Properties

Label 950.4.b.c
Level $950$
Weight $4$
Character orbit 950.b
Analytic conductor $56.052$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,4,Mod(799,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.799");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 950.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.0518145055\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + \beta q^{3} - 4 q^{4} + 4 q^{6} + 4 \beta q^{7} + 4 \beta q^{8} + 23 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{2} + \beta q^{3} - 4 q^{4} + 4 q^{6} + 4 \beta q^{7} + 4 \beta q^{8} + 23 q^{9} + 44 q^{11} - 4 \beta q^{12} + 16 q^{14} + 16 q^{16} - 37 \beta q^{17} - 23 \beta q^{18} - 19 q^{19} - 16 q^{21} - 44 \beta q^{22} - 42 \beta q^{23} - 16 q^{24} + 50 \beta q^{27} - 16 \beta q^{28} - 266 q^{29} + 136 q^{31} - 16 \beta q^{32} + 44 \beta q^{33} - 148 q^{34} - 92 q^{36} + 212 \beta q^{37} + 19 \beta q^{38} + 470 q^{41} + 16 \beta q^{42} + 118 \beta q^{43} - 176 q^{44} - 168 q^{46} - 120 \beta q^{47} + 16 \beta q^{48} + 279 q^{49} + 148 q^{51} - 18 \beta q^{53} + 200 q^{54} - 64 q^{56} - 19 \beta q^{57} + 266 \beta q^{58} - 736 q^{59} + 650 q^{61} - 136 \beta q^{62} + 92 \beta q^{63} - 64 q^{64} + 176 q^{66} - 415 \beta q^{67} + 148 \beta q^{68} + 168 q^{69} - 216 q^{71} + 92 \beta q^{72} - 127 \beta q^{73} + 848 q^{74} + 76 q^{76} + 176 \beta q^{77} + 1220 q^{79} + 421 q^{81} - 470 \beta q^{82} + 344 \beta q^{83} + 64 q^{84} + 472 q^{86} - 266 \beta q^{87} + 176 \beta q^{88} - 102 q^{89} + 168 \beta q^{92} + 136 \beta q^{93} - 480 q^{94} + 64 q^{96} - 640 \beta q^{97} - 279 \beta q^{98} + 1012 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 8 q^{6} + 46 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} + 8 q^{6} + 46 q^{9} + 88 q^{11} + 32 q^{14} + 32 q^{16} - 38 q^{19} - 32 q^{21} - 32 q^{24} - 532 q^{29} + 272 q^{31} - 296 q^{34} - 184 q^{36} + 940 q^{41} - 352 q^{44} - 336 q^{46} + 558 q^{49} + 296 q^{51} + 400 q^{54} - 128 q^{56} - 1472 q^{59} + 1300 q^{61} - 128 q^{64} + 352 q^{66} + 336 q^{69} - 432 q^{71} + 1696 q^{74} + 152 q^{76} + 2440 q^{79} + 842 q^{81} + 128 q^{84} + 944 q^{86} - 204 q^{89} - 960 q^{94} + 128 q^{96} + 2024 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
799.1
1.00000i
1.00000i
2.00000i 2.00000i −4.00000 0 4.00000 8.00000i 8.00000i 23.0000 0
799.2 2.00000i 2.00000i −4.00000 0 4.00000 8.00000i 8.00000i 23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.4.b.c 2
5.b even 2 1 inner 950.4.b.c 2
5.c odd 4 1 190.4.a.a 1
5.c odd 4 1 950.4.a.c 1
15.e even 4 1 1710.4.a.i 1
20.e even 4 1 1520.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.4.a.a 1 5.c odd 4 1
950.4.a.c 1 5.c odd 4 1
950.4.b.c 2 1.a even 1 1 trivial
950.4.b.c 2 5.b even 2 1 inner
1520.4.a.f 1 20.e even 4 1
1710.4.a.i 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(950, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 64 \) Copy content Toggle raw display
$11$ \( (T - 44)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 5476 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 7056 \) Copy content Toggle raw display
$29$ \( (T + 266)^{2} \) Copy content Toggle raw display
$31$ \( (T - 136)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 179776 \) Copy content Toggle raw display
$41$ \( (T - 470)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 55696 \) Copy content Toggle raw display
$47$ \( T^{2} + 57600 \) Copy content Toggle raw display
$53$ \( T^{2} + 1296 \) Copy content Toggle raw display
$59$ \( (T + 736)^{2} \) Copy content Toggle raw display
$61$ \( (T - 650)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 688900 \) Copy content Toggle raw display
$71$ \( (T + 216)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 64516 \) Copy content Toggle raw display
$79$ \( (T - 1220)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 473344 \) Copy content Toggle raw display
$89$ \( (T + 102)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1638400 \) Copy content Toggle raw display
show more
show less