 \) Copy content Toggle raw display
$71$ \( (T - 642)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 237169 \) Copy content Toggle raw display
$79$ \( (T - 700)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( (T - 600)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 2027776 \) Copy content Toggle raw display
show more
show less